Текст книги "Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, ативещество и бозон Хиггса"
Автор книги: Дэйв Голдберг
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 20 страниц) [доступный отрывок для чтения: 8 страниц]
Электроны во многом устроены точно так же. При вращении они генерируют маленькие магнитные поля. Если посмотреть на электрон сверху, понятно, что он может вращаться двумя способами. Если один электрон вращается по часовой стрелке, говорят, что у него спин направлен вверх, а если против, говорят, что спин направлен вниз.
Чтобы разобраться, где верх, а где низ, можно пропустить электроны через устройство, состоящее из пары обычных магнитов, и посмотреть, в какую сторону электрон отклонится. На рисунке внизу показано, что у тех, которые отклоняются вверх, спин направлен вверх, а те, которые отклоняются вниз – вниз.
Ориентировать магниты мы можем как угодно. Понятия «вверх» и «вниз» в нашем эксперименте никак не связаны с тем, как ориентирована Солнечная система, и вообще ни с чем, просто нам будет гораздо легче не сойти с ума, если мы с вами договоримся установить системы координат так, чтобы потолок и у меня, и у вас был сверху.
У спина есть одна странная и противоречащая интуиции особенность. Если магниты ориентированы вертикально, по результатам эксперимента получится, что у электрона может быть либо спин вниз, либо спин вверх, ничего промежуточного. То ли дело вращение Земли, ось которой наклонена примерно на 23½ градуса к плоскости Солнечной системы. Аналогичным образом, если повернуть устройство для измерения горизонтального спина электрона, окажется, что спин у него может быть либо влево, либо вправо. Таково волшебство квантовой механики.
Но это не самый курьезный факт, касающийся спина. Представьте себе, что у вас происходит распад элементарной частицы и – хлоп! – вылетает нейтрино. Каждое отдельное нейтрино, если смотреть на него прямо, будет вылетать со спином по часовой стрелке. Поскольку зарегистрировать и пронаблюдать нейтрино трудно, то какой у него спин, мы устанавливаем косвенно, по спинам позитронов и прочего, однако спин по часовой стрелке, судя по всему, – это непреложный закон мироздания.
В антивеществе все ровно наоборот. Антинейтрино, получающиеся в результате распада частиц, будут вращаться против часовой стрелки. Видимо, вещество и антивещество понимают разницу между правым и левым – в сущности, это единственное важное различие между ними. Как вы и то лицо, которое вы видите в зеркале по утрам – ну, примерно.
Казалось бы, различие тривиальное – и к тому же для того, чтобы его исследовать, нужно оборудование стоимостью десятки миллионов долларов – но если вы параноидально боитесь, что упали в кроличью нору, а никто и не заметил, у вас есть запасный выход.
Спин нейтрино и антинейтрино
Да, я предвижу, что все, кто читает эти строки, сейчас презрительно покривились. Получается, мы продрались сквозь все эти дебри, столько говорили о различиях между веществом и антивеществом, а обнаружили всего-навсего, что какая-то частица, с которой мы не в состоянии общаться напрямую, вращается не в ту сторону, что ее античастица?
Потерпите мое общество еще немного, поскольку пустячное различие в спине – это всего лишь верхушка айсберга.
Физика в зеркале
Итак, вещество и антивещество почти идентичны, не считая малюсенькой разницы: у нейтрино спин направлен в одну сторону, а у антинейтрино в другую. Такова фундаментальная асимметрия вселенной, однако на этом история не заканчивается. Вернемся к лицу в зеркале.
Наверное, вам уже пришло в голову, что если смотреть на антивещество в зеркале, оно будет выглядеть как раз как надо. Случилось так, что я правша, однако моя зеркальная версия, очевидно, левша. Так же и спин. Нейтрино-левша в зеркале выглядит правшой.
Зеркальные симметрии – одни из самых распространенных в природе и, пожалуй, самые симпатичные. Почти все позвоночные обладают двусторонней симметрией, по крайней мере, внешне, и очевидно, что мы генетически запрограммированы на то, чтобы нас на это тянуло. Вспомним беднягу Нарцисса, который увидел свое отражение в воде и был так потрясен собственной красотой, что навеки застыл на месте, а потом превратился в цветок. Если бы люди были отчетливо асимметричны относительно вертикальной оси, фигура, которую Нарцисс увидел в воде, была бы ему незнакома и до того неприятна, что он только отпрянул бы в отвращении, и трагедии удалось бы избежать.
Это выходит и за пределы физического мира. Всевозможные рифмоплеты и буквоеды прямо до потолка прыгают от восторга при виде зеркальной симметрии в словах и предложениях, которые читаются одинаково что справа налево, что слева направо и называются «палиндромы». Во фразах вроде «Я сличил то и то – вот и отличился» и «Ах, у печи, мы дым, мадам, мы дым и чепуха» есть что-то очень притягательное для острого ума. Палиндромы встречаются и в изобразительном искусстве – обратите внимание на работы М. К. Эшера – и даже в музыке. В своей классической книге «Гедель, Эшер, Бах» Дуглас Хофштадтер упоминает «Крабий канон» Иоганна Себастьяна Баха, который можно сыграть задом наперед, и он будет звучать так же, как и в нормальном исполнении.
Однако большинство предметов отличаются от своих зеркальных отображений, по крайней мере, в человеческом мире. Читаем мы обычно слева направо. Леонардо да Винчи, который мог многое рассказать о симметрии как таковой, воспользовался асимметрией письменной речи и, как известно, делал заметки левой рукой и писал в обратном направлении, как и Льюис Кэрролл, чье стихотворение «Бармаглот» в первый раз появляется в зеркальном отображении.
Подобным же образом водители в большинстве стран должны придерживаться правой стороны дороги. Однако нам ничто не мешает представить себе обратную зеркальную страну, полную всевозможных ужасов: движение там левостороннее, пиво подают подогретым, а дневники Леонардо выглядят совершенно нормально.
Зеркальные асимметрии проявляются даже в нашей биологии – внутри, а не снаружи: сердце у нас сдвинуто к левой стороне груди. Люди, как и автомобили, снаружи более или менее симметричны, однако внутри у них имеются асимметрии – результат исторических случайностей.
Наша ДНК закручена в спираль очень хитроумным образом. Если посмотреть на нее с торца, она всегда закручена по часовой стрелке, то есть представляет собой правозакрученную спираль. Так же устроен и винт: как его ни верти, резьба остается прежней. Направо – закручиваем, налево – откручиваем[19].
Так устроена ДНК любого живого существа на планете. Если биологу показать зеркальное отражение ДНК, он сразу распознает подвох. Кстати, одинаковое направление закрученности – очередной веский довод в пользу единого происхождения жизни на Земле.
Пропустите свет сквозь водный раствор сахара. Напомню, что сахар получают из сахарного тростника, то есть это продукт не просто химии, но и биологии. Природные молекулы сахара скручены особым образом, и свет, пройдя через раствор, поляризуется, то есть будет светить скорее в одном направлении, чем в другом. Теперь стащите 3D-очки из кинотеатра. Одним глазом вы увидите только левозакрученный поляризованный свет, а другим – только правозакрученный. Так вот, если смот19 Иногда делают винты с левой резьбой, но это исключение.
реть на свет, прошедший через сахарный раствор, правому глазу он покажется ярче, чем левому.
Откуда молекулы сахара знают, в чем разница между правым и левым? Сами молекулы, как и ДНК, закручены в определенном направлении, которое в зеркале меняется на противоположное. Лево-поляризующий сахар химически тождествен право-поляризующему, но если мы разведем в чашке культуру бактерий и искусственно создадим лево-поляризующий сахар (зеркальное отражение «настоящего»), бактерии будут голодать, потому что не смогут его есть. Ферменты, расщепляющие сахара, тоже асимметричны и приспособлены для работы только с правозакрученным сахаром. И в самом деле, зачем было бы создавать другие, раз в природе сахар только правозакрученный? Как сказала Алиса в «Зазеркалье»: «… Не знаю, можно ли пить зазеркальное молоко? Не повредит ли оно тебе, Китти…» (Пер. Н. Демуровой)
Чтобы разобраться, откуда вообще взялось фундаментальное различие между левым и правым и так ли уж оно фундаментально, нам придется как следует вглядеться в зеркало. Легко представить себе планету, где действуют точно такие же законы физики, только у людей сердце справа и пишут они наоборот – и т. д. Нам ни в коем случае нельзя забывать о подобного рода асимметриях. Они не запрограммированы – просто так получилось. Но раз уж так получилось, изменить что-то очень-очень трудно. Попробуйте проехаться по левой стороне дороги – и сами убедитесь. Однако во вселенной, которую мы видим в зеркало заднего вида, все едут по левой полосе!
Зеркальная вселенная, как и антивещество, отличаются от обычных не так разительно, как нам казалось. Ричард Фейнман поясняет это на наглядном примере:
Представьте себе, что мы собрали какой-то прибор, ну, скажем, часы, в которых много всяких колесиков, шестеренок и циферок; часы тикают, часы идут, пружина заведена. Мы смотрим на часы в зеркало. Как они выглядят в зеркале, сейчас неважно. Но давайте соберем еще одни часы, точно такие же, как зеркальное отражение первых: вместо всех винтиков с правой резьбой возьмем такие же винтики, но с левой… Если начальные условия у обоих часов были одинаковыми, если пружины были заведены с одинаковой силой, будут ли и те, и другие с тех пор идти в точности как зеркальные отражения друг друга?
Интуиция – и, наверное, любой эксперимент, который вы сможете провести в своей домашней лаборатории – подскажет, что если посмотреть на «перевернутые» часы в зеркале, они должны быть точно такими же и идти точно так же, как и оригинал.
Представьте себе, что Алиса оказалась в Зазеркалье, в параллельном мире, где каждый предмет – отражение земного. Сможет ли она их различить? Иначе говоря, сумеет ли она разобраться, какая рука у нее на самом деле левая?
Такое превращение посложнее, чем превращение вещества в антивещество, поскольку полностью погрузиться в предлагаемые обстоятельства практически невозможно. Скорее всего, вашей первой реакцией будет что-то вроде «Конечно, заметит. Не задавайте глупых вопросов».
Однако вспомните, что в раннем детстве вам частенько случалось путать право и лево. Как вы напоминали себе, где у вас какая рука? Англоязычных детишек учат так: оттопырь большой и указательный пальцы, и на левой руке получится буква L – «left». Так вот этот фокус у Алисы не получится. Зеркало отражает и буквы тоже, так что L будет повернута в другую сторону. И тогда Алиса примет свою правую руку за левую. Она не сможет разобраться, на какой Земле находится – на обычной или зазеркальной – просто поглядев себе на руки.
И в этом нет ничего удивительного. Если бы отражение в зеркале не выглядело правдоподобно, я бы не попадал постоянно впросак и не налетал на зеркальные стены в ресторанах, решив, будто это продолжение зала. Каждый раз!
Мне бы хотелось, чтобы вы не забывали об одном обстоятельстве. Дело не в том, что антивещественная Страна чудес и зазеркальная вселенная тождественны вашей. Конечно, не тождественны. Вопрос в том, как видно из примера с часами, который приводит Фейнман, тождественны ли законы в этих вселенных законам в нашей, или же в них есть какое-то тонкое различие.
Алиса вольна прыгать на месте, играть с магнитами, изучать структуру атома. И все это приведет к тем же самым результатам, как и до того, как она прошла сквозь зеркало. Если бы в реальном мире все происходило точно так же, как в зеркале (на самом деле нет), у нас была бы симметрия следующей разновидности –
Рсимметрия, она же Пространственная четность, – это когда все законы физики действуют точно так же, если смотреть на происходящее в зеркало.
Р – значит «parity», то есть четность. Мы уже знаем, что в нашей вселенной эта симметрия соблюдается не всегда. Если частица, электрон или нейтрино, например, создается в результате слабого взаимодействия, она всегда левозакрученная (то есть если она летит на вас, кажется, что частица вращается по часовой стрелке). Античастицы обладают противоположным спином. В этом-то все и дело!
Вот в чем состоит разница между С-симметрией и Р-симметрией. Они не одинаковы, однако очень тесно связаны. Между нейтрино и антинейтрино ровно два отличия: они друг другу античастицы (С) и у них противоположный спин (Р). По отдельности ни та, ни другая симметрия в физике не абсолютны, а вот их сочетание очень похоже на фундаментальную симметрию природы.
Возьмите антиверсию левозакрученного нейтрино, посмотрите на нее в зеркало – и вы увидите правозакрученное антинейтрино. Начальное и конечное состояния различаются, однако и левозакрученное нейтрино, и правозакрученное антинейтрино существуют в реальности.
Алисе не нужно рассматривать такие трудноуловимые частицы, как нейтрино, чтобы понять, что в Зазеркалье все немного не так. В 1956 году Ву Цзяньсюн и ее коллеги поставили эксперимент с радиоактивным изотопом кобальта. Они направляли спин атомов кобальта в определенную сторону. Представьте себе, что если смотреть на атомы сверху, все они вращаются против часовой стрелки – то есть спин у них вверх. При распаде кобальта получались электроны. Парадоксально, но факт: большинство из них вылетали вверх. Вывод напрашивается сам собой: при распаде кобальта электроны вылетают в ту же сторону, что и спин.
Распад кобальта‑60
Как, вы не удивились? Странно.
Чтобы понять, насколько удивителен этот результат, надо представить себе всю конструкцию в зеркале. Зеркала меняют спин частиц на противоположный. В зеркале атомы кобальта вращаются по часовой стрелке, что значит, что спин у них вниз. Электроны, с другой стороны, по-прежнему вылетают вверх – что в зеркале, что без. Наконец-то найден эксперимент, который точно покажет, где вы – в Зазеркалье или дома!
Зеркала и антивещество
Вся эта суета вокруг зеркал и прочего, скорее всего, отвлекла ваше внимание от важного вопроса, который я пока оставил в стороне. Еще раз: откуда взялось все вещество во вселенной? Ах, конечно. Мелкая подробность.
Чтобы в этом разобраться, нам придется представить себе еще одну параллельную вселенную.
1. Возьмите все частицы во вселенной и превратите их в античастицы (а античастицы – в частицы).
2. Посмотрите на результат в зеркало.
Вот вам вопрос на 64 000 долларов: будут ли в этой вселенной – гибриде Страны чудес и Зазеркалья – те же физические законы, что и в «настоящей»[20]? Такое сочетание называется СР-симметрией, или Комбинированной четностью.
20 Страшные кавычки я включил, чтобы вы в очередной раз задались экзистенциальным вопросом о законности собственного существования.
Электрический ток в проводе
Представьте себе, что у вас есть провод, по которому течет электрический ток. У электрона отрицательный заряд, у протона – положительный. Электроны бегут по проводу, а ток движется в противоположном направлении. Скажем, электроны бегут налево, тогда ток течет направо. Теперь возьмем версию Страны чудес (антивещественную): тогда налево бегут уже позитроны. Переверните провод в зеркале – и теперь позитроны бегут направо, и получается в точности такой же ток, как и в первоначальном варианте. Это на самом деле очень важно, поскольку от электрического тока возникает магнитное поле, а значит, при комбинированной четности провод производит точно такое же магнитное поле, что и в первоначальной ситуации.
Итак, электромагнетизм испытания прошел, однако не всякий эксперимент ведет себя так послушно.
В 1967 году советский физик Андрей Сахаров обнаружил минимальные условия, необходимые для того, чтобы обойти проблему асимметрии вещества и антивещества; коротко говоря, чтобы проделать СР-преобразование в масштабах вселенной, что-то приходится изменить. Как говорят профессионалы, происходит нарушение СР-инвариантности.
Ваше существование и в целом преобладание вещества над антивеществом – это очень сильный довод против идеальной СР-симметрии, однако экспериментальные данные, по крайней мере на данный момент, свидетельствуют об обратном.
Мы уже видели, что наблюдение за распадом частиц позволяет узнать об устройстве вселенной очень многое. При очень высоких энергиях в ускорителях могут возникать частицы под названием каоны, а также их античастицы. Если вы слышите о каонах впервые в жизни, стыдиться тут нечего. Живут они в среднем всего несколько миллиардных долей секунды, а потом распадаются на более легкие частицы, а те, как правило, очень-очень быстро распадаются дальше. Так что каоны на дороге не валяются[21].
И это не страшно, поскольку самое интересное начинается, когда каон уже распался. В 1964 году Джеймс Кронин и Вэл Фитч из Принстонского университета провели, что называется, вскрытие покойных каонов и получили неожиданные результаты. Оказалось, что каоны и антикаоны – частицы, до той поры считавшиеся идентичными – распадаются по-разному[22]. Так было найдено отличие вещества от антивещества.
Это отличие гораздо тоньше и коварнее, чем кажется на первый взгляд. Каоны и антикаоны медленно осциллируют туда-сюда, переходят из одной формы в другую – прямо как день и ночь.
В среднем день и ночь длятся примерно одинаково, однако эта симметрия, очевидно, иногда нарушается. Например, летом день длиннее ночи. Точно так же и симметрия между веществом и антивеществом предполагала бы, что частица должна половину времени проводить в обличье каона, а другую половину – в виде антикаона, и хотя сказать заранее, в каком состоянии она будет, мы не можем, зато можем определить, в каком состоянии и какого типа была частица перед распадом.
Если начинать с каона, то он иногда распадается на электрон и еще кое-какие остатки, которые нас не интересуют. А вот если начинать с антикаона, то он распадается на позитрон и уже другие остатки.
Ход рассуждений таков: если в начале у тебя есть огромная гора каонов и антикаонов, они осциллируют туда-сюда, и во вселенной с идеальной СР-симметрией можно рассчитывать, что на выходе будет равное количество электронов и позитронов.
А получается не так.
В подобных экспериментах позитронов на выходе получается немного больше, чем электронов. Причем не надо придавать особого значения тому, что больше получается именно позитронов. Главное – что разом поме22 Коан каона: как звучит превращение субатомной частицы в античастицу?
нять вещество на антивещество в масштабах всей вселенной не получится, даже если после этого поглядеть на все в зеркало и обнаружить, что все выглядит по-прежнему. Сочетание симметрии заряда и четности в нашей вселенной не наблюдается. А это очень важный вывод, и за него Кронин и Фитч получили в 1980 году Нобелевскую премию.
Со времен экспериментов Кронина и Фитча было получено очень много похожих и даже еще более удивительных результатов – и все говорили примерно об одном и том же: между веществом и антивеществом существует какая-то асимметрия, которая, судя по всему, проявляется при слабом взаимодействии. Однако надо понимать, что ни один их этих экспериментов не привел к тому, что вещества производилось больше, чем антивещества – мы просто выяснили, что вещество и антивещество распадаются по-разному.
Однако все это в конечном итоге не объясняет нам, почему вещество и антивещество отличаются друг от друга. Какие реакции обеспечили положение дел, при котором одного создается больше, чем другого? Ведь это и был бы окончательный ответ на вопрос, откуда мы взялись.
Как именно развивались события в первые мгновения существования вселенной, пока что никто не разобрался. Нам известно лишь одно: мы существуем благодаря какому-то нарушению симметрии вселенной, которое произошло почти сразу после ее зарождения. А тогда было очень жарко – может быть, в этом и дело?
То и дело мы слышим, как говорят, что якобы в ускорителях «воссоздаются условия Большого взрыва». И да, и нет. В прошлом температура во вселенной, а значит, и энергия, была выше. Чем ближе к Большому взрыву, который нам хочется изучить, тем жарче. Пока что в ускорителях частиц мы не наблюдали ничего, что хотя бы отчасти напоминало бы перепроизводство вещества по сравнению с антивеществом. На данный момент предполагается, что небольшое смещение симметрии вещества-антивещества произошло очень-очень рано – примерно через 10-35 с после Большого взрыва, когда температура была более чем в квинтильон раз выше, чем в центре Солнца. Достаточно сказать, что добиться таких энергий в лаборатории мы не можем. И даже при таких колоссальных энергиях асимметрия между веществом и антивеществом очень мала. На миллиард античастиц создавалась миллиард одна частица. Всего одна лишняя. Всего одна. Нам это известно, потому что во вселенной на данный момент фотонов примерно в миллиард раз больше, чем протонов. Когда миллиард антипротонов аннигилировали с миллиардом протонов, от них остались те миллиарды фотонов, которые мы наблюдаем сейчас, хотя расширение вселенной их очень заметно ослабило.
В конечном итоге все античастицы аннигилировали с почти всеми частицами, оставив ту самую одну миллиардную часть, из которой и возникло все «вещество», которое мы теперь наблюдаем. Вот как об этом сказал Эйнштейн:
Меня всегда интересовало, как так вышло, что электрон отрицательно заряжен. Отрицательный и положительный заряд – это идеальная физическая симметрия, нет никаких причин предпочитать одно другому. Почему же электрон заряжен именно отрицательно? Я долго над этим размышлял – и ничего не мог придумать, кроме «Отрицательный заряд победил!»
Иными словами, вы – всего лишь некоторая ошибка округления, сделанная примерно через 10-35 секунд после Большого взрыва. Невелик повод для гордости, верно?
Правда, для антилюдей это не менее обидно.
Глава вторая. Энтропия
В которой мы выясним, откуда берется время и есть ли оно вообще
Думаю, не я один рисую себе в воображении светлое будущее, в котором мы будем рассекать по вселенной в звездолетах галактического класса. Да что тут говорить – одним из главных стимулов к написанию этой книги стала слабая надежда, что кто-то из вас решит сделать решительный шаг и разберется наконец, как сделать гиперпространственный двигатель. Однако мой долг, прежде чем вы начнете прогибать так называемые законы физики, коротко предупредить вас о том, что из этого может получиться. Я говорю не о взрывах звезд и не о вогонах из «Автостопом по галактике» (хотя и о них тоже). Я говорю об опасности сбиться с пути.
На земле нас окружают всевозможные полезные и удобные знаки и значки, позволяющие выбирать верную дорогу: сила тяжести, Полярная звезда, магнитное поле Земли. Однако в глубоком космосе нет ни верха, ни низа, ни правого, ни левого, ни севера, ни юга.
Можно, конечно, утешаться мыслью, что даже если мы запутаемся в трех измерениях пространства, потеряться во времени нам не удастся. Уж время-то – на наш взгляд – надежное, постоянное, настоящее. Право и лево более или менее взаимозаменяемы, а прошлое и настоящее – это совсем разные вещи. Так ведь?
Предметы в зеркале обычно выглядят совершенно заурядно, однако идея «зеркала времени» представляется какой-то ерундой. Стоит запустить вселенную – да хотя бы свой рабочий день – обратно во времени, и все будет разворачиваться совсем не так, как при проигрывании вперед. Если вы видели фильм Кристофера Нолана «Помни» и сумели с первого раза разобраться в хронологии событий, могу вас только поздравить.
А теперь представьте себе, каково было бы прожить жизнь наоборот.
Есть, например, такой пустячок – причинно-следственные связи. Делаешь что-нибудь – и из-за этого происходит еще что-нибудь. А стоит повернуть вспять часы вселенной – и ни с того ни с сего следствие начнет происходить раньше причины, и все полетит в тартарары.
Вот глупые физики! Зачем столько говорить о направлении оси времени, когда и так очевидно, какое у нее направление?!
Спокойно, спокойно. Ось времени куда непостояннее, чем кажется на поверхностный взгляд.
О том, что пространство и время – это одно и то же. Или нет
Жизнь – это путешествие. В том числе и буквально – вы перемещаетесь в пространстве, видите новые места, – однако и во времени вы тоже путешествуете. Просто во времени вы перемещаетесь со скоростью одна секунда в секунду, и вам кажется, что нет ничего естественнее такого движения.
Однако на самом деле у пространства и времени куда больше общего, чем мы привыкли думать – хотя время и в самом деле отличается от пространственных измерений.
Скорость света – это не только валютный курс между веществом и энергией (E = mc 2), но и темп конверсии между пространством и временем. Возможно, вы слышали о световых годах; световой год – это всего-навсего расстояние, которое свет проходит за год, около 1016 метров. Если вам трудно такое представить (еще бы!), это примерно четверть расстояния до ближайшей звезды – Проксимы Центавра.
А если вы предпочитаете осмыслить это в терминах ограниченности наших технических возможностей, то вспомните космический корабль «Вояджер‑I»: он запущен НАСА еще в 1977 году и с тех пор летит за пределы Солнечной системы. Это самый далекий рукотворный объект, запущенный с Земли, и сейчас он находится примерно в 20 миллиардах километров от Земли. Это расстояние свет покрывает чуть меньше чем за 17 часов.
Вот вам близкое соотношение между пространством и временем. Многие физики именно так к ним и относятся – понятия секунды и световой секунды для них взаимозаменяемы, а скорость света они легкомысленно приравнивают к единице. С практической точки это вопрос того, как мы определяем меры времени и расстояния[23].
23 С таким легкомысленным отношением к пространству-времени можно, конечно, и палку перегнуть. Например, если похвастаешься, что твой звездолет может пролететь по дуге Кесселя меньше чем за 12 парсеков, выставишь себя полным идиотом.
В 1983 году на Семнадцатой Генеральной конференции по мерам и весам – очень пышное название – секунду определили в терминах «сверхтонкого перехода» цезия‑133. Атом цезия периодически испускает свет, и на конференции решили, что секунда – это 9 192 631 770 периодов испускания фотона.
Если знаешь, что такое секунда, рассчитать расстояние – пара пустяков. Метр определяется очень просто: это расстояние, которое свет проходит за 1/299 792 458 секунды.
Из того, что скорость света конечна, следует, что мы вечно смотрим в прошлое. Солнце, которое мы видим сейчас – не то, каково оно в данный момент. Это Солнце 8 минут назад. Может быть, 7 минут назад оно погасло, а мы об этом ничего не знаем и не можем узнать. Когда Нил Армстронг произнес свои бессмертные слова о крошечном шаге одного человека, они были достоянием истории – и в буквальном, и в переносном смысле, поскольку радиоволны, передававшие его сообщение, шли до нас около 1,3 секунды.
Вы заглядываете в прошлое даже в повседневных ситуациях, например, когда читаете книгу. Если вы держите книгу на расстоянии около 30 сантиметров от глаз, значит, вы заглядываете в прошлое примерно на 1 миллиардную секунды.
Выходит, перемещаться в пространстве и во времени – это в некотором смысле одно и то же, однако я хочу подчеркнуть различия. Во-первых, во времени вы двигаетесь гораздо быстрее, чем в пространстве. За одну секунду вы покрываете одну секунду времени (естественно). Но даже самые быстрые искусственные спутники покрывают лишь 0,2 световые миллисекунды пространства в 1 секунду времени. Это все равно что на месте стоять.
Мы путешествуем во времени гораздо быстрее, чем в пространстве, поскольку это прямо следует из безумной скорости света. Свет перемещается так быстро, что еще несколько столетий назад мы не были уверены, что его скорость вообще конечна. Чтобы понять, что такое время, нам нужно сначала понять, что такое пространство – и это не метафора.
Например, первые расчеты расстояния до Солнца – сейчас мы знаем, что оно равно 149 597 870 километрам и называется (несколько неизобретательно) астрономической единицей – были сделаны на основании одной лишь геометрии, и оно исчислялось в радиусах Земли.
Древние – те, которым хватило ума понять, что не Солнце вращается вокруг Земли, а наоборот – применили для вычисления этой важной ступени в лестнице расстояний самые разные и относительно неудачные подходы. Насколько именно они были неудачными, мы судить не можем, поскольку точно не знаем, как переводить древние единицы расстояния в современные. Аристарх Самосский, работавший в III веке до н. э., сделал одну из лучших оценок для своего времени (то есть почти до наших дней) и ошибся примерно в 15 раз.
Лишь около двух тысяч лет спустя, в конце XVIII века, французский астроном Жером Лаланд воспользовался редким и долгожданным астрономическим событием, чтобы точно вычислить расстояние до Солнца: астрономическим транзитом (прохождением) Венеры.
Примерно раз в сто лет планеты выстраиваются так, что Венера проходит точно между Солнцем и Землей. Астрономические транзиты очень познавательны, поскольку из разных точек земного шара они выглядят несколько по-разному. Два наблюдателя, расположившись в двух точках одной параллели (то есть линии восток-запад), увидят начало транзита с очень небольшой временной разницей.
Точно так же видят ваши глаза[24]. Левый и правый глаз видят чуть-чуть разные картинки, а мозг на основе этого рассчитывает расстояние и глубину. Поморгайте то одним, то другим глазом – и вы заметите, как картинка 24 Прошу извинить меня, если я оскорбил чувства циклопов.
слегка сдвигается, причем чем ближе предмет, тем заметнее. Если выражаться языком математики, мозг определяет все расстояния как отношения к расстоянию между зрачками.
Поскольку орбиты Земли и Венеры наклонены относительно друг друга, сначала тебе дается одна попытка наблюдения, потом ждешь 8 лет второй попытки, а потом тебе уже ничего не светит примерно 120 лет. Последний транзит Венеры был 5–6 июня 2012 года. Если вы его пропустили, то, скорее всего, больше никогда не увидите.
Лаланду очень повезло: он был в расцвете сил как раз между транзитами Венеры 1761 и 1769 годов. Сам он данные не собирал, однако у него была возможность изучить чужие наблюдения, на основании которых он сделал очень хорошую оценку расстояния до Солнца – с точностью до нескольких процентов.
Итак, измерить расстояние до Солнца в метрах мы сумели лишь в конце XVIII века, однако, как выяснилось, приблизительное расстояние в световых минутах было нам известно уже за сто лет до этого. Еще в 1670 годы датский астроном Оле Ремер отметил странности в поведении спутников Юпитера, открытых незадолго до того.
Наверное, вы и сами задумывались о том, что вращающиеся по орбитам небесные тела – это очень удобные часы[25]. Например, ближайшая к Юпитеру луна из четырех ярких Галилеевых спутников называется Ио[26], и 25 Если не задумывались, позвольте указать вам на тождество слов «месяц» – «луна» и «месяц» – «двенадцатая часть года». Остальное додумайте сами.