Текст книги "История вычислительной техники в лицах"
Автор книги: Борис Малиновский
Жанр:
История
сообщить о нарушении
Текущая страница: 32 (всего у книги 33 страниц)
Характеристики «Уралов»
«Урал» – семейство цифровых вычислительных машин общего назначения, ориентированных на решение инженерно-технических и планово-экономических задач. Первые четыре модели семейства – «Урал-1», «Урал-2», «Урал-3» и «Урал-4.» – были ламповыми, «Урал-П», «Урал-14» и «Урал-16» – на полупроводниковых элементах.
Созданная в 1957 г. «Урал-1» по производительности относилась к малым машинам (в основном инженерного применения) и отличалась дешевизной. Машина имела развитую систему команд (несколько минимальных форматов) с безусловной и условной передачей управления, систему сигнализации и ручное управление, позволявшее следить за исполнением программы и вмешиваться в ход ее выполнения для внесения исправлений в процессе отладки. Основные технические характеристики машины: система счисления – двоичная, форма представления чисел – с фиксированной запятой, разрядность – 36, система команд – одноадресная, быстродействие – 100 операций в 1 сек. Оперативное ЗУ машины – на магнитном барабане, объемом 1024 слова (скорость вращения 6000 об/мин), дополнялось внешним ЗУ на магнитной ленте (40 тыс. слов) и перфоленте (10 тыс. слов). В качестве устройства ввода-вывода использовались клавишное печатающее устройство и устройство на перфоленте.
В дальнейших моделях – «Урал-2», «Урал-3», «Урал-4» было введено феррит-ное ЗУ, расширена емкость внешних ЗУ на барабане (8x8192 слов) и магнитной ленте (12x260 тыс. слов), а также значительно расширен набор устройств ввода-вывода. Характерно, что уже машины «Урал-2», «Урал-3», «Урал-4» образовывали ряд программно и аппаратно совместимых моделей с комплектуемым по потребностям применения составом устройств, позволяющим в некото-рьЬс пределах варьировать производительность машины.
Ц 1964-72 гг. создан ряд также программно и аппаратно совместимых моделей «Убал-П», «Урал-14» и «Урал-16», на единой конструктивной, технологической и схемной базе, обладающих следующими чертами. Машины образуют конст-рук-гивно, схемно и математически совместимый ряд ЭЦВМ с различной проивводительностью, гибкой блочной структурой, с широкой номенклатурой устройств со стандартизированным способом подключения, позволяющим составлять! комплект машины, наиболее подходящий для данного конкретного применения; предусмотренные конструктивные и схемные возможности позволяют комплектовать вычислительные системы, состоящие из нескольких машин; предусмотренные возможности резервирования отдельных устройств машин позволяют создавать системы повышенной надежности: система схемной защиты данных, независимость программ от их места в памяти, система относительных адресов, развитая система прерываний и соответствующая система команд позволяют организовать одновременное решение нескольких задач; возможность работы в режимах с плавающей и фиксированной запятой, в двоичной и десятичной системах счисления, выборка и выполнение операций со словами фиксированной и переменной длины позволяют эффективно решать как планово-экономические, так и научно-технические задачи; система аппаратного контроля обеспечивает контроль хранения, адресации, передачи, ввода, вывода и обработки данных; большая емкость оперативного ЗУ с непосредственной выборкой слов переменной длины, эффективные аппаратные средства контроля и защиты памяти, ступенчатая адресация, развитая система прерываний и приостановок, возможность подключения памяти большой емкости с произвольной выборкой на магнитных барабанах и дисках, наличие датчика времени, аппаратуры сопряжения с каналами связи и пультов операторов для связи с машиной дает возможность строить различные системы обработки данных коллективного пользования, работающие в режиме разделения времени; унификация элементов, блоков и устройств обеспечивает хорошую технологичность серийного производства машин. Последние три модели семейства построены на полупроводниковых элементах модульной конструкции, и по чисто формальным признакам (элементная база) их надо отнести к электронным вычислительным машинам второго поколения, хотя в архитектуре их имеется много черт, присущих машинам третьего поколения.
Основные технические характеристики последней модели семейства – машины «Урал-16» таковы: представление данных – слова переменной длины, числа с плавающей запятой, числа с фиксированной запятой переменной разрядности, символы; длина слова (в битах) – 1, 2…, 48; длина массива информации (в битах) – 24, 48…,98303; разрядность чисел с фиксированной запятой – 1, 2…, 48, с плавающей запятой – мантиса 39, порядок 7; система счисления – двоичная; система команд – 300 одноадресных команд; система адресации – относительная, ступенчатая (номер массива – начало подмассива – относительный адрес слова заданной длины); время выполнения операций сложения 48-разрядных слов – 10 икс, умножения – З0 мкс; количество каналов сигналов прерывания – 64 + 24; количество уровней прерывания – 64. Оперативное ЗУ – на ферритовых сердечниках, емкостью 131–524 тыс. слов, внешние ЗУ на магн. барабане – 98-784 тыс. слов, на магнитных дисках – 5 – 40 млн. слов, на магнитных лентах – 8 – 48 млн. слов (слова длиной 24-2 бита). В качестве устройства ввода используют устройство на перфокартах – 700 карт в 1 мин., на перфоленте – 1000 строк в 1 сек, ввод с каналов связи – до 2,2 млн. бит в 1 сек. В качестве устройств вывода используют печатающее устройство, производительностью 400 строк (по 128 знаков) в 1 мин., устройство на перфокартах – ПО карт в 1 мин., выходной перфоратор – 80 строк в 1 сек, вывод в каналы связи – до 2,2 млн. бит в 1 сек., алфавитно-цифровое печатающее устройство 800 строк в 1 мин. Имеется также экранный пульт – устройство индикации, предназначенное для реализации диалога режима – с максимальным объемом воспроизводимых данных – 2048 символов. Основу системы математического обеспечения последних моделей семейства «Уралов» составляет универсальная программа-диспетчер, выполняющая фуйк-ции операционной системы. В состав математического обеспечения входит также автокод АРМУ, обеспечивающий полную совместимость программ от меньшей модели к большей и запись на нем алгоритмов решения определенного круга задач. АРМУ обеспечивает запись программ для работы со словами и массивами переменной длины, выполнение операций над числами в двоичной и десятичной системах счисления с плавающей и фиксированной запятой. В системе математического обеспечения предусмотрен транслятор с АРМУ на машинный язык. Имеются программы отладки на уровне языков машин и автокода АРМУ, для обнаружения неисправностей набор тест-программ. Библиотека программ, содержащая стандартные программы и программы решения различных задач, комплектуется из программ, написанных на языках отдельных ЭЦВМ, АРМУ, АЛГОЛ-60, АЛГАМС и АЛГЭК. Предусмотрено расширение библиотеки за счет программ, написанных на других языках и автокодах, после разработки соответствующих трансляторов с этих языков на язык АРМУ.
Приложение 14Копия титульного листа аванпроекта Государственный комитет по радиоэлектронике СССР
УНИВЕРСАЛЬНЫЕ АВТОМАТИЧЕСКИЕ ЦИФРОВЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ
«УРАЛ-11», «УРАЛ-12», «УРАЛ-13», «УРАЛ-14», «УРАЛ-15»
Аван-проект
Часть 1
Элементы, узлы и блоки. ПС0071000Д-1 на 148 листах.
Главный конструктор машин «Урал»
главный инженер НИИУВМ Б. РАМЕЕВ
27 апреля 1963 г.
Выдержки из Введения к 1 части Аван-проекта ВВЕДЕНИЕ
На основании изучения типовых применений, организационных форм использования, изучения технических заданий на ряд систем переработки и материалов по зарубежным машинам разработчики пришли к выводу, что для удовлетворения основных потребностей народного хозяйства достаточен небольшой набор вычислительных машин и машины могут быть в значительной степени унифицированы с точки зрения конструкции, технологии, схем, структуры, входных языков, систем автоматизации программирования и условий эксплуатации.
Как известно, вычислительная техника принадлежит к тем отраслям науки и техники, которые развиваются особенно быстро, поэтому вычислительные машины очень быстро морально стареют. Они становятся все более сложными, в связи с этим требуют значительного времени для разработки и освоения в серийном производстве.
Выход из этого положения, очевидно, нужно искать в унификации.
Унификация элементов, устройств и машин позволит сократить сроки разработки и освоения в производстве. Унификация входных языков, систем команд позволит сократить сроки внедрения и резко повысить эффективность использования вычислительных машин в народном хозяйстве.
Унификация даст возможность сократить номенклатуру и увеличить количество изделий вычислительной техники, окажется целесообразной организация специализированных производств для выпуска унифицированных элементов, узлов и устройств, что даст возможность повысить качество изготовления и снизить стоимость.
Ограниченный типаж машин облегчит условия технической и математической эксплуатации большого парка машин (обеспечение запасными частями, обучение кадров обслуживающего персонала и программистов, модернизация машин и т. д.).
Ограниченный набор вычислительных машин и устройств различной производительности и назначения, могущих обмениваться информацией, позволяет создавать крупные системы для переработки информации, состоящие из многих машин, соединенных линиями связи. Различные ступени такой системы могут быть оборудованы машинами соответствующей производительности и сложности.
Все, что представлено в аваппроекте, базируется на реальных ОКР, серийно выпускаемых или осваиваемых, узлах и механизмах и освоенных технологических процессах.
Универсальность устройств, из которых составлены машины, гибкая блочная структура, позволяющая в широких пределах менять комплектность машин как по количеству, так и по типам устройств, возможность замены одних устройств другими с лучшими параметрами, добавление новых устройств, наличие развитой системы прерывания и связанная с этим возможность одновременной работы многих устройств, гибкая система команд, приспособленная к требованиям автоматизации программирования и многопрограммной работы, возможность объединения машин в системы, применение полупроводниковых приборов делает машины, представленные в аван-проекте, достаточно морально устойчивыми и ставит их на уровень наиболее распространенных зарубежных машин.
Наряду с введением новых принципов, перечисленных выше, при разработке обращалось особое внимание на технологичность конструкций.
Разработанные модульные схемные элементы, из которых построены все устройства и машины, рассчитаны на специализированное производство с использованием механизированных процессов, имеют малую номенклатуру простых схем и типономиналов деталей. Полупроводниковые приборы используются без отбора и без дополнительных, к действующим ТУ, требований. В конструкции узлов, блоков и устройств также учтены требования технологичности, связанные с необходимостью их крупносерийного производства.
Для сравнительно сложных машин и систем, рассмотренных в аван-проекте, одним из важнейших вопросов является вопрос надежности, поэтому повышению надежности при разработке обращалось особое внимание и во всех случаях, когда это оказывалось возможным, параметры надежности определялись и регламентировались.
… Разработка и освоение в производстве машин, рассмотренных в аван-проекте, может явиться переходным этапом в разработке универсальных вычислительных машин на микроминиатюрных элементах и может существенно сократить сроки появления нового поколения машин.
Для всех элементов, узлов, устройств и машин, рассмотренных в аван-проекте, приводятся проекты технических заданий на разработку, содержание которых дополняет информацию, имеющуюся в кратких описаниях.
Приложение 15Вычислительная машина «Сетунь» Московского Государственного университета
Общая характеристика машины
Вычислительная машина «Сетунь» представляет собой автоматическую цифровую машину, предназначенную для решения научно-технических задач. Это одноадресная машина последовательного действия с фиксированным положением запятой.
Особенностью машины в математическом отношении является использование троичной системы счисления с коэффициентами 1, 0, -1.
В инженерном отношении машина примечательна тем, что в качестве основного элемента схем в ней применен магнитный усилитель с питанием импульсами тока. Такой усилитель состоит из нелинейного трансформатора с миниатюрным ферритовым сердечником и германиевого диода. Необходимые для реализации троичного счета три устойчивых состояния получаются с помощью пары усилителей. Общее число усилителей в машине – около четырех тысяч. Электронные лампы использованы в машине для генерирования импульсов тока, питающих магнитные усилители, и импульсов записи на магнитный барабан. Полупроводниковые триоды применены в схемах, обслуживающих матрицу запоминающего устройства на ферритовых сердечниках и в усилителях сигналов, считываемых с магнитного барабана.
Внутренние устройства машины работают на частоте 200 кГц, выполняя основные команды со следующими затратами времени: сложение – 180 мксек, умножение – 325 мксек, передача управления – 100 мксек.
Длина слова в арифметическом устройстве машины – 18 троичных разрядов. Команда кодируется полусловом, т. е. девятью разрядами. В запоминающем устройстве каждая пара полуслов, составляющая полное слово, и каждое полуслово в отдельности наделены независимыми адресами. Число, представленное полусловом, воспринимается арифметическим устройством как 18-разрядное с нулями в младших разрядах.
Оперативное запоминающее устройство машины, выполненное на ферритовых сердечниках, обладает емкостью в 162 полуслова.
Запоминающее устройство на магнитном барабане вмещает 2268 полуслов. Обмен между барабаном и оперативным запоминающим устройством производится группами по 54 полуслова. Предполагается ввести дополнительное запоминающее устройство на магнитной ленте и увеличить емкость барабана до 4374 полуслов.
Ввод данных в машину производится с пятипозиционной бумажной перфоленты посредством фотоэлектрического считывающего устройства, а вывод на перфоленту и печать результатов – на стандартном рулонном телетайпе. Ввод и вывод информации осуществляется также группами по 54 полуслова.
В арифметическом устройстве машины «Сетунь» 18-разрядное троичное слово рассматривается как число, в котором запятая расположена между вторым и третьи разрядами. Это число можно выразить формулой
Диапазон чисел в арифметическом устройстве составляет -4,5 =< х =<+4,5 при абсолютной погрешности |дх| < 0,5е-16.
Число считается нормализованным, если оно заключено в интервале 0,5 х 1,5 или равно нулю. Порядок нормализованного числа изображается пятью старшими разрядами полуслова, хранящегося в запоминающем устройстве по отдельному адресу.
Девять разрядов полуслова, представляющего команду, распределены следующим образом: пять первых разрядов составляют адрес, три разряда – код операции, девятый разряд – признак модификации адреса. Если в этом разряде стоит 0, то команда выполняется без изменения адреса, если 1, то к адресу прибавляется число, находящееся в регистре модификации, если -1, то это число вычитается из адреса. Особое значение имеет младший (пятый) разряд адреса: у адреса полного слова в этом разряде -1, у адреса старшего полуслова 0, у адреса младшего полуслова 1.
В командах, относящихся к магнитному барабану или к устройствам ввода и вывода, первый разряд указывает, какая треть матрицы должна использоваться
для записи (считывания) передаваемой информации. Остальные четыре разряда адресной части команды либо обозначают номер зоны на барабане, либо используются для конкретизации команды: ввод или вывод. В функциональном отношении машина разделяется на шесть устройств:
1) арифметическое устройство; 2) устройство управления; 3) оперативное запоминающее устройство; 4) устройство ввода; 5) устройство вывода; 6) запоминающее устройство на магнитном барабане.
Преимущества троичной системы счисления
Главное преимущество троичного представления чисел перед принятым в современных компьютерах двоичной состоит не в иллюзорной экономности троичного кода, а в том, что с тремя цифрами возможен натуральный код чисел со знаком, а с двумя невозможен. Несовершенство двоичной арифметики и реализующих ее цифровых машин обусловлено именно тем, что двоичным кодом естественно представимы либо только неотрицательные числа, либо только неположительные, а для представления всей необходимой для арифметики совокупности – положительных, отрицательных и нуля – приходится пользоваться искусственными приемами типа прямого, обратного или дополнительного кода, системой с отрицательным основанием или с цифрами +1, -1 и другими ухищрениями.
В троичном коде с цифрами +1, О, – 1 имеет место естественное представление чисел со знаком (так называемая симметричная, уравновешенная или сбалансированная система), и «двоичных» проблем, не имеющих удовлетворительного решения, просто нет. Это преимущество присуще всякой системе с нечетным числом цифр, но троичная система самая простая из них и доступна для технической реализации.
Арифметические операции в троичной симметричной системе практически не сложнее двоичных, а если учесть, что в случае чисел со знаком двоичная арифметика использует искусственные коды, то окажется, что троичная даже проще. Операция сложения всякой цифры с нулем дает в результате эту же цифру. Сложение +1 с -1 дает нуль. И только сумма двух +1 или двух -1 формируется путем переноса в следующий разряд цифры того же знака, что и слагаемые и установки в текущем разряде цифры противоположного знака.
Пример: 111011101010 + 111011110100=101110011110
В трехвходном троичном сумматоре перенос в следующий разряд возникает в 8 ситуациях из 27, а в двоичном – в 4 из 8. В троичном сумматоре с четырьмя входами перенос также происходит только в соседний разряд.
Операция умножения еще проще: умножение на нуль дает нуль, умножение на 1 повторяет множимое, умножение на -1 инвертирует множимое (заменяет 1 на -1, а -1 на 1). Инвертирование есть операция изменения знака числа.
Следует учесть, что комбинационный троичный сумматор осуществляет сложение чисел со знаком, а вычитание выполняется им при инвертировании одного из слагаемых. Соответственно троичный счетчик автоматически является реверсивным.
Важным достоинством троичного симметричного представления чисел является то, что усечение длины числа в нем равносильно правильному округлению. Способы округления, используемые в двоичных машинах, как известно, не обеспечивают этого.
Н.П. Брусенцов.
Приложение 16Управляющий комплекс для народного хозяйства УМ1-НХ
Управляющая машина для народного хозяйства УМ1-НХ – малогабаритная управляющая машина, построенная на полупроводниковых приборах.
Машина УМ1-НХ может применяться в народном хозяйстве для решения задач управления и контроля в различных отраслях промышленности.
Для расширения областей применения УМ1-НХ, решения задач комплексной автоматизации объектов разработано многоканальное устройство ввода-вывода, образующее вместе с машиной комплекс УМ1-НХ.
КРАТКИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
1. Система счисления – двоичная.
2. Представление чисел – с фиксированной запятой. 3. Разрядность: чисел – 15 двоичных разрядов (14 + 1 знаковый); команд – 20 двоичных разрядов. 4. Адресность – переменная (одно-, двух– и трехадресная). 5. Быстродействие: 5000 сложений в секунду; 1000 умножений или делений! в секунду.
6. Объем запоминающих устройств с произвольной выборкой: Внутренняя память: – оперативное запоминающее устройство чисел – 256 слов; – постоянное запоминающее устройство констант – 512 слов; – постоянное запоминающее устройство команд – 2048 слов. Внешняя память (входит в состав внешнего устройства ввода-вывода): – оперативное запоминающее устройство чисел – 512 слов, с возможностьню наращивания до 4096 слов блоками по 512 лов; – оперативное запоминающее устройство команд – 512 слов, с возможностьмо наращивания до 4096 слов блоками по 512 слов.
7. Система команд состоит из 32 команд. В состав системы команд входит ряд специальных операций, обеспечивающих обмен информацией между машиной и объектами управления и работу в реальном масштабе времени.
8. Устройство ввода-вывода включает в себя следующие устройства и каналпы связи с объектом управления: Внутреннее устройство ввода-вывода (входит в состав машины). Восемь каналов для ввода информации в виде напряжения постоянного тока, изменяющегося от -5 до +5 в. Точность преобразования – 0,4 %. Bpeмя преобразования – около 600 мксек. Восемь каналов для ввода информации в виде угла поворота вала. Точноссть преобразования – 0,05 %. Время преобразования и ввода – 200 мксек. Канал для ввода полноразрядной цифровой информации. Время ввода – 20000 мксек. Четыре канала для вывода информации в виде напряжения переменного тоока с максимальной амплитудой 2,5 в. Точность преобразования – 3 %. Время вывода – 200 мксек. Четыре канала для вывода цифровой полноразрядной информации иили информации в виде напряжения (по желанию потребителя). Время вывода – 200 мксек. Внешнее устройство ввода-вывода: Преобразование угла поворота вала в код с точностью 0,05 или 0,01 % < (по желанию потребителя) и каналы ввода и преобразования информации i от датчиков вал-код, объединенные в блоки по 8 каналов в каждом. Вреемя преобразования и ввода – 200 мксек. Каналы для ввода и вывода одноразрядной цифровой информации, объединенные в блоки по 40 каналов в каждом. Время ввода и вывода – 200 мксксек. Каналы для ввода и вывода полноразрядной цифровой информации, объединенные в блоки по 8 каналов в каждом. Время ввода и вывода – 200 мкасек. Каналы для ввода информации в виде напряжения постоянного тока, изменяющегося от 0 до -10 в, объединенные в блоки по 32 канала к каждом. Время ввода и преобразования – 300 мксек. Точность преобразования – 0,2 % (те же каналы по желанию потребителя могут быть использованы для ввода информации в виде постоянного тока, изменяющегося в диапазоне 0–5 ма, при этом остальные характеристики сохраняются). Каналы для вывода информации в виде напряжений постоянного или переменного токов (по желанию потребителя) с амплитудой, изменяющейся от -5 до +5 в, объединенные в блоки по 8 каналов в каждом. Точность преобразования – 0,4 %. Время преобразования и вывода – 200 мксек. Каналы для вывода информации в виде напряжения постоянного тока с амплитудой, изменяющейся от 0 до -15 в, объединенные в блоки по 8 каналов в каждом. Точность преобразования – 2 %. Время преобразования и ввода – 200 мксек. Каналы для выдачи управляющих сигналов усилителям шаговых двигателей, объединенные в блоки по 8 каналов с каждом. Каналы для ввода информации в виде напряжения, изменяющегося в диапазоне 0-50 вм. Время преобразования – 32 мсек. Точность преобразования – 0,4 %. К одному преобразователю можно подключить до 16 релейных коммутаторов на 32 канала каждый. Количество каналов – по желанию потребителя, но не должно превышать 2048. Устройство для ввода информации с перфоленты и вывода информации на перфоленту на основе телеграфного аппарата СТА-2М. Устройство печати, использующее электрическую печатающую машинку ЭУМ-23. Автоматическая система прерывания для обеспечения работы в реальном масштабе времени. Количество каналов прерывания до 30 (по желанию потребителя). Генератор циклов для организации работы в реальном масштабе времени и для подсчета количества внешних импульсов. Количество входов – 8.
Электронные часы, показывающие время в часах, минутах и секундах в течение суток.
Перечисленные выше каналы связи машины с управляемым объектом могут наращиваться в количестве, требуемом потребителю, но так, чтобы количество входных каналов не превышало 2048, не считая каналов милливольтовых уровней (это же условие относится и к выходным каналам).
Пульт оператора, в функции которого входит:
а) контроль исправности системы и ее визуальная и звуковая индикация; б) контроль состояния объекта управления путем визуальной индикации на табло контролируемых параметров и их отклонений от нормы с одновременным указанием текущего времени; в) корректировка содержимого любой ячейки памяти чисел и программ; г) пуск и останов системы.
Действия, указанные в пп.1–3, производятся параллельно с работой системы по основной программе.
9. Габариты машины УМ1-НХ – 880x535x330 мм, вес блока питания – 80 кг, потребляемая мощность – 200 вт.
10. Комплекс УМ1-НХ конструктивно оформляется в корпусах, аналогичных корпусу машины, при этом вес, габариты и потребляемая мощность определяются требуемой комплектацией системы.
В одном корпусе могут разместиться 10 различных блоков ввода-вывода, образуя устройство связи с объектом (УСО). Блок питания УСО аналогичен такому же блоку машины УМ1-НХ, но в зависимости от типа УСО может содержать различные выпрямители. Мощность, потребляемая блоками питания УСО, 200 вт. Устройство связи с объектом компонуется в шкафах. В каждом шкафу размещаются два УСО, три блока питания и система принудительной вентиляции с водяным охлаждением (температура воды 0-15 С, расход воды не более 500 л/ч). Габариты шкафа – 1200x650x1660 мм.
В качестве первичного источника напряжения для всего комплекса УМ1-НХ может быть использован мотор-генератор, обеспечивающий напряжение 220 в частотой 50 Гц и мощностью 4 кВт