355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кудрявцев » Первоначала вещей (Очерк о строении вещества) » Текст книги (страница 2)
Первоначала вещей (Очерк о строении вещества)
  • Текст добавлен: 29 августа 2020, 09:30

Текст книги "Первоначала вещей (Очерк о строении вещества)"


Автор книги: Борис Кудрявцев



сообщить о нарушении

Текущая страница: 2 (всего у книги 8 страниц)

Молекулы

Итак, все в мире состоит из мельчайших частиц, которые Ломоносов называл корпускулами, а мы называем молекулами.

Если делить крупинку сахара или каплю воды на все более и более мелкие части, то рано или поздно мы придем к предельно малой частице – молекуле. Молекула сохраняет еще свойства, присущие данному веществу: молекула воды сохраняет свойства воды, молекула сахара – свойства сахара.

Насколько малы молекулы и как много их в любом теле, можно видеть из такого примера. Представьте себе, что мы взяли стакан воды и при помощи особой краски переметили все находящиеся в нем молекулы воды. Выльем этот стакан воды с мечеными молекулами в океан и перемешаем воду равномерно между всеми океанами, морями и реками мира. Если теперь в любом месте зачерпнуть стакан воды, то в нем окажется около сотни знакомых нам меченых молекул.

Молекулы так малы, что трудно представить себе их состоящими из еще более мелких частиц. А между тем молекулы действительно состоят из еще более мелких частиц, которые теперь и называются атомами.


Рис. 4. Если сложить вместе столько песчинок, сколько содержится молекул воздуха в одном кубическом сантиметре, то получится куча, которая закроет большой завод.

Однако если разделить молекулы на атомы, то присущие данному веществу свойства будут потеряны. Молекула воды распадется на атом кислорода и два атома водорода. Водород и кислород – газы; по своим свойствам они совсем не похожи на воду.

Физические и химические свойства молекул зависят от того, из каких атомов состоит молекула. На рисунке 5 изображены молекулы веществ, знакомых нам из повседневной жизни.


Рис. 5. Модели молекул: а – кислорода, б – углекислого газа, в – бензола.

Молекула углекислого газа получается в результате соединения атома углерода с двумя атомами кислорода; в молекуле химического вещества, называемого бензолом, содержится шесть атомов углерода и шесть атомов водорода. Молекула кислорода состоит из двух одинаковых атомов кислорода. Встречаются молекулы более сложные, но есть и такие, которые состоят всего из одного атома.

Если заменить хотя бы один из атомов, входящих в молекулу, другим, свойства ее изменятся. Молекула воды состоит, например, из одного атома кислорода и двух атомов водорода (рис. 6).


Рис. 6. Молекула воды.

Если один из атомов водорода в молекуле воды заменить на атом металла натрия, то получится молекула вещества, называемого едким натрием, или едкой щелочью. Едкий натрий – твердое вещество, по своим свойствам совершенно непохожее на воду. Свойства молекул, однако, зависят не только от того, какие атомы входят в их состав, но и от того, как они расположены. В этом можно убедиться, рассмотрев две молекулы, изображенные на рисунке 7.


Рис. 7. Две молекулы, различающиеся расположением атомов.

Каждая из них содержит 4 атома углерода и 10 атомов водорода, но свойства этих молекул различны.

Причиной тому – разное расположение атомов.

Атомы в молекулах располагаются не как угодно. Их размещение подчиняется определенным законам. В приведенном примере возможны только два расположения атомов, а следовательно, только две различные молекулы с одним и тем же составом. При увеличении числа атомов в молекуле количество возможных расположений их быстро возрастает; так, у молекулы, состоящей из 13 атомов углерода и 28 атомов водорода, возможны уже 802 различных расположения атомов, и, следовательно, у вещества с таким составом мыслимы 802 различные молекулы.

В этой книжке будет рассказано о таких свойствах и превращениях тел, при которых состав молекул остается неизменным. Поэтому мы в дальнейшем изложении для простоты условно будем считать молекулы очень маленькими твердыми шариками с определенными, неизменными свойствами, не задумываясь о том, как в действительности они устроены.

Несмотря на то, что молекулы нельзя было увидеть даже в самый сильный из обычных микроскопов, ученые нашли способы с полной достоверностью доказать их существование. А в недавнее время удалось построить замечательный прибор – электронный микроскоп, который увеличивает настолько сильно, что с его помощью можно увидеть и отдельные молекулы. На рисунке 8 изображена сделанная при помощи электронного микроскопа фотография одного сложного химического соединения. Правда, такие молекулы являются гигантами в мире молекул. Обычные же молекулы настолько малы, что и в электронный микроскоп мы не можем их увидеть.


Рис. 8. Электронный микроскоп и полученная с его помощью фотография молекул одного сложного химического соединения.


Вечное движение

Каковы же свойства молекул?

«Первым и самым важным из прирожденных свойств материи является движение», – писали около ста лет назад Маркс и Энгельс. Молекулы не находятся в покое, а непрестанно движутся.

Очевидно, и частицы воздуха, беспорядочно двигаясь, непрерывно ударяются о нас, как бы обстреливают наши тела. Почему же мы не чувствуем этих ударов? Объясняется это очень просто. Молекулы, как мы знаем, чрезвычайно малы и легки, и наши органы чувств не воспринимают слабых ударов отдельных молекул. Не чувствуем же мы увеличения тяжести надетой на голову шляпы, когда на нее сядет комар. А комар состоит из многих миллиардов молекул!

Другое дело, если быстро движущаяся молекула ударяется об очень маленькую частицу, по размерам сравнимую с ней. В этом случае удар уже не пройдет бесследно для частицы.

Каждый из вас не раз наблюдал, конечно, как солнечный луч, попадая в темную комнату через щель ставни или неплотно задернутую штору, пронизывает воздух и делает видимым множество находящихся в нем мельчайших пылинок. Какое беспорядочное движение можно наблюдать при этом! Пылинки причудливо мечутся и кружатся, напоминая рой мошек в теплый летний вечер. Такое же беспорядочное движение можно увидеть, если, вооружившись микроскопом, присмотреться к частичкам дыма обычной папиросы. И такое же причудливое движение совершают мельчайшие частицы, если поместить их в жидкость. Сложные запутанные узоры выписывают, например, частицы цветочной пыльцы, высыпанной в воду.

Пылинки неутомимы в своем движении! Сколько бы времени вы ни наблюдали их – час, день, неделю, они с одинаковым усердием будут продолжать свою бесконечную пляску. В чем причина этого движения? Что заставляет частицы постоянно изменять свой путь, неожиданно бросаться в сторону, как будто наскочив на невидимое препятствие?

На первый взгляд ответ очень прост: ведь окружающий нас воздух никогда не бывает полностью спокоен. Даже когда нет ощутимого ветра, и тогда движутся навстречу друг другу и взаимно перемешиваются потоки теплого и холодного воздуха. Такие же тепловые потоки наблюдаются и в воде, нагретой в одном месте больше, чем в другом.

Не эти ли потоки, сталкиваясь друг с другом и взаимно перемешиваясь, заставляют пылинки двигаться? Ну что же, это можно проверить! Возьмем стакан с водой, к которой подмешана цветочная пыльца, обмотаем его ватой, чтобы защитить и от нагревания и от охлаждения, и поставим на стол вдали от окна. Пройдет несколько часов или, если хотите, дней, и вся жидкость сделается одинаково нагретой – тепловые потоки в ней исчезнут. Вероятно, и наши пылинки, не подгоняемые более, перестали двигаться? Но вооружимся микроскопом, и мы снова увидим, что среди пылинок царит прежнее оживление: как и раньше, они беспорядочно мечутся, гонимые какой-то неведомой силой.

Значит, не перемешивание жидкости или газа, вызванное разной нагретостью его отдельных слоев, причина движения пылинок. Поищем другое объяснение этого загадочного явления.

Не мы ли с вами сами являемся причиной этого движения? Ведь стакан, в котором мы наблюдаем движение, стоит на столе, и мы, двигаясь по комнате, закрывая и открывая двери, непрерывно сотрясаем стол. А когда мы неподвижны, это за нас делают проезжающие по улице автомобили, трамваи, автобусы.

Чтобы избежать каких бы то ни было сотрясений, ученые опускались в подземелья, где сосуд с жидкостью находился в полном покое. Но и это не могло успокоить пылинки, они двигались по-прежнему неутомимо!

Что же заставляет их двигаться?

Если присмотреться к нашему опыту, то в глаза бросится обстоятельство еще более странное, чем движение пылинок.

В самом деле, описанное явление можно наблюдать, подмешав к воде мельчайшие частицы любого вещества, нерастворимого в воде. Это вещество может быть и более тяжелым, чем вода. В последнем случае частицы должны были бы потонуть и собраться на дне стакана. Однако если мы проделаем такой опыт, например, с глиной, то убедимся, что часть частиц, вместо того чтобы упасть на дно стакана, расположится так, как это изображено на рисунке 9.


Рис. 9. Так располагаются мельчайшие частички в сосуде с водой.

Внизу их будет больше, наверху меньше. И такое расположение не меняется, сколько бы времени мы ни наблюдали!

Что же мешает частичкам упасть?

Оказывается, одна и та же причина заставляет частицы двигаться и не дает им упасть. Это удары о них молекул воды.

Конечно, причудливые движения каждой цветочной пылинки не есть результат ударов отдельных молекул. Дело в том, что в какое-либо мгновение об одну из сторон пылинки ударяется или значительно больше молекул, чем о противоположную, или же молекулы, движущиеся с большей скоростью. Все эти удары складываются и заставляют пылинки двигаться в том направлении, в каком перемещаются избыточные или особенно быстрые молекулы.

Описанное движение мельчайших пылинок было открыто известным, шотландским ботаником Броуном и названо по его имени броуновским. А теория, объясняющая беспорядочное движение частиц под влиянием ударов молекул, была развита польским ученым М. Смолуховским.

Броуновское движение позволяет ученым обнаруживать движение молекул так же, как движение листвы деревьев позволяет заметить даже слабое дуновение ветерка.


Рис. 10. Схема броуновского движения.


Со скоростью пули

В жизни мы привыкли чаще иметь дело с твердыми и жидкими телами и реже с газами. Поэтому первые нам представляются более простыми и понятными, чем неосязаемые и невидимые газы. Однако не все, к чему мы привыкли и что кажется нам простым и ясным, является в действительности простым. Оказывается, газы имеют более простое строение, чем жидкости или твердые тела; поведение молекул газов легче изучить и понять.

Если бы мы построили микроскоп, в который можно было бы видеть отдельные молекулы, и стали бы с его помощью рассматривать спокойный воздух или какой-либо газ, то обнаружили бы в «спокойном» воздухе или газе невообразимую сутолоку и суету. Молекулы газа движутся беспорядочно по всем направлениям с самыми различными скоростями. На первый взгляд здесь нет никакого порядка, никаких правил движения. Есть молекулы быстрые, есть и молекулы медленные; и те и другие движутся по всем направлениям. Однако если измерить скорости большого числа молекул, то окажется, что очень быстро и очень медленно движется совсем небольшая доля молекул.

Важный для науки закон, который указывает, как распределяются молекулы по скоростям (то-есть сколько молекул движется медленно, сколько – быстро), был найден английским физиком К. Максвеллом.

По этому закону подавляющее большинство молекул движется со скоростями, мало отличающимися друг от друга. Таким образом, без большой ошибки можно считать, что все молекулы движутся с одной и той же средней скоростью.

Сказанное можно пояснить таким примером. Если собрать всех только что призванных в армию солдат одного года рождения, построить их рядами, так, чтобы в каждом ряду стояли солдаты одного роста, затем ряд самых высоких поставить справа, а самых низких слева, то окажется, что новобранцев очень высокого и очень маленького роста будет только несколько человек, а чем ближе к середине, тем длиннее будут ряды. Большинство призывников имеет близкий к среднему рост. Это правило будет оправдываться всегда, когда мы будем брать достаточно большое количество призывников. Если же мы захотим проверить сказанное, взяв десять-одиннадцать призывников, то можно случайно встретиться со значительными отклонениями от этого правила. Точно так же и замена различных скоростей молекул средней скоростью не будет приводить к ошибкам только в том случае, если молекул достаточно много, потому что тогда доля молекул со скоростями, значительно отличающимися от средней, будет невелика. Но даже в очень небольшом количестве газа, например в объеме, равном булавочной головке, содержится громадное число молекул, исчисляющееся цифрой с 16 нулями. Поэтому во всех практических случаях можно без существенной ошибки считать, что все молекулы движутся с одной и той же средней скоростью.

Какова же величина средней скорости движения молекул газа?

У разных газов она различна.

Самые быстрые молекулы – молекулы легкого газа водорода. Медленнее движутся молекулы кислорода. Еще медленнее – молекулы углекислоты, тяжелого газа, образующегося при многих химических превращениях и, в частности, при горении.

При обычной температуре молекула водорода пробегает около 2 километров в секунду, то-есть около 7 000 километров в час (рис. 11).


Рис. 11. При обычных температурах молекулы водорода движутся быстрее самолета и поезда.

Молекулы кислорода совершают за 1 секунду путь около 500 метров, то-есть около 1 800 километров в час. Скорость движения молекул углекислоты – 1 200 километров в час. Еще медленнее движутся молекулы некоторых сложных веществ; например, молекулы вещества, называемого карбонилом никеля, проходят за час меньше 600 километров. Такую молекулу легко обгонит современный самолет.

Эти цифры вызывают законное удивление. В самом деле, молекулы водорода, двигаясь беспрепятственно, облетели бы вокруг Земли по экватору всего за 6 часов. Даже медленная молекула углекислоты совершила бы это путешествие меньше чем за двое суток.

С другой стороны, мы знаем, как медленно распространяются запахи. Если на некотором расстоянии от нас разольют бензин, то для того, чтобы запах дошел до нас, необходимо некоторое время. Но ведь скорость распространения запаха – это и есть как будто скорость движения молекул пахучего вещества в воздухе. Как же примирить быстрое движение молекул, проходящих сотни метров в секунду, с медленным распространением запаха?

«Очевидно, что отдельные атомы воздуха, взаимно приблизившись, сталкиваются с ближайшими… вторые атомы друг от друга отпрыгнули, ударились в более близкие к ним и снова отскочили; таким образом, непрерывно отталкиваемые друг от друга частыми взаимными толчками, они стремятся рассеяться во все стороны», – писал М. В. Ломоносов.

Распространение одного газа в другом, вызванное беспорядочным движением молекул, называется диффузией. Теперь нам понятно, почему диффузия происходит медленно.

Соударение молекул! Вот в чем причина медленности диффузии. Хотя молекулы газов и движутся с очень большими скоростями, они проходят без соударения только очень короткие пути – миллионные доли сантиметра.

Соударения резко изменяют направление движения молекул и придают их путям причудливую, замысловатую форму.

Таким образом, двигаясь очень быстро, но непрерывно меняя направление своего движения, молекулы как бы «толкутся» на месте. В этом суетливом движении молекулы медленно перемещаются вперед.

Чем чаще происходят соударения, тем медленнее диффундирует газ. В окружающем нас воздухе соударения молекул происходят очень часто. Если бы мы попытались сосчитать удары, которые испытывает молекула только за одну секунду, и при этом условились тратить одну минуту на сосчитывание ста ударов, то для этого понадобилось бы около двухсот лет.

Молекулы, летящие со скоростью пули, бесчисленные соударения, причудливый узор пути, своеобразный закон распределения молекул по скоростям… Все это может заронить сомнение в реальности наших объяснений.

В науке установилось золотое правило – проверять опытом все предположения, как бы остроумны они ни были. Нет оснований делать исключение и для молекул. Надо измерить скорости движения мельчайших частиц, проверить, как распределяются эти скорости: какая доля молекул движется быстро, какая медленно.


Не фантазия ли это?

Однако как же измерить скорость движения молекул, если молекулы столь малы, что их нельзя рассмотреть даже в самый сильный микроскоп?

Вероятно, многие замечали, что стеклянный колпачок перегоревшей электрической лампочки часто бывает покрыт темным налетом. Отчего возникает этот налет?

Когда электрическая лампочка включена, металлический волосок, от которого исходит свет, сильно накален. От его поверхности непрерывно отрываются атомы металла. Оторвавшись, атомы разлетаются в разные стороны и, ударившись о стенку стеклянного колпачка, прилипают к ней. Так, волосок, теряя атомы, делается все тоньше и тоньше, а на стекле образуется постепенно утолщающийся слой осевших атомов. Когда слой осевших атомов сделается достаточно толстым, его можно будет различить глазом: мы увидим на стекле темный налет. Чем больше осядет атомов, тем темнее будет этот налет.

Волосок электрической лампочки делают из какого-либо тугоплавкого металла, например из вольфрама, у которого атомы с трудом отрываются от поверхности. Поэтому лампочка горит много часов, прежде чем на колпачке возникнет заметный налет. Изготовив волосок из легкоплавкого металла, можно получить темный налет очень быстро.

Этим явлением и воспользовались ученые, для того чтобы измерить скорости движения атомов.

Если из стеклянного баллончика очень тщательно откачать воздух, то оторвавшиеся от металла атомы будут долетать до стенки, не ударяясь по пути о молекулы воздуха. В этом случае путь каждого атома будет известен: он будет начинаться на поверхности волоска и оканчиваться на стенке баллончика. Теперь, для того чтобы определить скорость движения атомов, достаточно узнать время, которое затрачивают атомы на свое путешествие.

Для решения этой задачи был построен специальный прибор.

Справа от накаленного волоска расположена ширма с узкой щелью, а за нею, на некотором расстоянии, экран. Ширма преграждает путь всем атомам, кроме тех, которые попадут в щель. За ширмой летящие атомы образуют узкий лучик. Осев на экране, они создадут несколько увеличенное темное изображение щели (рис. 12).


Рис. 12. Устройство прибора для определения скоростей молекул.

По существу, мы встречаемся здесь с тем же приемом, которым пользуются маляры при нанесении рисунка с помощью трафарета. Как известно, трафаретом называют пластинку, в которой сделано отверстие по форме желаемого рисунка. Приложив трафарет к стене, проводят по нему кистью с краской. Краска попадает на стену только в местах, соответствующих отверстиям в трафарете. Сняв трафарет, мы видим на стене рисунок.

В описываемом опыте роль кисти с краской играет пучок быстро летящих атомов.

В неподвижном приборе изображение щели приходится как раз напротив нее.

Предположим теперь, что прибор быстро вращается против часовой стрелки вокруг накаленного волоска. Каждый атом по-прежнему будет двигаться прямолинейно. Однако теперь за то время, которое требуется атому для того, чтобы, пройдя щель, долететь до экрана, весь прибор успеет слегка повернуться, и атом прилипнет к экрану не в том месте, где раньше, а несколько в стороне.

Если бы все атомы двигались с одинаковой скоростью, то изображение щели на экране, не изменившись по форме, сместилось бы на некоторое расстояние. Смещение было бы тем больше, чем медленнее двигались бы атомы и чем быстрее вращался бы прибор.

Зная число оборотов прибора в секунду, расстояние от щели до экрана и смещение изображения, можно вычислить скорость движения атомов.

Когда подобный опыт был произведен, то оказалось, что изображение щели не просто смещается, как только что описано, но одновременно со смещением размазывается (рис. 13).


Рис. 13. Изображение щели на экране приборчика.

Причина этого ясна. Отдельные атомы движутся с разными скоростями. В пучке летящих атомов есть движущиеся быстро, есть и движущиеся медленно. Первые попадут на экран, сместившись немного, вторые – значительно. В результате вместо резкого изображения на экране появится размытая полоска. Присмотревшись к ней, мы заметим, что окраска полоски не одинакова. Ясно выступает более темная часть, на которую упало, очевидно, большее количество атомов. Все эти атомы двигались со скоростями, близкими друг к другу. Если какой-либо участок полоски в два раза темнее, чем другой, то это означает, что на него упало в два раза больше атомов, чем на тот, который светлее. А так как каждому участку полоски соответствует определенная скорость движения атомов, то, разделив полоску на отдельные участки и сравнивая их потемнение, ученые проверили, как распределяются скорости атомов.

Эти опыты полностью подтвердили правильность атомного учения.

Мы уверены теперь в том, что большая часть атомов или молекул движется со скоростями, не очень сильно, отличающимися от средней скорости.

Но от чего же зависит сама средняя скорость? Можно ли ее изменить: увеличить или уменьшить?


    Ваша оценка произведения:

Популярные книги за неделю