355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дэвид Джоунс » Изобретения Дедала » Текст книги (страница 21)
Изобретения Дедала
  • Текст добавлен: 5 октября 2016, 20:53

Текст книги "Изобретения Дедала"


Автор книги: Дэвид Джоунс



сообщить о нарушении

Текущая страница: 21 (всего у книги 22 страниц)

Неньютоновы штаны

Втискиваясь как-то в накрахмаленную рубашку, Дедал задумался о механических свойствах одежды. Он пришел к мысли, что волокна, обладающие ярко выраженными нелинейными механическими свойствами, подняли бы портняжное дело на качественно новый уровень. Реальные жидкости в своем поведении сильно отклоняются от ньютонова закона вязкости, проявляя очень широкий спектр нелинейных механических свойств. Одна крайность – это дилатансия (значительное повышение вязкости с увеличением нагрузки), другая – тиксотропия (значительное уменьшение вязкости с увеличением нагрузки). Известны также жидкости, у которых наблюдаются гистерезис и другие аномальные свойства.

Поэтому Дедал придумывает способ изготовления капиллярных волокон, заполненных такими жидкостями, и подыскивает полимеры с нелинейными свойствами, пригодные для изготовления волокон. Прежде всего его интересует волокно с ярко выраженной дилатансией. Изготовленная из такого волокна ткань не мешает обычным медленным движениям тела, но становится очень жесткой при попытке совершить резкое движение. Одежда из этой ткани очень пригодится для чрезмерно подвижных детей и суматошных сангвиников – она заставит их совершать плавные и грациозные движения и отучит от порывистости и угловатости. Такая одежда найдет большой спрос в институтах красоты и в школах йоги, где превыше всего ценится изящество жестов. К сожалению, стирать эту одежду будет очень трудно, поскольку с нею не справится ни одна стиральная машина. Но, поскольку дилатансия зависит от температуры, Дедал надеется добиться того, чтобы в горячей воде такая одежда становилась абсолютно мягкой, а после охлаждения восстанавливала свои нелинейные свойства.

Дилатантная одежда поможет также в борьбе с нарушителями общественного правопорядка. Например, обязав футбольных болельщиков являться на стадион только в такой одежде, мы существенно умерим их страсти, лишив возможности устраивать потасовки. Таким же способом можно обезопасить автомобилистов на случай аварии. Поначалу Дедал решил, что из его ткани выйдет отличное военное обмундирование. Но, поразмыслив как следует, он понял, что армии нужно нечто совершенно противоположное, и занялся разработкой тиксотропных волокон. Военная форма, пошитая из тиксотропной тканн, будет препятствовать любым движениям, если они не совершаются достаточно энергично; энергичные же движения не встретят никакого сопротивления. Поэтому надевший эту форму будет вынужден либо оставаться совершенно неподвижным, либо двигаться в ускоренном темпе.

New Scientist, May 26, 1977

Из записной книжки Дедала

Как изготовить «неньютоновское волокно»? Очевидно, эти волокна должны быть композитными и содержать некоторое количество обычного волокна, воспринимающего растягивающие нагрузки. Стало быть, либо обычное волокно должно быть покрыто слоем вещества с подходящими реологическими свойствами, либо капиллярное волокно должно быть заполнено соответствующей жидкостью. Второй вариант, по-видимому, предпочтительнее, так как в этом случае можно использовать и липкие, и текучие жидкости. Капилляры можно заполнять жидкостью примерно так, как заполняют конфеты жидкой начинкой, – наполнитель переводится в твердое состояние и покрывается оболочкой, а затем вновь размягчается. Заманчиво было бы взять в качестве наполнителя волокна какую-нибудь съедобную начинку со свойствами неньютоновской жидкости.

Обработка волокон. Прясть и ткать придуманное Дедалом волокно будет непросто. Придется проводить эти процессы при высокой температуре, чтобы уменьшить вязкость. Гибкость тиксотропных волокон может обеспечиваться ультразвуковой вибрацией ткацких и швейных машин. После снятия вибрации готовая одежда станет жесткой. Кстати, такая одежда будет обладать любопытным свойством, особенно если тиксотропия будет проявлять заметный гистерезис. После того как сопротивление одежды будет сломлено, она позволит беспрепятственно повторять одно и то же движение. Так что в такой одежде удобно будет, например, маршировать.

Государственный флаг Великобритании соткан из тиксотропного волокна фирмы КОШМАР. При порывах ветра волокно теряет жесткость и флаг свободно развевается. Когда же ветер стихает, флаг приобретает жесткость и гордо реет в высоте, в то время как обычные флаги бессильно болтаются на флагштоках.

Спасительная безликость

Фотохромные стекла, применяемые в солнцезащитных очках, обладают интересным свойством – они темнеют на свету. Под действием света хлористое серебро, введенное в состав стекла, разлагается, образуя непрозрачные зерна серебра. Эта реакция обратима – при низких уровнях освещенности стекло снова становится прозрачным; таким образом, это стекло автоматически регулирует свою прозрачность. В этой связи Дедал вспоминает основное правило маскировки: избегать контрастов. Многие животные, например, имеют темную спину и светлое брюхо, но, так как спина хорошо освещена, а брюхо остается в тени, их тональности практически сливаются. Фотохромные животные – лягушки и хамелеоны – приспособились еще лучше. Чтобы стать незаметными, они изменяют свою окраску. Но и они не способны варьировать окраску отдельных участков своего тела так, чтобы полностью слиться с окружающим фоном. Такой прием маскировки настолько эффективен, что природа, несомненно, им уже воспользовалась, – вполне возможно, что животным с таким камуфляжем до сих пор успешно удавалось избегать встречи с человеком.

Дедал пытается перенести этот принцип на человеческое общество. Он давно задумывался над тем, почему когда-то столь пышное мужское платье в викторианскую эпоху стало весьма унылым и до наших дней остается таковым, по крайней мере в повседневной н деловой жизни. По мнению Дедала, это объясняется стремлением людей не привлекать к себе особого внимания со стороны: эксцентрично или броско одетый субъект как бы напрашивается на неприятности. Так появились деловые костюмы и белые воротнички. Дедал же разрабатывает фотохромный костюм, не имеющий себе равных по неприметности. Освещенный светом, он темнеет, уменьшая свою отражательную способность; когда же на него падает мало света, он светлеет. Благодаря этому такой костюм будет казаться абсолютно однотонным. Глаз человека особенно чувствителен к контрастам. Так что фотохромный костюм, совершенно лишенный контрастности, будет практически незаметен и его обладатель не привлечет к себе ничьего внимания. Фотохромные крем для рук и лосьон для лица доведут камуфляж до совершенства. Дедал предвидит огромный спрос на свою фотохромную продукцию.

New Scientist, August 16, 1973

Вполне возможно, что животным с идеальным камуфляжем до сих пор удавалось избегать встречи с человеком.

Комментарий Дедала

В фотохромном стекле происходит классическая фотографическая реакция:

Атом хлора, освобождающийся в фотографической эмульсии, тут же необратимо связывается с желатином, а атом серебра становится центром проявления. В стекле хлор не может отойти далеко от атома серебра, и поэтому реакция обратима. Равновесие реакции зависит от освещенности стекла.

Быстродействие галогеносеребряных стекол для солнцезащитных очков измеряется минутами. При такой скорости реакции изменение окраски фотохромного костюма не поспевало бы за изменениями освещенности, возникающими при движении. Но в более совершенных фотохромных системах – например, в стеклах очков для защиты глаз от вспышки, сопровождающей ядерный взрыв, – продолжительность реакции уменьшается до микросекунд. Системы с подобными свойствами прекрасно подошли бы для фотохромного костюма.

Роль светотени в зрительном восприятии подробно обсуждалась Дж. Беком (Scientific American, Aug. 1975, p. 62); объект, не подчиняющийся обычным законам распределения света и тени, очень трудно, а порой невозможно распознать, как бы пристально мы ни разглядывали его. Глаз не в состоянии определить фактуру поверхности и форму без привычных переходов светотени. Представьте себе теперь комнату, стены, пол и потолок которой оклеены хромными обоями. Каким бы ярким ни было освещение, любой фотохромный объект, помещенный в эту комнату, окажется невидимым, поскольку между ним и фоном не будет контраста. Какой простор для иллюзионистов!

Звездные затмения

Дедал размышляет, какой вклад могла бы внести небогатая Великобритания в развитие космических исследований. За американцами нам, конечно, не угнаться, но с помощью своих европейских соседей мы могли бы разогнать какой-нибудь легкий объект до космической скорости. Солнечные затмения, которые, как известно, происходят, когда Луна закрывает солнечный диск, дают много полезной информации. Поэтому Дедал планирует вывести на орбиту непрозрачный спутник, который будет закрывать звезды и создавать искусственные звездные затмения. Специалисты фирмы КОШМАР конструируют космический зонд, представляющий собой тонкую оболочку из полимерной пленки, которая в космосе под действием небольшого внутреннего давления расправится и превратится в шар диаметром 1 км. Выведенный на околосолнечную орбиту в плоскости Млечного Пути, для земного наблюдателя он будет иметь достаточный угловой размер, чтобы покрывать множество интересных звезд.

Вся прелесть этого проекта состоит в том, что покрытия звезд можно будет наблюдать в недорогие телескопы с не очень высокой разрешающей способностью. Нам не обязательно получать четкое изображение звезды – достаточно принять идущий от нее свет, используя для этого простой фотоумножитель. Поскольку большинство звезд излучают свет равномерно, резкое изменение сигнала от фотоумножителя будет означать, что произошло покрытие звезды зондом. Точное время и степень покрытия дадут более подробную информацию о координатах, размерах и радиальном распределении яркости исследуемой звезды, чем непосредственное наблюдение ее в телескоп. Устанавливая перед фотоумножителем различные фильтры, можно изучать и спектральные характеристики звезд. При диаметре зонда 1 км наблюдатели, находящиеся на Земле на расстоянии более 1 км друг от друга, будут наблюдать покрытие по-разному, так что большое число любителей, вооруженных дешевыми телескопами, быстро соберут огромное количество новой информации.

Вначале Дедал опасался, что придется просить американцев вести слежение за нашим зондом и сообщать нам его местоположение. Но теперь он придумал, как вести прямое визуальное наблюдение за зондом: нужно нанести на шар отражающее покрытие, и тогда отовсюду можно будет увидеть маленькое отражение Солнца точно в центре зонда. Чтобы не спутать зонд со звездами, поверх отражающего покрытия придется нанести слой коричневого лака: это позволит безошибочно отыскать зонд среди звезд, поскольку коричневых звезд не существует.

New Scientist, September 27, 1979

Из записной книжки Дедала

Нас интересуют звезды, видимые в недорогой телескоп как отдельные объекты, т. е. звезды, находящиеся на расстоянии примерно 3–30 тыс. св. лет. (1016–1020 м). Типичная звезда имеет диаметр 109 м, так что угловой размер звезд лежит в пределах 10-7– 10-11 рад. Следует постараться вывести зонд на сильно вытянутую околосолнечную орбиту, чтобы расстояние между зондом и Землей изменялось в пределах 0,1–10 радиусов орбиты Земли (1010–1012 м). Чтобы покрывать интересующие нас звезды, такой зонд должен, следовательно, иметь диаметр около 103 м; тогда его угловой диаметр составит 10-7–10-9 рад. Для разных звезд будут наблюдаться разные затмения: полные или частные.

Как следить за зондом? Вблизи центра алюминированного шара (напоминающего первые пассивные ретрансляторы серии «Эхо») будет наблюдаться небольшое изображение Солнца. Угловой диаметр Солнца для земного наблюдателя равен около 0,01 рад; угловой размер мнимого изображения Солнца на выпуклом зеркале будет меньше в r/2d раз, где r – раднус кривизны зеркала, d – расстояние между зеркалом и Солнцем. При наблюдении с расстояния, равного радиусу земной орбиты, угловой размер мнимого изображения Солнца составит а = 0,01 × r/2d = 0,01 × 103/(2×1011) = 5×1011 рад и будет сопоставим с угловыми размерами покрываемых звезд. Поэтому изображение Солнца удастся отчетливо наблюдать, что обеспечит возможность слежения за зондом, но в то же время оно не будет настолько ярким, чтобы «заглушать» свет исследуемой звезды.

Сбор информации. Направим на исследуемую звезду недорогой телескоп, в фокусе которого помещен фотоумножитель. Нас вполне устроит рефрактор или рефлектор с большой апертурой (создаваемые им аберрации в данном случае нас мало волнуют); вполне подойдет просто зеркало от большого прожектора (в своей знаменитой работе по изучению флуктуации яркости Сириуса Хэнбери-Браун и Твисс использовали именно такие зеркала с фотоумножителями). Не требуется, чтобы оптика давала хорошее изображение звезды и обеспечивала разрешение исследуемой звезды от соседних, непокрываемых, звезд. Соседние звезды создадут только дополнительную фоновую освещенность, увеличив сигнал фотоумножителя. Мы будем просто регистрировать выходной сигнал фотоумножителя и искать характерные провалы, соответствующие покрытию звезды зондом. Кстати, зонд можно несколько усовершенствовать. Если раскрасить зонд черными полосами и заставить его вращаться, то солнечный зайчик на поверхности зонда будет мерцать. Еще лучше приделать к зонду огромные крылья, как у ветряной мельницы. Тогда, во-первых, он захватит гораздо больший участок неба и число наблюдаемых покрытий увеличится, а во-вторых, при соответствующем устройстве лопастей покрытия звезд различного диаметра будут резко отличаться друг от друга. Наши астрономы-любители быстро соберут много новых данных об угловых размерах большого числа звезд.

Кстати говоря, неплохо было бы запустить такой же спутник на околоземную орбиту. Благодаря своему большому диаметру он обеспечит гораздо большее число покрытий, хотя и более кратковременных. Если же вывести его на полярную орбиту (т. е. орбиту, проходящую вдоль небесного меридиана), то он мог бы покрыть все небо.

Огонь, вода и медные трубки

Потери на трение при движении судна по воде возрастают пропорционально кубу скорости, а когда подводная часть судна обрастает ракушками, становятся еще больше. Дедал размышляет над тем, какую экономию принесло бы устранение этого трения. Вначале он намеревался использовать принцип воздушной подушки, изготовив корпус из пористого материала и прокачивая через него воздух. Тонкий слой воздуха будет служить идеальной смазкой для подводной части судна. Но если насосы откажут, вода просочится сквозь поры в трюм и корабль затонет. Затем Дедал вспомнил, как долго капля воды может плясать на раскаленной сковородке, прикоснуться к которой ей мешает паровая подушка. Аналогично раскаленное докрасна судно создавало бы под собой паровую подушку; одновременно была бы решена и проблема обрастания подводной части. Расход мощности при этом был бы незначительным; коэффициент теплопередачи паровой подушки очень низок, паровая подушка служит хорошей теплоизоляцией между корпусом судна и водой. Остается, правда, проблема борьбы с коррозией, и чтобы машинное отделение не было, как всегда, сущим адом, потребуется хорошо теплоизолировать внутренние помещения корабля. Дедал намеревается превратить обычную двухслойную обшивку судна в своего рода плавучий «термос» с электрическим подогревом наружной оболочки. Хотя раскаленный докрасна винт мог бы оказаться необычайно эффективным движителем, из эстетических соображений Дедал предпочел бы установить на своем судне универсальный энергоблок. Он предлагает оснастить судно подводным паровым пульсирующим реактивным двигателем, который представляет собой подогреваемую трубу: спереди в нее попадает забортная вода, а сзади из нее выбрасывается мощная пульсирующая струя пара. По сути, эта конструкция – гигантская копия известной детской игрушки.

New Scientist, May 25, 1967

Центральноамериканская ящерица-василиск (известная под местным названием «Иисус Христос») способна в буквальном смысле слова ходить по воде. Она делает это, быстро перебирая своими широкими лапами-подушечками, подобно тому, как прыгает по воде плоский камушек. Но если это может делать ящерица, то человек – тем более, восклицает Дедал. Однако после нескольких неудачных экспериментов, в которых добровольцы, обутые в снегоступы, пытались пробежать по плавательному бассейну загородного клуба фирмы КОШМАР, Дедал был вынужден отнестись всерьез к техническим сложностям хождения по воде. Прежде всего, решил он, нужна обувь с большой площадью подошвы, чтобы нога отталкивалась от воды, не погружаясь глубоко. Простое решение состоит в том, чтобы раскалить подошву докрасна – тогда она будет удерживаться над поверхностью воды на паровой подушке. Давление пара в основном будет направлено вверх, однако, наклоняя слегка ступню, можно создать реактивную струю пара, помогающую при ходьбе.

 Созданный фирмой КОШМАР опытный образец ботинка для хождения по воде имеет изолированную от ноги большую плоскую подошву, которая раскаляется маленькой газовой горелкой.

 «Водоходец» в таких ботинках ловко шагает по воде, и каждый его шаг сопровождается громким шипением пара. Реактивная сила паровой струи и практически полное отсутствие трения позволяют ему развивать скорость во много узлов. Но испытатели первых моделей ботинок не могли удержаться на ногах из-за сильного скольжения и шли ко дну, извергая клубы пара. Тогда Дедал решил приделать к ботинкам полозья, что позволяло скользить по воде, как по льду при катании на коньках. Наконец-то морская пучина перестанет внушать людям ужас. Жертвы кораблекрушения спокойно добредут до берега, не рискуя ни утонуть, ни погибнуть от переохлаждения; чего им придется опасаться, так это перегрева. Отважные водные горнолыжники будут бесстрашно выписывать фигуры на скатах океанских валов. Появятся новые – и уж совсем неспортивные – возможности охоты на водоплавающую дичь. И может быть, начнут приручать ящериц-василисков ради удовольствия прогуливаться с ними по водной глади.

New Scientist, January 10, 1974

Комментарий Дедала

Кинограммы движений ящерицы-василиска, полученные Джошуа Лирмом, приводятся в Scientific American (Sept. 1973, p. 70).

Ехали медведи…

Дедал критикует усиленно предпринимаемые в настоящее время попытки найти общий язык с дельфинами, так как убежден, что они будут безуспешными, пока не найдется общая тема для «разговора». Поэтому он намеревается познакомить дельфинов с нашим образом жизни, придумав для них своего рода «акваланг наоборот». Это небольшой воздушный шар, оборудованный подвеской для дельфина, снабженный устройством для увлажнения кожи животного и очками, обеспечивающими ему нормальное зрение в воздухе. На плавники дельфин наденет большие «воздушные ласты», позволяющие ему плавать в воздухе. Переход в новую среду, считает Дедал, будет животным очень полезен: им, с их огромным мозгом, наверняка уже давно наскучило унылое подводное однообразие. Дедал представляет себе, с каким интересом дельфины будут изучать нашу жизнь. Возвращаясь в родной бассейн, дельфин-воздухоплаватель зальет балластную цистерну воздушного шара водой и оставит свой «транспорт» иа «стоянке». В качестве первого опыта Дедал предлагает установить на железнодорожную платформу большой аквариум и пустить ее по кольцевой колее, часть которой проходит по дну дельфинария. Дельфины научатся заплывать в аквариум и кататься в нем, привыкая таким образом путешествовать по суше.

Другой проект Дедала связан с использованием тягловых животных, которые до сих пор остаются незаменимыми в развивающихся странах. Дедал считает велосипед великолепным изобретением, так как благодаря эффективному использованию мускульной силы он увеличивает скорость передвижения человека по крайней мере в пять раз. Сделав велосипед для быка, мы во много раз увеличим полезную работу, совершаемую этим могучим, но медлительным животным. Четырехколесный опытный образец, сконструированный Дедалом, приводится в движение педалями через автоматическую коробку передач. Предполагается, что направлять движение такого транспорта будет человек. Однако Дедал хочет попробовать предоставить управление самому животному, чтобы посмотреть, как оно отнесется к новому для него способу передвижения. Вспоминая, однако, сколь агрессивными становятся люди, садясь за руль автомобиля, Дедал опасается, что подобное может случиться и с животными; боится он также и того, что, привыкнув к новому способу передвижения, животные впредь откажутся передвигаться обычным способом.

New Scientist, September 25, 1969


    Ваша оценка произведения:

Популярные книги за неделю