412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Дарья Волкова » Саша, Саня, Шура (СИ) » Текст книги (страница 11)
Саша, Саня, Шура (СИ)
  • Текст добавлен: 26 июня 2025, 04:38

Текст книги "Саша, Саня, Шура (СИ)"


Автор книги: Дарья Волкова



сообщить о нарушении

Текущая страница: 11 (всего у книги 26 страниц)

Каждый мог это прочесть, но никто не сумел понять. Вывод был столь неожидан, столь радикален, что его испугался сам Планк, отец квантов. И еще через семь лет, представляя Эйнштейна в Берлинскую Академию наук, он вместе с другими крупнейшими учеными просил «не ставить Эйнштейну в вину» его теорию световых квантов.

Эта теория, на основе которой впоследствии де Бройль создал волновую механику частиц, на фундаменте которой возникла вся квантовая физика с теорией атомов и элементарных частиц, с лазерами и мазерами, о которых теперь знают даже школьники младших классов, многие годы считалась заблуждением!

Поражает быстрота, с которой Эйнштейн работает. Всего полтора месяца понадобилось ему, чтобы завершить, пожалуй, самую важную из его работ. В ней он разрешил парадокс своей юности, скрывавший в себе зародыш теории относительности. Вот что он пишет об этом сам: «Парадокс заключается в следующем. Если бы я стал двигаться за лучом света со скоростью света, то я должен был бы воспринимать такой свет как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует».

Парадокс, поразивший Эйнштейна, когда ему было всего 16 лет, не давал ему покоя десять лет. Он понимал, что догнать световую волну и увидеть ее неподвижной невозможно. Теперь он осознал, что необходимы дальнейшие шаги. Следует признать, что не только большие тела, но и мельчайшие частицы вещества не могут двигаться со скоростью света. Что скорость света в пустоте постоянна и неизменна. Что законы природы объективны и не зависят от наблюдателя и его движения. Все это Эйнштейн принял за основу вопреки всей научной практике прошлого, всей укоренившейся системе знаний. Дальше требовалась только «техника», здесь ее роль играла филигранная математика.

Это была революция в науке. И если потом ее историки начали делить время на две эры: до Эйнштейна и после Эйнштейна, то рубежом служит 30 июня 1905 года, когда итог его труда – небольшая статья достигла редакции журнала, известив мир о том, что родилось новое мировоззрение: природа подчиняется принципу относительности.

А 27 сентября того же года, как эхо отдаленного взрыва, в редакцию пришла заметка того же автора всего на трех страницах. Теперь-то мы знаем, что в них таилась разрушительная сила атомной бомбы и созидательная сила атомной энергетики…

Прошло 40 лет, и степь в штате Нью-Мексико потряс взрыв атомной бомбы. Эйнштейн не принимал участия в ее создании. Но он обращал внимание президента Рузвельта на то, что нацисты пытаются изготовить такую бомбу. Эйнштейн тщетно пытался предотвратить трагедию – использование открытия науки для уничтожения людей. Но политические мотивы оказались для правительства США сильнее. Хиросима и Нагасаки вечно останутся пятнами позора на совести тогдашних правителей Америки.

После фонтанирующего открытиями 1905 года Эйнштейн продолжает интенсивно работать. Он понимает, что сделанное им – только начало. Главное, чему он посвящает силы в последующие годы, – расширение использования принципа относительности. В результате трудов ученого природа сил тяготения, считавшаяся величайшей загадкой природы, была объяснена. Непонятные аномалии движения планет стали простым следствием теории тяготения. Вся механика Ньютона оказалась частным случаем общей теории относительности.

Особенно потрясли воображение ученых два предсказания Эйнштейна. Первое-то, что луч света, этот символ прямолинейности, должен искривляться, проходя вблизи больших масс. Например, вблизи Солнца. Второе – часы должны идти медленнее вблизи больших масс, чем вдали от них.

Это был, пожалуй, единственный случай в истории науки, когда воображение отказывалось следовать за сухими математическими формулами. И вот 22 сентября 1919 года Эйнштейн получил телеграмму: «Эддингтон обнаружил смещение звезд у края Солнца… Привет, Лоренц». А ведь это открытие английского астронома предсказано теорией относительности.

Слава Эйнштейна охватила весь мир, все круги общества. О теории относительности беседовали в гостиных и пивных, в трамваях и школах. О ней рассказывали анекдоты. Но то, что после прихода к власти Гитлера фотография Эйнштейна была помещена в альбом главных врагов национал-социализма с надписью «еще не повешен», а теория относительности объявлена большевистской наукой, не анекдот.

Несмотря на мировую славу и на преследования мракобесов, труженик продолжает работать. Он поставил перед собой цель, казавшуюся поистине гигантской – создать теорию, способную объяснить все детали мироздания: от строения мельчайших частиц до устройства Вселенной. Теория должна была быть настолько очевидной, чтобы ее мог понять даже ребенок, – так хотел Эйнштейн.

Он не справился с задачей, хотя работал над ней около сорока лет. Несколько раз ему казалось, что он видит правильный путь и близок к цели. Он делился своей радостью и своими результатами с коллегами. Но как только ему указывали ошибку или он обнаруживал ее сам, признавал это без оговорок и начинал все заново. Это одна из его замечательных особенностей.

…К старости он изменил свои привычки. Еще мать привила ему любовь к музыке. Он часто музицировал с друзьями. Но когда дело его жизни потребовало полной отдачи и он почувствовал, что жизнь коротка и времени не хватает, он оставил даже игру на скрипке – слушал лишь граммофонные записи, помогавшие работать и переключаться. Он совершенно не уделял внимания одежде, светским обязанностям. Друзья беспокоились: у Эйнштейна стали такие грустные глаза…

Задача, поставленная Эйнштейном, не преодолена и поныне. В ее решении участвуют многие ученые. Старые и молодые. Теоретики и экспериментаторы. Время от времени им представляется, что они близки к цели. Но каждый раз надежда оказывается тщетной.

…Как же случилось, что мудрец, витавший, казалось бы, в абстрактных, далеких от повседневности сферах, так прочно занял место в сердцах людей?

Он был мудрец не только в области науки. Он зорко видел все, что происходит на Земле. Он умел отличить зло от добра, даже когда оно рядилось в одежды добра. Дав человечеству прозрение тайн Вселенной, Эйнштейн считал, что «самый важный вопрос… по сравнению с которым все прочие кажутся незначительными, это вопрос о войне и мире».

И теперь мне кажется не случайным, что именно 1905 год, ставший трамплином для революционного скачка в социальном творчестве народных масс, так много значил и в творчестве Эйнштейна. Он сразу же поверил Октябрьской революции и ее вождю Ленину. «Я уважаю в Ленине человека, – писал Эйнштейн, – который с полным самоотвержением отдал все свои силы осуществлению социальной справедливости. Люди, подобные ему, хранят и обновляют совесть человечества».

«Огонек» № 11, 1979

Нашедший незнакомку

Сенсация! Итальянский астроном Пиацци сообщил об открытии новой планеты. Разрушает ли он незыблемость Солнечной системы или ошибается?

Пока ученые и обыватели обсуждали этот вопрос, Пиацци следил за незнакомой планетой ночи напролет. Почти полтора месяца он любовался ею, но однажды… Пиацци не нашел свою планету на небосводе.

Это не погасило счастья астронома, он был уверен, что, обойдя вокруг Солнца, незнакомка вновь покажет свой лик.

Однако случилось иначе. Планета бесследно исчезла. Шел год 1801-й.

Примерно за тринадцать лет до этого нашумевшего события помощник учителя в одной из народных немецких школ попросил учеников просуммировать числа от 1 до 40. Задача несложная, требующая только внимания и некоторого времени. Учитель был поражен, когда бедно одетый застенчивый сын водопроводчика Карл, почти не задумываясь, назвал результат – 820.

Мальчик получил ответ в уме! Учителю Бартельсу еще не исполнилось двадцати лет – впоследствии он стал профессором и в Казани обучал создателя неевклидовой геометрии Лобачевского, – но и в свои юные годы он был незаурядным педагогом. Когда он узнал, как Карл пришел к ответу (а тот просто сгруппировал числа по парам: 1 плюс 40, 2 плюс 39 и так от краев к середине, заметив, что каждая пара дает 41, а таких пар 20), Бартельс понял, что его ученик заслуживает особого внимания. Он начал заниматься с мальчиком отдельно. Добился для него материальной помощи. Сделал все, чтобы дать ему возможность учиться в университете.

Карл не обманул надежд. С 14 лет он начал обгонять своего педагога. Он интересовался тем, чего не знал никто. Его увлекли тайны простых чисел. Его волновала древняя загадка параллельных линий. Действительно ли они нигде не сходятся, как утверждал Евклид?

Едва став студентом университета в Гёттингене, Карл завершает работу, казавшуюся невыполнимой со времен Архимеда. Он находит способ построить при помощи циркуля и линейки правильный 17-угольник. Древние научились строить треугольник, квадрат и пятиугольник, а также многоугольники, получающиеся простым удвоением сторон. Пойти дальше не мог никто. Но юный студент не только сделал следующий шаг, но и нашел закон, показывающий, для каких многоугольников это может быть сделано.

Один из профессоров настоял на том, чтоб об этом было напечатано хотя бы краткое сообщение. Его напечатали. Подпись под ним гласила: Гаусс из Брауншвейга, студент математики в Гёттингене.

Еще через год Гаусс нашел новое доказательство основной теоремы алгебры. Опубликование этой работы затянулось на два года, но, когда корректурные листы попали в Гельштедтский университет, ее автору – Карлу Фридриху Гауссу – была заочно присуждена докторская степень.

1799 год ознаменовался для Гаусса большим успехом: он стал приват-доцентом университета в родном Брауншвейге. Вскоре он узнал о наблюдениях Пиацци и об исчезновении новой планеты. И он решил отыскать ее.

Уже тогда Гаусс считал главным долгом математика помогать решению задач, возникающих в других областях науки. Он принимается за работу.

Однако традиционные астрономические методы не привели к успеху. Дело в том, что астрономы, хотя и знали со времен Кеплера, что планеты движутся по эллипсам, рассчитывали орбиты планет, как если бы они двигались по окружностям. Не удивительно, что первая практическая проверка традиционных методов на маленькой, с трудом видимой планете привела к неудаче.

Гаусс находит выход из положения: создает метод вычисления эллиптической орбиты всего из трех наблюдений. Ему теперь достаточно знать местонахождение планеты всего в трех точках небосвода, чтобы вычислить, где она была раньше и где будет в следующие периоды времени. Наблюдений Пиацци было достаточно, чтобы Гаусс мог опробовать свой метод и определить орбиту исчезнувшей планеты. В декабре того же года она была найдена вновь и оказалась именно там, где предсказывал Гаусс. Незнакомка, за которой охотились астроном и математик, получила имя Церера.

В пору зрелости Гаусс спустился с неба на землю. Ученый создает новую науку – высшую геодезию, – задача которой в установлении действительной, а не упрощенной формы поверхности Земли. Методы и результаты, полученные им сто пятьдесят лет назад, сохранили свое значение и поныне.

По окончании цикла геодезических исследований Гаусс занялся электричеством и магнетизмом. Он основывает магнитную обсерваторию для наблюдения магнитного поля Земли, создает теорию земного магнетизма и со свойственным ему практицизмом не забывает о конструировании нескольких приборов, помогающих при магнитных измерениях.

Работы Гаусса – в области электричества и магнетизма, фундаментальный вклад в оптику и теорию капиллярных явлений, в механику – являются серьезным словом в теоретической физике. Не менее значительны его практические достижения.

Особое место занимает созданная Гауссом единая система мер и весов. Ученый гордился тем, что устранил неразбериху в научных исследованиях, существовавшую из-за того, что одни мерили длину в дюймах, другие – вершками, третьи – локтями. То же происходило при измерениях времени, массы, веса. Гаусс положил этому конец.

Потомки ценят Гаусса не только за его научный вклад в прогресс, но и за моральную чистоту, за крайне высокую требовательность к себе. На его печати был выгравирован девиз: «Немногое, но зрелое».

Следуя этому девизу, Гаусс публиковал далеко не все свои работы. Когда его труды были посмертно обнародованы полностью, их оказалось 11 томов. Среди не опубликованных при жизни работ Гаусса остался вывод о возможности создания неевклидовой геометрии. Гаусс опасался, что его идея не будет понята, он прекратил работу в этом направлении. Но когда он узнал о работах Лобачевского, создавшего первую неевклидову геометрию, он отнесся к ним с большим вниманием. Именно Гаусс стал инициатором избрания Лобачевского членом– корреспондентом Гёттингенского научного общества.

«Огонёк» № 17, 1977 г.

Ошибка Ньютона

«…ошибки… могут таить в себе важные открытия».

Блэкетт

В 1671 году еще никому не известный за пределами своего колледжа преподаватель математики Ньютон собственными руками построил маленький зеркальный телескоп, позволявший видеть небесные тела лучше, чем самые крупные телескопы со стеклянными линзами. Зеркальце вместо увеличительного стекла приблизило к людям мир звезд.

Весть о новом телескопе вскоре вышла за пределы Кембриджа и достигла Лондона. Поэтому Ньютон, не стремившийся к славе, но побоявшись нарушить королевский декрет от 18 октября 1662 года, в силу которого всякое изобретение в области физики и механики должно быть испытано Королевским научным обществом, отправил прибор в столицу.

Члены Королевского общества (по нашей терминологии – Академии наук) и вместе с ними король осмотрели и испытали телескоп. Он работал лучше тех, которыми пользовались королевские астрономы, хотя линзы в этих телескопах были много больше, чем пятисантиметровое зеркало, изготовленное Ньютоном.

Всеобщее восхищение привело к тому, что 11 января 1672 года Ньютон был избран членом Королевского общества. Не будет преувеличением сказать, что начало нынешней славы Общества положило именно решение о принятии в него Ньютона.

Так Ньютон стал академиком, когда ему еще не исполнилось тридцати лет…

Линзовыми телескопами, в которых «главным действующим лицом» были знакомые всем увеличительные стекла в форме чечевицы, Ньютон интересовался еще в студенческие годы – в конспектах и тетрадях найдены заметки, относящиеся к полировке линз, к закону преломления световых лучей. Он знал, что даже великий Декарт, идейный учитель и кумир тогдашней молодежи, занят проблемой улучшения работы телескопов и предлагает для этой цели придавать поверхности линз не сферическую, а более сложную форму.

Но ни сам Декарт, ни лучшие мастера-оптики не могли изготовить такие линзы. Ньютон дает себе слово добиться успеха. Он изучает геометрию и алгебру и, думая, что решение задачи кроется в расчете сложных поверхностей линз, изобретает точнейшие математические методы для этих расчетов, применяет их с виртуозным искусством и изготавливает удивительные по форме увеличительные стекла. Но… на каком-то этапе работа застопорилась, и не по вине математики или из-за недостатка терпения. Наступил предел возможности увеличивать изображения далеких объектов. Мешали искажения – цветные радужные полоски.

… В Англии – тяжелые времена. Свирепствует чума. Ньютон покидает Кембридж и едет на родину – в деревню Вулсторп. Здесь он живет около двух лет – от августа 1665 года до марта 1667 года. И это оказались удивительные для науки годы. Здесь, в сельской тиши, молодой бакалавр достиг творческого подъема, не повторявшегося ни у него, ни у других за последующие триста лет. Именно здесь – тогда Ньютону шел двадцать третий год – он создал математический анализ бесконечно малых (по теперешней терминологии дифференциальное исчисление) и, применив его к физическим задачам, положил начало современной математической физике. Здесь он глубоко продумал проблему всемирного тяготения. Здесь он своими руками и на свои скудные средства создает оптическую лабораторию и проводит удивительные оптические исследования. Под впечатлением теории радуги, построенной Декартом на основе остроумных и точных методов, Ньютон начал знаменитые опыты с целью установить природу света. Именно здесь, в комнате материнского дома, Ньютон произвел свой легендарный опыт разложения солнечного света. Он поставил на пути солнечного луча стеклянную призму, и белый луч, пройдя через грани этого препятствия, рассыпался на семь цветных лучиков. Ньютон увидел на стене своей комнаты семь цветных полосок – искусственную радугу – красную, оранжевую, желтую, зеленую, голубую, синюю, фиолетовую. (Чтобы запомнить последовательность цветов солнечного спектра, надо заучить шуточную фразу: Каждый Охотник Желает Знать, Где Сидит Фазан.)

Как могло случиться, что столько людей изучали свет, видели многоцветье радуги и радужных полос, образуемых призмами, видели, но не поняли, что все эти цвета содержатся в белом свете?

Ньютон увидел и победил. Это было его великим прозрением.

Завершив эти изумительные опыты, он продолжает поиски в области оптики: наблюдает отражение и преломление лучей на границах разных сред. Все эти работы он проводит, используя призмы и линзы, без которых еще не обходился ни один оптик. Он сам шлифует и собирает их в сложные конструкции. Он пользуется не только призмами из стекла, но и наполненными водой. Все опыты без исключения убеждают его: процесс разложения белого света не зависит от состава призм, только от формы. Это не так, но ученый, готовя водяные линзы, добавлял к дождевой воде свинцовый сахар. Эта добавка делала воду еще более прозрачной, чем дождевая вода. Однако Ньютон не учел, что добавка свинца увеличит плотность воды и эта вода по оптическим свойствам станет близкой к его стеклу. «Значит, надо отказаться от использования в телескопах любых линз и искать радикально другое решение», – подумал ученый. Он пришел к мысли применить в телескопах зеркало и создал свой зеркальный телескоп. Так ошибка привела к открытию, а самого Ньютона – к славе.

Его зеркальный прибор-малютка был предком всех крупнейших современных телескопов, включая гигант с пятиметровым зеркалом на горе Маунт-Паломар и не превзойденный шестиметровый рефлектор советской Зеленчукской обсерватории.

«Огонёк» № 14, 1977 г.

Профессии лучистой материи

Это произошло ровно сто лет назад. Ученые, прибывшие в английский город Шеффилд, без особого интереса собирались на доклад Уильяма Крукса, объявленный под названием «Лучистая материя или четвертое агрегатное состояние».

Будущий президент Лондонского королевского общества Крукс уже тогда был хорошо известен химикам и физикам. Еще в 1861 году он при помощи спектрального анализа открыл новый химический элемент – тяжелый голубовато-серый металл. Его назвали таллий. Это поэтическое название происходит от греческого «таллос», что значит молодая зеленая ветка. На аналогию навела яркая зеленая линия в спектре нового элемента.

И вот Крукс преподнес научному миру новую сенсацию – лучистую материю…

Началось с того, что ученый наблюдал за свечением, возникающим при прохождении электрического тока через разреженные газы. Добившись лучшего разрежения газов, чем его предшественники, Крукс увидел, что свечение газа прекратилось, но при этом ярко засветились стенки стеклянной трубки, в которой он вел эксперимент.

Чтобы понять, почему же стенки трубки начали светиться, Крукс проводит серию опытов. И делает такой вывод: внутри трубки под действием электрического тока возникают особые лучи. Они не способны огибать препятствия. Крукс убедился в этом, поставив на пути лучей предмет в виде креста – тень креста обозначилась на светящейся стенке трубки. В курсах по физике и теперь можно встретить описание этого эксперимента под названием «крест Крукса».

Ученый наблюдал и такой эффект: лучи крутили лопасти маленькой вертушки подобно тому, как ветер вращает крылья мельницы. (Этот опыт так и называется «мельница Крукса»).

Крукс заметил и то, что лучи материи отклоняются от прямолинейного пути, если на них воздействовать магнитом. Они не только заставляют фосфоресцировать стенки трубки, но и нагревают ее.

Обо всем этом он и спешил рассказать коллегам, собравшимся в Шеффилде.

Удивительные явления, наблюдавшиеся в разреженных газах, побудили Крукса предположить возможность существования в природе четвертого состояния вещества – в отличие от твердого, жидкого и газообразного, известных людям с глубокой древности. Он писал: «Явления в этих разреженных газах открывают перед физикой новый мир – мир, в котором материя существует в четвертом состоянии».

«Я беру на себя смелость предположить, что главные проблемы будущего найдут свое решение именно в этой области и даже за нею», – утверждал ученый.

Но, интуитивно поняв кардинальный путь развития физики, Крукс останавливается в полном пессимизме пред вратами открытого им мира, «мира, в который мы никогда не будем в состоянии войти и по отношению к которому мы должны удовлетвориться наблюдениями и опытами со стороны», – печально заключает он.

Логика науки неумолима. Несмотря на неверие самого Крукса в возможность использования этой материи для практических целей и нужд человечества, он привел в действие единственный вечный двигатель, существующий в природе: любознательность человека, стремление к истине, к познанию…

Теперь, когда говорят о четвертом состоянии вещества, имеют в виду плазму. Плазма – ионизированный, но не обязательно разреженный газ. Свойства плазмы так сильно отличаются от свойств обычных газов, что возведение ее в ранг четвертого состояния вещества представляется вполне оправданным.

Электроны и ионы в опыте Крукса были первой модификацией плазмы. В природе же плазма встречается во многих модификациях. Очень разреженная и холодная плазма заполняет большую часть космического пространства. Вопреки прогнозам Крукса, космонавты изучают свойства плазмы, пролетая сквозь нее. Хорошо изучены современными учеными и верхние слои атмосферы Земли, Венеры и других больших планет – они тоже представляют собой плазму.

Известны современной науке и образцы раскаленной плазмы: это не что иное, как Солнце и большинство звезд. Они представляют собой огромные скопления разогретой до чудовищной температуры плазмы. На поверхности это тысячи, в центральных областях – десятки и сотни миллионов градусов. Одновременно с ростом температуры в глубинах звезд растет и давление. В их недрах протекают термоядерные реакции, основной источник выделяемой ими энергии. К тайне этих реакций приковано внимание всех исследователей, поставивших своей целью создать на Земле источники энергии, подобные щедрому Солнцу. Управляемая термоядерная реакция – это надежда сегодняшней энергетики. Именно в созданной человеком, подвластной его контролю термоядерной плазме будет происходить термоядерная реакция, призванная положить конец угрозе энергетического кризиса. В современных магнитных ловушках – советских «Токамаках», в лазерных термоядерных установках ученые видят черты будущих промышленных электростанций. Покорение термоядерной плазмы означает начало нового этапа цивилизации.

Крукс поразился бы, узнав, как разнообразны в наше время технические применения его лучистой материи, которой сто лет назад он не нашел места в практике. Сегодня плазма светится в неоновых и других разноцветных рекламных трубках, наполненных различными газами. Плазма возбуждает свечение люминесцентных ламп. Плазменные резаки работают более эффективно, чем обычные газовые горелки. Новая плазменная технология позволяет получать чистые тугоплавкие металлы, производить новые химические вещества. Плазменные двигатели применяются для коррекции положения и траектории искусственных спутников Земли и космических объектов. Они же донесут космические лаборатории к звездам.

«Огонёк» № 46, 1979 г.

Почему небо голубое?

Чепуха!

Скажите, вы задумывались над тем, почему небо голубое? Не зеленое, не красное, а… голубое!

Один из вас, возможно, скажет: голубое потому, что таков уж цвет воздуха. Другой добавит: или цвет одного из составляющих его газов.

Конечно, так думали давно, еще до того, как величайший из физиков Ньютон открыл законы смешения цветов и сказал: чепуха! Небо не имеет цвета. Оно лишь кажется голубым благодаря особому рассеянию солнечного света на водяных пузырьках, носящихся в воздухе.

Хотя в этих словах Ньютона и была известная правда, однако загадку небесной лазури он не разрешил. Он не заметил пустяка: никаких водяных пузырьков в воздухе в действительности нет. В этом убедились современные метеорологи.

ОТ ПЫЛИНОК К МОЛЕКУЛАМ

Ошибка Ньютона раззадорила многих ученых. В самом деле – XVII век, а наука не знает, почему небо голубое!

Прошли еще два столетия, и за решение загадочной проблемы взялся видный английский физик лорд Рэлей, увлекавшийся оптикой.

Известно, что посторонний свет мешает тончайшим оптическим опытам, поэтому окна оптической лаборатории всегда затянуты черными непроницаемыми шторами. И Рэлей часами оставался в своей мрачной комнате один на один с пучками света, вырывающимися из приборов. На пути лучей кружились пылинки… Не эти ли пылинки, танцующие в световом луче, подсказали ученому мысль о происхождении цвета неба?

Догадка поначалу ошеломила Рэлея. Неужели? Неужели все так просто?! Рэлей схватил карандаш и на клочке бумаги набросал несколько формул. Математический расчет превратил догадку в уверенность.

Ну, конечно, вскоре объявил Рэлей, именно пылинки рассеивают солнечный свет, и тем сильнее, чем короче длина его волны. А так как фиолетовые и синие лучи в видимом солнечном спектре имеют самую маленькую длину волны, то они рассеиваются наиболее сильно, придавая небу голубую окраску.

Этому расчету Рэлея подчинились и зори, и снежные вершины. Даже они подтвердили теорию ученого.

На восходе и закате, когда солнечный свет проходит через наибольшую толщу воздуха, фиолетовые и синие лучи, говорит теория Рэлея, рассеиваются наиболее сильно. Поэтому они отклоняются от прямого пути и не попадают в глаз наблюдателя. Он видит главным образом красные лучи, которые рассеиваются гораздо слабее. Поэтому на восходе и закате Солнце кажется нам красным. По той же причине кажутся розовыми и вершины отдаленных снежных гор…

Не правда ли, убедительное объяснение? Им так увлекся сам Рэлей, ученые так были поражены стройностью этой теории, что никто не заметил одной простой вещи, которая тем не менее свела всю работу Рэлея на нет.

Кто же будет отрицать, что вдали от городов, где в воздухе гораздо меньше пыли, голубой цвет неба особенно чист и ярок? Трудно было оспаривать такую очевидную истину. Да, спорить и защищать теорию, основанную на пылинках, было бесполезно.

Итак, загадка голубого цвета неба снова возникла перед учеными. Но Рэлей не сдавался. Молекулы воздуха, вскоре объявил он, – вот те мельчайшие частицы, которые рассеивают свет Солнца!

На этот раз Рэлей был очень осторожен. Десятки раз проверял он свои выводы и только после этого опубликовал их.

Казалось, теория Рэлея безупречна. Все ученые приняли ее безоговорочно. Эта теория стала общепризнанной и вошла во все учебники оптики. Тайна небесной лазури была расшифрована.

КТО ДЕРЗНУЛ?

Но (и это еще не самое парадоксальное в злополучной истории с окраской неба!)… в 1907 году на страницах одного научного журнала вновь был поднят вопрос: почему небо голубое?! Кто же дерзнул подвергнуть сомнению общепризнанную Рэлееву теорию!

Как ни странно, это был один из самых горячих поклонников и почитателей ученого. Пожалуй, никто так не ценил и не понимал Рэлея, не знал так хорошо его работ, так не интересовался ими, как молодой русский физик, впоследствии академик, Леонид Мандельштам.

Мандельштам не только показал ошибочность, или, как он сам любил говорить, «недостаточность», Рэлеевой теории молекулярного рассеяния света. Не только раскрыл тайну небесной лазури, но и положил начало исследованиям, приведшим к одному из самых замечательных открытий XX века.

А началось все с заочного спора с Рэлеем. Когда в начале нашего века, еще совсем молодой, Мандельштам познакомился с теорией Рэлея, она поразила его своей недоговоренностью и внутренними противоречиями, которых не замечал многоопытный Рэлей.

Мандельштам указал, что если бы процесс рассеяния происходил так, как считает Рэлей, то рассеяние должно было бы… полностью отсутствовать… И подтвердил это безупречным математическим расчетом.

Вывод был обескураживающий. Выходило, что небо, если верить теории Рэлея, и днем должно быть черным.

Выходило, что расчет Рэлея отбрасывал всю проблему далеко назад…

Итак, здание Рэлеевой теории окончательно рухнуло. Из-под его обломков снова возник пресловутый вопрос: почему же небо голубое?

Откуда новые частоты?

Впрочем, Мандельштам не полностью «разоружил» Рэлея. Он только выбил из его рук главный аргумент. Советский физик вовсе не возражал против того, что в голубой окраске неба повинны молекулы. Но он был против ошибочного объяснения, которое дал этому явлению Рэлей. Следующий решающий шаг сделал польский физик Смолуховский. Он показал, что не сами одиночные молекулы, а их случайные скопления – есть те препятствия, на которых рассеивается солнечный свет.

Если это так, то сгустки молекул, возникая и исчезая хаотически, должны вызывать мигание рассеянного света. Это эффект настолько тонкий, что его нечего и пытаться обнаружить, однако одновременно должен наблюдаться и другой эффект – небольшое изменение длины волны – частоты колебаний рассеянного света по сравнению с падающим. Это также очень тонкий эффект, но в лаборатории его стоит попытаться обнаружить: это окончательно подтвердит теорию…

Так думал Мандельштам и мучительно искал возможность осуществить опыт. А это в трудные годы послевоенной разрухи и иностранной интервенции было, пожалуй, посложнее, чем создать саму теорию. Что же касается ее практической ценности, то в то время даже сам виновник открытия не подозревал о ее значении.

В 1925 году Мандельштам вместе с молодым физиком, тоже впоследствии академиком, Ландсбергом продолжили штурм тайн, скрытых в слабых лучах рассеянного света… После долгих раздумий ученые для простоты решили изучать рассеяние света на твердых телах и для этой цели выбрали кварц.

В 1927 году начались первые опыты. Ученые осветили кристалл кварца светом ртутной лампы и… удивились! Они обнаружили не небольшие, еле уловимые изменения частоты рассеянного кристаллом света ртутной лампы, а, против ожидания, уловили частоты гораздо более высокие и низкие. В спектре рассеянного света появилась целая комбинация частот, которых не было в падающем свете.


    Ваша оценка произведения:

Популярные книги за неделю