355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дэвид Боданис » Электрическая Вселенная. Невероятная, но подлинная история электричества » Текст книги (страница 11)
Электрическая Вселенная. Невероятная, но подлинная история электричества
  • Текст добавлен: 6 октября 2016, 19:46

Текст книги "Электрическая Вселенная. Невероятная, но подлинная история электричества"


Автор книги: Дэвид Боданис



сообщить о нарушении

Текущая страница: 11 (всего у книги 17 страниц)

Даже в кварталах побогаче начали стираться традиционные представления об общине. Радио и телевидение, когда они только появились, посылали свои сигналы во всех направлениях поровну, откуда и возникло слово «широковещание». И это позволяло рекламировать простые национальные марки товаров, обращаясь к ясно очерченным крупным группам потребителей. Даже когда возникли каталоги заказываемых по почте товаров, разновидностей этих каталогов было немного, и рассылались они крупными партиями, что не позволяло нацеливать их на конкретные ниши потребительского рынка. Однако компьютер позволяет очень быстро перебирать многие и многие варианты выбора. И это привело (в начале 1960-х) к прямым целевым рассылкам, а вскоре и к специализированным радиостанциям, станциям кабельного телевидения и тому подобному. Людям уже не приходилось реагировать на рекламу так, как это делают составные части определенной группы. Начал развиваться номадизм, появились возможности отчетливо индивидуального выбора, где человек будет жить, с кем он будет вступать в брак, как молиться и когда участвовать в выборах. Начали происходить странные вещи. Старшее поколение, привычно полагавшее, что физические упражнения – удел профессиональных спортсменов, произвело на свет потомков, которые собирались в больших залах и, ни с кем особо не разговаривая, накачивали там свои мышцы.

Изменился и характер демократии. До того как в начале 1960-х появились спутники связи, рядовые люди и не надеялись увидеть живые, доставляемые им в реальном масштабе времени картины происходящих за рубежами страны катастроф, восстаний или голода. (Они получали лишь короткие, сжатые и отредактированные сводки событий, которые показывались им в киножурналах.) И естественным образом полагались на руководителей правительства, у которых имелись собственные, относящиеся к более высокому уровню источники информации – главным образом послы и иные эмиссары, которые сообщались с ними посредством относительно дорогостоящих телексов, телеграмм и специальных самолетов. А теперь? Как только из-за рубежа поступает свежая телевизионная картинка, в стране не остается человека, знающего больше, чем все прочие. И родилось новое недоверие к правительству – чему, как это обычно бывает, способствовали и иные факторы, – родилось и с тех пор никуда уже не девалось.

Одни порождения Тьюринга ускоряли появление на свет других. Последние компьютеры, которые мог целиком и полностью охватить умственным взором один-единственный человек, были построены, вероятно, в конце 1950-х. Если для разработки схемы соединений тысячи компьютерных переключателей вы еще могли использовать логарифмическую линейку и чертежные инструменты, то, когда речь заходила о миллионах переключателей компьютера более передового, логарифмической линейкой было уже не обойтись. Вместо нее вы обращались к компьютеру уже существующему, и он делал эту работу за вас. Так одни компьютеры начали порождать другие, обладавшие все большей и большей внутренней мощью.

В результате мы имеем теперь возможность детектировать столь малое количество электронов, что обрели способность видеть и слышать вещи, которые в прошлом были полностью недоступными нашему восприятию. И можем использовать нашу способность управлять этими электронами – наше понимание того, как они телепортируются и почти останавливаются, – для того, чтобы поставить себе на службу их огромную скорость и проворство. Дверь, за которой таилась древняя сила электричества, приоткрылась еще немного.

Присмотримся к тому, как работает навигационная система GPS.В сотнях километров над нашими головами, в передатчиках спутников GPSснуют туда-сюда электроны. Создаваемое ими подрагивающее силовое поле колеблется при каждом движении этих электронов, и колебания его распространяются, достигая нас, находящихся на Земле. Так посылается каждый из создаваемых GPSсигналов местоположения.

Волна, достигающая Земли, остается для нас невидимой и неслышимой – никто не может вглядеться в кружащие по своим орбитам спутники и увидеть, как приближается эта волна; никто не может навострить уши и услышать ее.

Наши барабанные перепонки состоят из атомов, вокруг ядер которых вращается огромное количество электронов. И в их сутолоке невидимые волны, поступающие от спутника системы GPS,попросту теряются. Даже если такая волна попадет в старомодную телеантенну, эффект получится очень незначительный: эти металлические прутья, выросшие в 1950-х на крышах домов, создают сколько-нибудь заметный сигнал, лишь когда в них движется в унисон множество – быть может, несколько триллионов – электронов. Антенны чувствительнее нашего уха, однако поступающая от спутника волна сдвинуть с места такое количество электронов не может.

А вот когда эти легкие колебания поступают из космоса на наш GPS-приемник, происходит нечто совсем иное – нечто ставшее возможным благодаря усилиям инженеров «Белл», показавших, как можно подобраться к квантовому миру и управлять им. Поступающая волна, сколь бы слабой она ни была, приводит в движение очень малое число электронов, однако электроны эти направляются в одну из особых рудных жил. И кремний, в который они попадают, преобразуется: теперь это уже не прежнее по-пуритански строгое, неодобрительно взирающее на мир вещество из разряда «мимо меня не проскочишь». Нет, теперь вперед бросаются его собственные электроны, подстегнутые крошечным всплеском входящего электрического тока. Внутренние полости кремния больше уже не выглядят мрачными и неприступными, они подключаются к делу и с легкостью передают отчетливый сигнал. И все – далекий спутник услышан.

Поступающая из космоса волна почти мгновенно стихает, и рудная жила приемника перекрывается. Однако миллиардную долю секунды спустя со спутника прилетает новый всплеск волны, и рудная жила оживает снова. Это повторяется всего какую-то сотню миллиардов раз или около того – и переданный спутником сигнал принимается полностью.

Какой-нибудь заблудившийся пешеход, скорее всего, обратится к своему устройству GPS, чтобы «услышать» спутник, находящийся в сотне километров над его головой, и отыскать тем самым дорогу к нужному ему новому офисному зданию. А попав в него, он может обратиться к другим устройствам, чтобы с их помощью пробежаться – чего уж проще? – по нескольким миллиардам источников информации, разбросанным по кремниевометаллическим запоминающим устройствам компьютеров мира. И это тоже во времена более ранние было делом немыслимым, ибо, хотя и существовала система хранения огромных количеств информации – система крупных библиотек мира, – хорошо обученные библиотекари тратили несколько месяцев даже на то, чтобы просмотреть лишь малую часть этой информации.

Происходило это потому, что традиционная информация сохранялась с помощью чернил, которыми пропитывались тонкие пластины модифицированной древесной кашицы, кои мы называем бумагой. Однако чернильная линия велика, а атомы малы. Взгляд библиотекаря, который просматривал содержимое книжных полок или даже микрофильмированный каталог этого содержимого, скользил по огромным твердым вместилищам электронов и иных субмикроскопических частиц – ибо именно таковыми и являются написанные либо напечатанные буквы, обладавшие колоссальной высотой в полсантиметра, а то и больше.

Поиск в Мировой паутине происходит гораздо быстрее. Вы нажимаете на клавишу ноутбука или карманного браузера, и длинные электронные туннели, кроющиеся в проводах, подведенных к этой клавише, приступают к охоте. С их точки зрения наши быстро пробегающиеся по клавишам кончики пальцев создают неловкие, тяжеловесно медленные тычки, так что времени для работы у них предостаточно. (Каждая клавиша обычного ноутбука в течение каждой секунды десятки раз опрашивается центральным процессором, и электроны постоянно рапортуют ему: «Попадания нет, попадания нет», пока наконец, о чудо, одна из клавиш, та, на которую мы нажали, не начинает медленно опускаться.)

Огромное число транзисторов нашего компьютера и тех, что соединены с ним, быстренько реконфигурируется, чтобы пропустить направляемый в Мировую паутину запрос об информации, их рудные вены мгновенно становятся проводящими, а после прохождения запроса вновь обращаются в неодолимые препятствия.

И начинается сканирование миллионов сетевых страниц: одни из них представляют собой суммарные справочные указатели, закодированные в центральных компьютерах поисковой машины, другие хранят эту информацию во множестве разбросанных по всему земному шару компьютерах. Вскоре наш запрос заставляет силовые поля привести в движение древние, но по-прежнему обладающие энергией электроны, сокрытые в тысячах, а там и миллионах страниц – нужная нам фраза сравнивается с содержимым этих страниц. Принимаются решения, которые направляются сквозь новые изготовленные из камня транзисторы, и наконец в наш компьютер начинают поступать результаты поиска. Разосланные во все стороны эмиссары докладывают о плодах своей работы, на наш экран направляется окончательный набор сигналов. И на экране вспыхивает ответ – итог всех этих причудливых квантовых полетов.

Все это происходит, пока наша рука тянется к ожидающей ее чашке кофе. Человечество веками жило отдельно от вечно взбудораженного внутреннего мира электронов. Теперь мы с ним соединились.

Однако на этом история электричества не заканчивается. Мы узнали, что электроны способны двигаться внутри провода, и это знание дало нам телеграф, телефоны, электрические лампочки и двигатели. Затем обнаружилась долго скрывавшаяся от нас вихревая сила, которая проталкивает электроны внутри проводов и способна даже совершать колебания, создавая волны, разлетающиеся от этих проводов в пространство. В итоге мы получили радио, радары, а в конечном счете и их миниатюрные версии – наши сотовые телефоны. Следом теоретики квантовой физики установили, что электроны способны телепортироваться, совершая огромные, рискованные скачки, что их можно даже словно бы останавливать, когда они попадают в низкоэнергетические состояния, – результатом этого открытия стали затаившиеся в твердом камне переключатели и изменившие нашу жизнь компьютеры. Однако за пределами этой технологии лежит еще кое-что, играющее в нашей жизни роль даже более важную, и это кое-что теснейшим образом связано с просуществовавшими многие миллиарды лет электрическими зарядами.

Часть V
МОЗГ И ЗА ПРЕДЕЛАМИ МОЗГА

Атомы металлов, выброшенные во Вселенную взрывами далеких звезд, падали на Землю – миллиарды лет назад, когда Солнечная система была еще молода, – не в одиночестве. Вместе с ними по космосу странствовали углерод, кислород и другие элементы.

Когда они оказались на еще кипящей поверхности Земли, глубоко под ее поверхность ушли лишь некоторые из них. Многие остались наверху, обратившись в часть почвы и океана, морского дна и болот. И хотя они не были металлами, электрическое поле, создаваемое электронами и ядрами их атомов, присутствовало и в них тоже.

В большинстве своем эти неметаллы оставались инертными и мирно покоились в камнях или глиноземе, однако с некоторыми из них начали происходить вещи довольно странные. Электрические поля, создаваемые их электронами, коробили эти атомы, заставляя соединяться и образовывать удивительные конфигурации. Над планетой висело горячее солнце. Земля впитывала его энергию. Деформированные соединения атомов коробились еще пуще, деформируя и то, что их окружало. Большинство этих соединений распадалось, но некоторые из конфигураций создавали другие, столь похожие на них, что можно было говорить о самовоспроизводстве.

Так зародилась жизнь – построенная на электрических зарядах.

Глава 11
Мокрое электричество
Плимут, Англия, 1947

При самом зарождении жизни электрические силы особо важной роли не играли, однако и на нашей планете, и в нашем теле они работают постоянно и самым прозаическим образом. Например, когда мы включаем телевизор или компьютер, каждая светящаяся точка экрана принимается испускать электромагнитную волну, распространяющуюся со скоростью 1080 миллионов километров в час. После чего разворачивается последовательность событий, способная внушить благоговейный трепет.

Едва начинает светиться экран, как глаза зрителя совершают пошаговый поворот к нему – каждое весящее порядка семи грамм глазное яблоко, управляемое шестью плоскими мышцами, плавно скользит по жиру, который выстилает полость глазной орбиты. Глаза помаргивают, расширившиеся зрачки приводятся в состояние готовности, и в них врываются летящие электромагнитные волны.

Просквозив тонкий слой роговицы, они слегка замедляются, передовой фронт их образует почти плоскую поверхность, перенося еще не зарегистрированный сигнал от экрана в глубины тела ожидающего его человека.

Волны продолжают движение сквозь водянистую влагу глаза к зияющему отверстию зрачка. Человек может слегка прищуриться от слишком яркого свечения экрана, однако его рефлексы срабатывают медленно, за тысячные доли секунды, и за стремительным вторжением волн им не угнаться. Волны беспрепятственно проходят через зрачки.

Расположенные за ними хрусталики фокусируют волны, посылая их в лежащее глубже желе-образное стекловидное тело. Очень незначительное число входящих электрических волн разбивается на этом пути об органические молекулы, однако наибольшая их часть проскакивает эти мягкие биологические барьеры и продолжает пронизывать внутренность глаза, пока не достигает конечного пункта своего путешествия – хрупкой, волокнистой проекции мозга, известной под названием сетчатки. В самой ее глубине, в темноте, волны, движущиеся теперь со скоростью лишь ненамного меньшей изначальных ю8о миллионов километров в час, врываются в древние влажные кровяные сосуды и пронизывают клеточные мембраны, и тогда происходит нечто неожиданное.

Срабатывают электрические переключатели.

Само существование их кажется странным, поскольку тело человека пропитано влагой. Мы уже видели, как электричество работает в телеграфе, телефонах, электрических лампочках и моторах, радио, радарах и всевозможных компьютерах. Но здесь? Предполагается, что вода и электричество несовместимы. Джеймс Бонд, как всем известно, уничтожал злодеев, бросая радиоприемники (электрические) в их ванны (наполненные водой). И все же крошечные схемы нашего глаза дублируют работу самых хитроумных приемников электричества, несмотря на то что состоят они не из изолированных медных проводов и даже не из видоизмененного кремния, но из самых обычных белков, жирного холестерина и большого, очень большого количества воды.

Да и все наше тело работает на электричестве. Искривленные живые электрические кабели уходят в глубины нашего мозга, существующие внутри клеток интенсивные электрические и магнитные поля проталкивают питательные вещества или нейротрансмиттеры через мембранные барьеры, даже наша ДНК контролируется мощной электрической силой.

Ученые наших дней создали еще одну форму технологии – жидкостную, – позволяющую формировать во внутренних полостях наших тел миниатюрные лужицы, наполненные электрическими частицами. Обезболивающие вещества вплывают в электрические насосы наших нервных клеток, и те немеют, позволяя нам переносить хирургическую операцию; прозак запирает электрические приемные блоки нашего мозга, позволяя нам справляться с нашими горестями; электрически заряженные молекулы, содержащиеся в таблетке виагры, обостряют чувствительность наших нервных окончаний, усиливая испытываемое нами наслаждение. Все это – часть великого сдвига границ современных наук, от физики до биологии, перехода от внешнего физического мира к нашему телу и мышлению.

Представление о встроенных в наши тела и мозги электрических контурах оказалось неожиданным – до недавнего времени о роли электричества в теле никто и не помышлял. Пытливые древние греки и мусульмане заметили, как мы уже знаем, несколько электрических явлений, таких, например, как встающая дыбом – при условии, что воздух сух, – шерсть поглаживаемого животного. Анатомы Возрождения и более поздних времен обнаружили проходящие сквозь тело человека полые белые трубки и поняли, что это нервы. Впрочем, они полагали, что нервы управляются божественной силой или, при отсутствии таковой, миниатюрными шкивами либо гидравлическими жидкостями, но никак уж не электрическими искрами.

Положение начало изменяться по причине того, что большинство ученых, какими бы независимыми умами они себя ни воображали, не способно игнорировать моду, царящую в окружающем их обществе. В Англии и Италии 1600-х насосы были новой, волнующей, быстро развивавшейся технологией, поэтому, когда Уильям Гарвей приступил к исследованию кровообращения, представление о сердце как о насосе было для него вполне естественным. Ньютон и его последователи естественным образом представляли себе Вселенную как заводной механизм, поскольку многообещающей новой технологией конца семнадцатого века были точные механические часы.

В начале 1800-х немалое число людей уже успело побывать на демонстрациях простых электрических батарей и проводов. Когда одной грозовой ночью двадцатилетняя Мэри Шелли обменивалась с друзьями на берегу Женевского озера историями о привидениях, она вполне естественным образом заставила доктора Франкенштейна использовать при создании его чудища электричество. В 1840-х началось строительство телеграфных линий, сообщения по которым переносились стремительными потоками электричества. И чем большее число крупных городов Западной Европы соединялось ими друг с другом, тем труднее становилось поверить в то, что и длинные нервные волокна, служащие для передачи сообщений внутри наших тел, не используют при этом все то же электричество. Однако, когда в 1850-х немецкие ученые сумели точно измерить скорость распространения нервных сигналов, выяснилось, что электричество не распространяется в живых нервных клетках с той же скоростью в миллионы километров в час, с какой оно движется по телеграфным проводам. Внутри тела происходило нечто совсем иное, ибо скорость эта составляла всего 160 километров в час, что лишь в несколько раз превышает скорость, с которой движется кулак человека, наносящего удар.

В определенном смысле это было и хорошо, поскольку трудно понять, как могли бы уцелеть хрупкие ткани человеческого тела, если бы проходящие внутри нас сигналы распространялись со скоростью миллион километров в час. Однако почему все обстоит именно так, химия того времени объяснить не могла. Глазные яблоки приводятся в движение мышцами. Анатомы обнаружили эти мышцы без всякого труда. А вот никаких маленьких мышц, действующих как усилительные устройства наших многочисленных нервных сигналов, им обнаружить не удалось. Но, если наши нервные волокна подобны телеграфным кабелям, где же тогда батареи и что, собственно говоря, по этим кабелям движется? Ни длинных медных проводов, ни какого-либо еще металла внутри наших тел не имеется.

Решение, которое искали ученые, – объяснение того, как электричество может существовать даже в воде, – было получено, только когда они перестали думать о машинах и механизмах. Телеграф работает потому, что удается заставить электроны двигаться, но ведь электрон – это лишь часть атома. Телеграфу, электрическим лампочкам и даже компьютеру приходится полагаться на эти крошечные, податливые электроны. Однако нашим электрическим технологиям всего лишь двести лет от роду. А эволюция шла на Земле миллиарды лет и давным-давно отыскала другой способ проводить электричество, используя для этого не просто крошечные электроны, но целые атомы.

Фокус состоял в том, чтобы найти атомы, содержащие больший обыкновенного запас электрической силы. Таких, как учат нас в школе, вообще говоря, не бывает, поскольку отрицательный заряд вращающихся вокруг ядра атома электронов равен положительному заряду этого ядра. В результате атом пребывает в состоянии равновесия. Именно по этой причине он нейтрален, и по ней же даже великий Ньютон склонялся к мнению о том, что атомы суть всего-навсего скучные, простенькие шарики.

И тем не менее у некоторых атомов, таких как атомы металлического натрия, оторвать один, самый далекий от ядра электрон оказывается очень легко. В нашей планете и наших телах подобных калек полным-полно. И это очень удобно, поскольку такие оборванные гиганты отличнейшим образом приводят в движение другие электрические заряды. Положительный заряд, сосредоточенный в центре этого атома, на единицу больше отрицательного заряда оставшихся у него электронов, и потому атом создает сильное положительное электрическое поле. А кроме того, такая глыба, как атом натрия, лишившийся одного из своих электронов, способна выживать там, где крошечным электронам долго протянуть не удается. Ему нипочем пенящаяся вода или активный кислород; подобные ему атомные ионы способны проводить миллионы лет в атмосфере с ее ветрами, дождями и грозами или покоиться в горах, под километровыми наслоениями камня.

Одиночные электроны не способны прожить долгое время в омываемом влагой живом теле, а эти гиганты чувствуют себя в нем превосходно. Любой атом, обладающий отличным от изначального числом электронов, называется ионом– от греческого слова, означающего «путешественник». Ободранный атом натрия именуется ионом натрия.

Это и составляет причину, по которой наши тела проводят измеренные Гельмгольцем токи. Но как? Нервные волокна намного меньше, чем полагали ранние анатомы; полые белые трубки, обнаруженные прозекторами эпохи Возрождения, были на самом-то деле «трубопроводами» настоящих нервных волокон, куда более тонких, чем они сами, миниатюризированных почти до невидимости. Самой узкой частью их является аксон, вытянутая составляющая нервной клетки, служащая для передачи сигнала. Аксоны малы настолько, что внутренность большинства из них трудно разглядеть даже в современный микроскоп.

На счастье науки, разные нервные волокна передают сигналы с разными скоростями. Бели нервное волокно очень тонко, сигнал проходит по нему довольно медленно. Чем шире нервное волокно, тем быстрее осуществляется передача. Это означает, что физиологам двадцатого века, желавшим продолжить исследования, начатые немецкими учеными, следовало отыскать существа, которым для того, чтобы совершать нападения и спасаться бегством, требуются сверхбыстрые нервные сигналы, и, стало быть, нервные волокна их должны быть широкими и толстыми. Кроме того, существа эти должны иметь достаточную длину, поскольку длинные нервные волокна препарируются легче. Логика простая, пока не вдумаешься, что из нее следует, а следует из нее, что нужно искать животное и большое, и быстрое. Лягушка маловата, медведь слишком неповоротлив, зато гигантский кальмар – или, за неимением такового, кальмар обыкновенный, – которому для его стремительных реактивных бросков требуются быстрые сигналы, был бы идеальным.

Но разумеется, сначала требовалось кальмара добыть. А это, как выяснил спокойный молодой английский квакер Алан Ходжкин, вернувшийся летом 1939 года в Плимут после стажировки в Соединенных Штатах, дело отнюдь не простое. Он выходил в море на траулерах, обшаривал рыбные рынки, однако отыскать кальмара так и не смог. В своих веселых письмах к матери Ходжкин изображал бодрячка, однако, приуныв окончательно, не смог удержаться от жалобы на «почти полное отсутствие кальмаров». И все же в конце июня удача ему улыбнулась. Уезжая на недельный отпуск к Шотландию, он попросил местных рыбаков продолжить охоту на кальмаров, и те добились успеха. «Вернувшись, я обнаружил ожидавший меня большой запас кальмаров».

Нервные волокна, которые Ходжкин и его еще даже более молодой коллега Хаксли извлекли из кальмара, превосходили размерами все, что могли дать животные более заурядные. Они были такими большими – шириной в карандашную линию, – что молодым ученым удавалось вводить в середину каждого тонкую стеклянную иглу. (Кальмар был мертв, однако нервные волокна его оставались «живыми» – в том смысле» что несколько часов они продолжали работать даже без своего хозяина.) Исследователи девятнадцатого века могли проводить измерения лишь по длине нерва, не имея возможности заглянуть внутрь него. Ходжкин и Хаксли могли теперь измерять электрические потенциалы внутринервных волокон и сравнивать их с наружными.

Начальные их эксперименты оказались неудачными, поскольку полая игла царапала мембрану. Однако у Хаксли были хорошие руки, и со временем он научился с помощью миниатюрных зеркал, позволявших увидеть приближающие изгибы, вводить иглы, не повреждая хрупкий, еще живой нерв.

Уже в первые несколько недель Ходжкину и Хаксли удалось, используя изощренные методы нейрофизиологов, выдавить из аксона находящуюся внутри него кашицу – аксоплазму. Оказалось, что огромных ионов натрия в ней совсем немного, и это представлялось молодым ученым загадочным, поскольку в морской воде и в крови ионов натрия предостаточно – в конце концов, натрий входит в состав обычной поваренной соли (хлористого натрия). Соленый вкус морской воды либо крови – кальмара или человека, не важно, – как раз и свидетельствует о присутствии в ней этих ионов. Что-то входящее в состав мембраны захватывало ионы натрия, эти огромные модифицированные атомы, и проталкивало их сквозь мембрану, отчего они накапливались снаружи нерва.

Это было прекрасно – возможность детально разглядеть то, о чем немецкие исследователи 1860-х только догадывались. Кальмар создавал запасы ионов натрия на поверхности мембраны своих нервных клеток. Но почему? Кое-какие догадки на этот счет у молодых ученых имелись – как-никак они изучали физиологию в Кембридже, где работали лучшие специалисты мира, – однако, прежде чем они смогли пойти дальше, разразилась война. Ходжкину пришлось работать над радаром, Хаксли оказался в Адмиралтействе, и вернуться к полноценным исследованиям им удалось лишь в 1947 году. Молодая жена Ходжкина, Марни, писала своим родителям: «Алан… похож на неожиданно получившего свободу дельфина… спустя столь долгое время он снова смог нырнуть в чистую науку и теперь скачет и кувыркается в ней…»

Необходимость прервать исследования была, разумеется, неприятной, однако годы, потраченные на разработку радара, прошли не впустую. Ходжкин и его коллеги военного времени постоянно использовали давно уже сложившиеся представления о том, что электрический ток с большей легкостью протекает по пути широкому и гладкому. На таком пути больше доступных электронов, и, стало быть, «сопротивление» его невелико. А вот по узкому пути электрическому току продвигаться труднее, так как он встречается с большим сопротивлением. Поскольку нервные волокна в массе своей очень тонки (не считая огромных нервных волокон кальмара), они оказывают значительное сопротивление пытающемуся протиснуться сквозь них электричеству. Как объяснял впоследствии Ходжкин, «приглядевшись к нервной системе, инженер-электрик увидит, что перенос сигнальной электрической информации по [узким] нервным волокнам составляет проблему попросту пугающую… [Нервное] волокно мало настолько, что… электрическое сопротивление одного его метра примерно равно сопротивлению 10 000 000 000 миль [более толстого] медного провода, а это близко к расстоянию, которое отделяет Землю от Сатурна.

Если бы инженера-электрика попросили опутать проводкой Солнечную систему, он столкнулся бы с немалыми трудностями».

Нервы должны были работать как-то иначе. Электрический ток не мог протекать посередине аксонов – электрические искорки, которые по представлениям Александера Белла катили по медному проводу его телефона, там пройти не могли. Вместо этого нервы должны были подпитываться со стороны, получая регулярные всплески дополнительного напряжения от чего-то, находящегося снаружи. Все выглядело так, точно инженер, понимавший, что поддерживать постоянный уровень сигнала в длинном проводе будет трудно, предусмотрительно установил вдоль него – через равные промежутки – несколько триллионов подпитывающих устройств.

Вот ими-то и были огромные ионы натрия. Они помогали прохождению нервного сигнала. (Дальнейшие исследования показали, что для проводимости нервных волокон не менее важны и ионы калия, но, поскольку работают они аналогичным образом, мы будем для простоты держаться за натрий.) Когда у нас рождается мысль и нервная клетка нашего мозга выстреливает сигнал, он, не будь этих заряженных ионов натрия, протискивающихся снаружи внутрь клетки, заглох бы, не пройдя и доли миллиметра. Ходжкин и Хаксли показали – и это принесло им Нобелевскую премию, – что клеточная мембрана отнюдь не является сплошным эластичным барьером, непроницаемым и замкнутым, держащим наши мысли под запором в уютных фрейдистских глубинах. Нет, она, скорее, вмещает множество маленьких брешей, которые расширяются, чтобы пропускать ионы натрия. В большом количестве им просачиваться внутрь не приходится – лишь по нескольку тысяч на каждый миллиметр, – но этого хватает.

Все, что запускает натриевые подпитывающие устройства, порождает сигнал. К примеру, в глазах человека, который смотрит на экран компьютера, излучаемые экраном электрические волны ударяют в обладающие замысловатой формой молекулы содержащегося в сетчатке вещества, именуемого родопсином. Представьте себе эти молекулы как некие подобия пальм. Когда на них падает свет, молекулы скручиваются, точно листья пальмы под ударом тайфуна, и часть родопсина – «корни» пальмы – начинает вытягиваться «из земли». А поскольку родопсиновое дерево уходит корнями в раствор из ионов натрия, в основании каждого дерева образуются бреши. Ионы натрия вливаются в них, достигая лежащего ниже нерва, и это порождает сигнал.

При первом ударе натрия по самому кончику нерва с ближайшим миллиметром нервной мембраны происходит нечто странное: она начинает коробиться, пузыриться, искривляться, а затем в ней открываются отверстия, через которые внутрь вливаются ионы натрия. Их появление внутри нервной клетки приводит в такое же состояние следующий участок мембраны – и в нем тоже открываются отверстия. Натрий, скопившийся на мембране, проникает и в этот участок – и такая последовательность событий повторяется по всей длине нерва.

После того как сигнал проходит по всему нерву, нерв этот обращается в подобие грязной, раскисшей губки, покрытой дырами и пропитанной натрием. Прежде чем он снова сможет заработать, ему необходимо восстановиться – извергнуть из себя излишки натрия и закрыть отверстия. Этот процесс – вывод ионов натрия на внешнюю поверхность мембраны и закупорка отверстий, через которые они могут просочиться внутрь, – требует таких энергетических затрат, что 8о процентов поступающей в наш мозг энергии, весь сахар и кислород, все питательные остатки бифштексов, мюслей, засахаренных овсяных хлопьев и шоколадок, уходят именно на то, чтобы закупорить отверстия, через которые в нервные клетки просачивается натрий.


    Ваша оценка произведения:

Популярные книги за неделю