355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кузнецов » Философия оптимизма » Текст книги (страница 5)
Философия оптимизма
  • Текст добавлен: 6 июля 2017, 13:30

Текст книги "Философия оптимизма"


Автор книги: Борис Кузнецов


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 5 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

Проблема старости

Создание ноозон, повышение негэнтропии и связанное г такой целесообразной деятельностью постижение объективного ratio мира становятся чем дальше, тем больше содержанием труда. Труд переходит ко все более радикальному преобразованию природных процессов, к их целесообразной компоновке. От изменения положений физических объектов к изменению скоростей, к изменению энергий, к изменению частот такого изменения, частот колебания переменных полей, к изменению масс и даже масс покоя. Соответственно в тесной связи с указанной эволюцией в картине мира меняются все более фундаментальные и общие принципы. Мы уже видели, как такое заполнение труда и сознания динамическими задачами дискредитирует и отгоняет от человека пессимистические тени. Речь шла о смерти и страхе смерти. Теперь нужно коснуться фатального призрака длительной, предшествующей смерти и ведущей к смерти деградации физических и духовных сил человека. Что здесь меняют новейшая неклассическая наука и новейшая научно-техническая революция, значению которых для оптимистического мироощущения посвящена эта книга?

Обосновывает ли современная наука геронтологический оптимизм? Она наполняет «кубок Оберона» напитком бессмертия, но не высыхает ли этот напиток, сохраняется ли в старости активная, преобразующая функция человека? Меняется ли в условиях новой науки традиционное понятие старости?

Здесь придется несколько забежать вперед и затронуть нопросы, которые будут рассмотрены во второй и третьей частях книги, прежде всего вопросы молекулярной биологии, затем преобразование характера труда в связи с кибернетикой и применением неклассической науки в целом и, наконец, вопросы экологии. Все это, как можно думать, должно радикально изменить само содержание понятия старости как физиологической и экономико-демографической категории.

Концепция старости как деградации и в конце концов прекращения активной деятельности человека получила чрезвычайно острое, глубоко личное и в то же время вне-личное выражение в 1911 г. в известном решении Поля и Лауры Лафарг уйти из жизни, когда активное участие в ней грозило уменьшиться. Оно и тогда не могло стать общезначимым принципом, да и не претендовало на это: старость никогда сама по себе не прекращала активного воздействия на мир, потому что такое воздействие всегда опирается на некоторую традицию, инвариантность, продолжающуюся тенденцию и требует опыта, большого объема накопленных впечатлений и знаний – прерогатив старости. Но неклассическая наука обещает внести в эту проблему коренные изменения.

Они в значительной мере противоречат концепции, положенной И. И. Мечниковым в основу «Этюдов оптимизма». Эта концепция противопоставляет страху смерти «инстинкт смерти» – естественное стремление к покою после долгой и активной жизни. По мнению Мечникова, страх смерти – результат того, что люди в большинстве случаев не доживают до появления такого стремления; нормальная жизнь, ортобиоз должен обеспечить долголетие и «инстинкт смерти».

Но «инстинкт смерти», по-видимому, связан с затухающим в течение долгого времени интересом к жизни, темпераментом вмешательства в жизнь и потенциалом ее преобразования. Тенденции современной цивилизации позволяют предвидеть не асимптотическое приближение такого интереса, темперамента и потенциала к нулевой линии, а возрастание его и превращение смерти не в желанный покой («инстинкт смерти»), а в нечто враждебное человеку, в противника, с которым общество борется, рассматривая максимальное продление жизни как существенную цель своих трудовых и интеллектуальных усилий.

Как связаны такие тенденции с неклассическим характером современной науки?

В современной геронтологии иногда высказывается мысль о возрастной деградации, закодированной в структуре молекулы живого вещества. Но если это и так, то наука, по-видимому, движется к реальной возможности воздействовать на наследственный код. Важно подчеркнуть, что такая возможность связана с существенно неклассическими процессами. Например, радиационная генетика включает воздействие излучений, природа которых раскрывается в свете квантовой физики. О разграничении классических и квантовых элементов молекулярной биологии речь пойдет в главе «Молекулярная биология». Но уже сейчас следует отметить характерную связь динамического, преобразующего, активного оптимизма с неклассическими представлениями.

Эта связь видна отчетливее, когда речь идет о ликвидации ряда болезней, сокращающих длительность жизни и работоспособности человека. И еще отчетливее – при анализе общего экономического эффекта науки, при определении научных основ происходящего уже и проектируемого на конец нашего столетия подъема уровня потребления. Менее отчетлива связь современной науки с рационализацией и оздоровлением экологических условий. Сейчас на очереди негативная сторона проблемы, необходимость ограждения лесов, водоемов и воздуха от загрязнения. Но это только часть, начало радикальной рационализации экологической среды человека как условия радикального увеличения длительности и заполненности его жизни.

Эти два определения – длительность и заполненность, экстенсивное и интенсивное увеличение человеческой жизни – характеризуют изменение характера и содержания труда. Как уже было сказано (и как будет подробней объяснено во второй и третьей частях этой книги), применение неклассической науки означает переход труда к новым, все более общим и фундаментальным, динамическим, реконструирующим производство функциям. Подобная эволюция труда неотделима от эволюции науки, к которой все более фундаментальные принципы становятся пластичными, изменяющимися, зависящими от экспериментального и производственного опыта. Она, эта эволюция, несколько аналогична поворотам науки, о которых уже шла речь: изменениям представления о ratio мира, восприятию в качестве мировой гармонии уже не постоянства положений (Аристотель), а постоянства скоростей («Диалог» Галилея), ускорений (галилеевы «Беседы»), масс (ньютоновы «Начала»), масс покоя и т. д. В содержании труда аналогичный переход к новому инварианту, к новой упорядочивающей тождественности также неотделим от констатации нарушения старого инварианта, старой тождественности. В современной неклассической науке и в современном воплощающем науку производстве такой переход становится практически непрерывным, и в этой непрерывности – источник их специфического воздействия на характер и роль «старости» в современной цивилизации.

Слово «старость» поставлено в кавычки не потому, что она исчезает – этого не происходит, а потому, что понятие старости, ее характер и роль радикально меняются. Естественным представляется распределение функций между сосуществующими и сотрудничающими поколениями, когда «отцы» хранят установившийся порядок, а «дети» – носители нового, того, что нарушает традицию. Конфликты «отцов» и «детей» обычно и выражали разрыв между двумя компонентами труда и познания – поддержанием традиции и ее преобразованием. Такой разрыв был основой и традиционализма старости, и нигилизма молодости. Реальный научный, технический и экономический прогресс опирался на обе компоненты: практика и опыт подготовляли переход к новым общим концепциям, и вместе с тем их результаты не могли быть ни найдены, ни сформулированы, ни применены без приобщения к каким-то уже установившимся общим категориям. В классической науке и в воплощавшем их производстве такое приобщение могло в течение длительных перидов не нарушать старые концепции – отсюда иллюзия их априорности, отсюда априорная приверженность к уже установленному, отсюда и нигилистическое отрицание уже установленного. Гносеологической основой указанных коллизий был квазистатический характер научных концепций. В рамках диалектического мировоззрения, прп понимании и обобщении фундаментальных сдвигов в познании и в практике не было ни иллюзий априорной неподвижности устоев картины мира; ни вытекавшего из этих иллюзий разрыва между новым и старым в науке и в экономике.

Роль старшего поколения в жизни общества во многом зависела от соотношения этих слившихся и ставших дополнительными компонент познания и преобразования мира. Первоначально практический опыт и эмпирическая регистрация явлений и закономерностей не складывались в устойчивые общезначимые ряды. В те времена сохранение традиций не становилось особой, выделившейся функцией и стариков, которые еще не стали старейшинами, оставляли без пищи, убивали, а иногда и поедали. Потом были найдены и закреплены традицией и обычаем некоторые устойчивые эмпирические знания и правила. Они казались священными, а их хранители, обладавшие наибольшим жизненным опытом, стали старейшинами. В какой-то мере власть, влияние и активное воздействие па жизнь и труд были связаны с возрастом и позже. Превращение промышленности в прикладное естествознание, замена традиции наукой, сравнительно высокий динамизм, высокий темп технического прогресса существенно изменили социальный вес возрастных групп. Но нас интересует здесь соответствующий эффект неклассической науки и современной научно-технической революции.

В неклассической науке эмпирический опыт, внешнее оправдание, «продвижение разума вперед» неотделимы от логических конструкций, внутреннего совершенства, «углубления разума самого в себя». Длительное накопление эмпирических данных и их последующее логическое обобщение уже не характерны для науки, чаще теперь преобразование общих конструкций сопровождает эмпирический опыт и даже сливается с ним. Но такая филогенетическая особенность современной науки характерна и для онтогенеза, для творческого пути отдельного ученого. Для него характерна и другая особенность современной науки: разработка некоторого нового принципа уже не состоит в подведении под неизменную схему новых «внешних оправданий», они сопровождаются перестройкой этой схемы. Поэтому для пеклассической науки не характерен взлет теоретической мысли в начале творческого пути, который затем сменяется спокойной разработкой найденного принципа.

Характерный для классической науки разрыв между весьма устойчивыми общими принципами, с одной стороны, и меняющимися эмпирическими данными и частными обобщениями, с другой, означает некоторый разрыв и некоторую иллюзию независимости двух компонент познания – тождественности и нетождественности. Презумпция тождественности позволяет применять установленные в прошлом и относительно неподвижные понятия и нормы к новым явлениям. Такая экстраполяция кажется прерогативой старости. Против идентифицирующего опыта, кристаллизовавшегося в этих нормах, выступает нетождественность, несводимость, специфичность нового. Констатация специфичности нового кажется прерогативой молодости. Но уже в классические времена, если их брать в исторической перспективе, такое распределение функций оказывается иллюзией. Закономерной иллюзией, но иллюзией. В неклассической науке и в опыте, связанном с ее применением, исчезает основание для подобной иллюзии. Новый опыт заставляет тут же менять, модифицировать, обобщать, конкретизировать общие принципы. Классическое, в значительной мере иллюзорное разделение труда между поколениями теряет смысл.

В книге об Эйнштейне я попытался рассмотреть с этой точки зрения современный онтогенез научной теории, вспомнив при этом противопоставление старости и юности в написанном в начале нашей эры трактате Лонгина, анализировавшего с такой точки зрения различия между «Илиадой» и «Одиссеей»[28]28


[Закрыть]
. Лонгин приписывает «Илиаду» с ее накалом страстей молодому Гомеру, а проникнутую тихой мыслью «Одиссею» – старости поэта («Одиссея», по словам Лонгина, напоминает солнце, близкое к закату, оно сохраняет свои колоссальные размеры, но уже не пылает…). Если взрыв конструктивной мысли ассоциируется с солнцем в зените, с юношеской страстью и темпераментом, а спокойная разработка нового принципа с «Одиссеей», с солнцем на закате, то для современного научного творчества такая аналогия не подходит.

Соответственно в производстве объединяется разработка технических принципов (когда-то можно было сказать: «спокойная разработка…») и революционное преобразование этих принципов.

В целом неклассическая наука и ее применение сближает те характерные черты творчества, которые ассоциировались с возрастными ступенями. Понятие «акме» (так греки называли высший расцвет творческих сил человека) меняется, это уже не пик графика, а вытянутая вдоль оси времени кривая. Она достигает максимума сравнительно рано и сохраняет максимальное значение до смерти или почти до смерти. Поэтому борьба за долголетие в смысле улучшения условий жизни (в частности, оздоровление экологической среды) и повышения эффективности медицины соответствует требованиям современной науки и современного производства. Демографические опасения насчет увеличения процента стариков в составе населения и уменьшения трудового потенциала общества связаны с более чем наивным цифровым фетишизмом при определении возраста; на самом деле удлинение средней продолжительности жизни означает резкое уменьшение процента нетрудоспособных, резкое удлинение сроков максимальной творческой работоспособности.

Таким образом, геронтологический оптимизм тесно связан с гносеологическим, научно-техническим и экономическим оптимизмом.

Не следует, однако, думать, что геронтологические задачи вытекают из экономических. Субъект труда, его интересы – цель, исходный пункт, определяющий планы реконструкции характера, орудий и объектов труда. Интересы человека – экстенсивное и интенсивное увеличение жизни, ее продление и ее максимальное заполнение активным преобразованием мира. В следующей, второй, части книги будут рассмотрены объективные тенденции научного прогресса, а дальше, в третьей части, – специфическая проблема оптимизма, связь между указанной целью труда, производства, науки и объективными возможностями, создаваемыми неклассической наукой.

II. НАУКА в 2000 ГОДУ

Почему 2000-й?

Можно ли вывести эту дату – 2000 год – из каких-то определений современной науки, из характера ее тенденций?

Прежде чем ответить на подобный вопрос, следует отметить существование обратной связи: само определение современных тенденций требует некоторого прогноза, картины развития науки в течение предстоящих десятилетий.

Здесь может оказаться уместной следующая аналогия. Представим себе физический эксперимент, при котором возникают новые элементарные частицы. Реакция, в результате которой появятся частицы, занимает очень небольшое время, скажем, 10-22 сек. Но чтобы определить, какие именно частицы появились, каковы их массы, заряды, длительность жизни, нужно представить себе, каково эвентуальное поведение каждой из частиц, как она будет двигаться, как ее путь будет искривляться в заданном магнитном или электрическом поле, какова будет длина ее трека до распада, заканчивающего существование частицы. Только такие представления об эвентуальной дальнейшей судьбе частицы придают физический смысл вопросу о ее принадлежности к тому или иному типу, о ее заряде, массе, времени жизни.

Характеристика современного научного прогресса напоминает определение эвентуальной судьбы частицы и определение ее типа. Сейчас очень трудно определить характер наметившихся в науке тенденций. Еще труднее определить технический эффект этих тенденций – те результаты, которые они дадут при своем практическом воплощении. Совсем трудно определить экономический и социальный эффект современных научных тенденций и их реализации. Но без таких прогнозов нельзя даже сказать, в чем состоят эти современные тенденции. Мы можем назвать частицу, определить ее тип, если мы видим ее эвентуальную судьбу, ее трек. Аналогичным образом мы можем определить тенденции научно-технического прогресса, назвать эти тенденции, выяснить их смысл только с помощью научных гипотез, научно-технических прогнозов и экономических проектировок.

Исходная и основная цель современного экономического, технического и научного прогноза – определение народнохозяйственной ценности различных возможных сейчас вариантов при выборе решения. Таким образом, речь по существу идет не о 2000-м, а о нынешнем годе. Это нужно подчеркнуть самым энергичным образом. Следующий пример разъяснит подобную актуальность прогноза. Представим себе, что при проектировке нового завода, шахты, электростанции, железной дороги, порта и т. д. необходимо определить срок моральной амортизации станка, агрегата или даже всего предприятия. В условиях научно-технической революции перспектива моральной амортизации может стать более существенной, чем перспектива физического изнашивания машины и даже чем перспектива истощения месторождения при проектировании шахты. Как ни трудно определить, когда появится машина или технологический процесс, который сделает неконкурентоспособными проектируемую машину или проектируемый процесс, как ни гадательны подобные расчеты, они в условиях научно-технической революции абсолютно необходимы. И в условиях научно-технической революции они связаны с еще более гадательными, чем технические, научными прогнозами, предвидением радикальных изменений, т. е. изменений не только конструкций и технологии, но и тех идеальных физических циклов, которые в той или иной мере воплощены в применяемых конструкциях и технологических методах.

Но этого мало. Сейчас ценность научного принципа, конструкции, технологического процесса измеряется не столько его предвидимой или уже установленной экономичностью, его техническим уровнем, сколько его воздействием на темп научного, технического и экономического прогресса. Что дает открытие, изобретение, новая схема, новая конструкция, новая технология для скорости и для ускорения прогресса? Этот вопрос сейчас не менее важен, а иногда и более важен, чем вопрос, что они дают для уровня науки или экономики. Наша эпоха – это эпоха дифференциальных показателей, дифференциальных критериев. Об этом речь будет идти подробнее в третьей части книги. Сейчас подчеркнем только необходимость прогнозов для определения дифференциальных показателей.

Чтобы определить темп процесса, скорость, ускорение, вообще производную по времени от изменяющейся величины х, нужно, как известно, взять ее приращение Ах и посмотреть, каково будет отношение Ах к приращению времени At, когда это приращение стягивается в мгновение, стремится к нулю. Так определяют скорость, а повторив эту операцию, – ускорение. Прогноз – это и есть приращение, которое нам необходимо узнать, чтобы дать динамическую характеристику данного момента в науке, в технике, в экономике. Это как бы касательная, которую мы проводим в данной точке к кривой; она указывает направление кривой.

Кривая, вообще говоря, не совпадает с касательной, она остается кривой. Но без касательной нельзя определить локальное направление кривой.

В весьма значительной мере и в своих весьма важных функциях прогноз – это касательная; он определяет направление развития, состояние движения, динамику настоящего момента, динамическую ценность тех вариантов решения, которые нужно сейчас выбрать. Вариантов начальных условий, от которых зависит последующее развитие науки, техники, экономики.

Но почему мы берем в качестве At – прироста времени – несколько десятилетий, почему мы выбираем для прогнозов тридцатилетний срок, почему мы хотим узнать, какова будет судьба науки, техники и экономики в течение ближайших тридцати, примерно, лет? Откуда взялась эта дата – 2000 год? Разве характеризующие современные тенденции продолжающие их линии не могут быть протянуты дальше – на сто лет, на двести, быть может, еще дальше? О другой стороны, разве в иных случаях не будут показательными короткие прогнозы – на три, пять, десять лет?

Каждому ясно, что 2000 год – это условная дата. Но не произвольная. Она указывает порядок величины срока, в течение которого реализуются современные тенденции научного и научно-технического прогресса. Может быть, такая реализация займет не тридцать, а двадцать или сорок лет. Но речь идет о некотором определенном порядке величины срока. Этого мало. Дата «2000 год» скрывает за собой мысль о некотором едином комплексе связанных между собой сдвигов, об их общей итоговой реализации, приуроченной к некоторому времени, одному и тому же для всех отраслей и всех путей прогресса.

В чем состоит такой комплекс?

Ответом на этот вопрос и является вторая часть книги. В вводной главе этой части следует ограничиться предварительным, весьма общим ответом. Он состоит в следующем. В течение времени, которое измеряется несколькими десятилетиями и которое мы условно отождествляем с концом нашего столетия, будет реализовано то, что обещает сейчас неклассическая физика.

Что же она обещает?

Ее обещания – это прогнозы дальнейшего развития атомной энергетики, квантовой электроники, молекулярной биологии. Прежде всего следует отметить наиболее характерную общую гносеологическую особенность современного этапа науки, вызвавшего к жизни перечисленные направления научно-технического прогресса. Такой особенностью, определяющей характер и содержание нынешних прогнозов, является связь конкретных научных и научно-технических открытий с пересмотром наиболее фундаментальных принципов науки и с реализацией тех новых физических идей, которые были сформулированы в первой половине столетия. Наше столетие началось очень радикальным пересмотром классических устоев науки и, что, может быть, еще важнее, отказом от самой презумпции неподвижного фундамента развивающихся представлений о мире. Весьма вероятно – это вытекает из конкретного анализа современных тенденций науки – столетие закончится полным производственно-техническим воплощением тех новых физических идей, возникновение которых ознаменовало начало столетия. Можно думать, что в течение нескольких десятилетий – времени, которое мы, как уже сказано, несколько условно, но с известными основаниями отождествляем с последней четвертью века, будет создано новое но своим научным основам производство, новое прикладное естествознание.

Тут необходимы пояснения. В XVII столетии возникла классическая наука. Она получила такое название потому, что основные законы природы, найденные Галилеем, Декартом и Ньютоном, а затем вереницей великих мыслителей XVIII и XIX столетий, претендовали на роль окончательных истин, которые останутся навсегда такими же незыблемыми канонами научной мысли, какими стали для художественного творчества каноны, воплотившиеся в архитектурные и скульптурные шедевры классической древности.

Классическая физика, и прежде всего законы механики, изложенные в «Математических началах натуральной философии» Ньютона, имели некоторое основание претендовать на роль вечных скрижалей науки. Начиная с Ньютона наука развивается, не отбрасывая того, что найдено и проверено опытом, она обобщает и уточняет старые законы, находит области их применимости, показывает, как эти законы модифицируются в новых областях. Но классическая наука претендовала на большее. Большинство мыслителей XVIII–XIX вв. думали, что законы механики Ньютона представляют собой незыблемый фундамент науки. Классическая наука – это не только определенные аксиомы (такие, как независимость массы тела от энергии, с которой оно движется, или непрерывность энергии – возможность сколь угодно малого ее приращения), но и уверенность в том, что это действительно аксиомы. Дело даже не в субъективной уверенности. Понятия классической науки по существу не требуют для своего понимания каких-то иных, противоречащих им допущений.

Что же такое неклассическая физика? Ее иногда определяют чисто негативным образом: она не классическая, в общем случае она отказывается от фундаментальных постулатов, из которых исходит классическая физика. В 1900 г. Планк предположил, что излучение энергии может происходить лишь определенными минимальными количествами – квантами. Через несколько лет Эйнштейн показал, что из относительности пространства, времени и движения (эти релятивистские понятия были противопоставлены ньютоновым понятиям абсолютного пространства, времени и движения) следует зависимость массы тела от скорости и, следовательно, от энергии его движения; когда скорость приближается к своему пределу – 300 тыс. км в секунду, масса тела стремится к бесконечности. Эйнштейн предположил далее, что и масса покоящегося тела m зависит от его внутренней энергии Е; если измерить энергию и массу обычными единицами, то энергия равна массе, умноженной на квадрат скорости света с. Таким образом, Е = mс2.

В 20-е годы появилась еще более парадоксальная неклассическая теория – квантовая механика. Бор и Гейзенберг показали, что движущаяся частица не обладает, вообще говоря, определенным положением в пространстве и определенной скоростью в данный момент. Эти новые соотношения, свойственные процессам, очень далеким от повседневного опыта, произвели неожиданно сильное впечатление на широкие круги. Казалось бы, тело, которое движется со скоростью, сопоставимой со скоростью света (о нем идет речь в теории относительности), не должно вызывать какие-либо эмоции у человека, не занимающегося теоретической физикой. Столь же далека от него судьба электрона, проходящего сквозь очень узкое отверстие, близкое по размерам к размерам электрона. Если при таком чисто мысленном, практически неосуществимом эксперименте прохождение сквозь отверстие меняет скорость электрона и делает ее неопределенной – это, по-видимому, не должно было произвести сильное впечатление на широкие круги. Между тем впечатление было колоссальным. И квантовая механика и теория относительности вызвали не только широкий интерес, но и серьезное изменение стиля мышления о природе. Вероятно, несколько сходный переворот в умах был следствием исчезновения абсолютного «верха» и «низа» в древности, когда утвердилось представление о шарообразной форме Земли. Подобное же смятение в умах произвела астрономия XVI–XVII вв., покончившая с абсолютно неподвижным центром Вселенной. Изменилось не только представление о фундаментальных законах природы, но и представление о самой науке. Теория относительности и позже квантовая механика не только заменили старые фундаментальные законы новыми. Эти новые законы уже не претендовали на окончательное решение основных проблем бытия.

Гельмгольц в XIX в. видел высшую и конечную цель науки в сведении всей картины мира к центральным силам, полностью подчиненным механике Ньютона. Современный физик не собирается поставить на место этой цели какую-то другую, но также окончательную цель. Подобные викторианские иллюзии потеряны навсегда. Неклассическая физика – это здание, которое не только растет вверх, но и углубляется в поисках фундамента, все более глубокого, но никогда не оказывающегося последним. Человеческий разум в этом смысле не только увидел новую Вселенную, но увидел в новом аспекте самого себя.

Эффект неклассической физики не был только негативным. Человечество интуитивно почувствовало, что оно вступает в эпоху более высокого динамизма, что наука несет с собой не только неясные еще, но несомненно глубокие изменения в жизни людей, но что сама эта жизнь станет непрерывным изменением, что изменятся не только научные представления, но и потенции науки, ее воздействие на жизнь станет непрерывно изменять материальные и духовные силы человечества.

Те, кто помнит первоначальное воздействие теории относительности и квантовой механики на общественную психологию, могут засвидетельствовать оптимистический характер их эффекта. В 20-е годы происходила радикальная переоценка ценностей. Стабильность, повторяемость, неизменность потеряли свой викторианский, оптимистический ореол. Оптимизм все больше стал связанным с преобразованиями. Разумеется, дискредитация покоя и апофеоз движения – очень приблизительная характеристика, требующая оговорок, связанная с противоречащими ей констатациями. Разумеется, также корни указанной переоценки ценностей гораздо шире, чем воздействие неклассической науки; последнее, может быть, даже и не входило в число этих корней – просто психологический эффект науки совпал с господствующими переменами в общественной психологии. Это было одной из причин характерного для 20-х годов напряженного интереса к новой науке.

В середине века интуитивное прозрение стало отчетливым прогнозом. Теперь мы можем в какой-то мере определить, в чем состоит эффект неклассической физики, эффект ее основной черты – незавершенности, незамкнутости новых представлений о мире, неизбежного пересмотра фундаментальных принципов науки. Посмотрим же, каким рисуется сейчас эффект неклассической физики.

Классическая физика также сделала динамичными, подвижными, изменяющимися и научные представления, и воздействие науки на материальные и духовные силы человечества. Но это был динамизм другого, менее высокого ранга. Менялись частные научные представления, но фундаментальные принципы оставались неизменными. Изменение частных научных представлений вызвало сначала спорадическое, а в конце классического периода, в начале XX в., непрерывное изменение технического уровня производства. Начиная с промышленного переворота XVIII в. производство становится прикладным естествознанием. Технический прогресс спорадически или непрерывно исходит из схем классической науки, он берет эти схемы в качестве идеальных циклов, к которым должна приблизиться производственная техника. Вся история классической теплотехники – это история последовательного приближения к идеальному циклу Карно, к идеальной физической схеме перехода тепла от нагретого тела к более холодному; такой переход позволяет превратить тепло в механическую работу. Сами идеальные физические схемы не оставались неподвижными, они дополнялись новыми. Наука узнавала о новых законах сохранения, об энтропии, о строении молекул, об эволюции неорганической и органической природы; число схем, служивших целевыми канонами для практики, все возрастало. Если говорить об энергетике, то главным целевым каноном XVIII в. было сохранение механической энергии при преобразовании уже имеющегося потенциала (например, вода, давящая на ковши наливного колеса) или имеющейся кинетической энергии (поток, толкающий лопатки подливного колеса) в механическое вращение машин, родоначальниками которых были прядильные и ткацкие станки, возвестившие промышленную революцию. В XIX в. (вернее, в период, охватывающий конец XVIII в. и почти весь XIX в.) таким целевым каноном энергетики стало сохранение энергии при преобразовании тепла в механическую работу. Приближение к целевому канону выражалось в повышении коэффициента полезного действия тепловых установок. Начиная с конца XIX в. наука, узнав о превращении механической работы в электричество и о превращении электричества в механическую работу (это связано с выводами из основных уравнений классической электродинамики, из уравнений Максвелла), ставит перед техническим прогрессом новый целевой канон, и энергетика стремится воплотить в жизнь схему: движение проводника в магнитном поле вызывает электрический ток, а последний на значительном расстоянии заставляет вращаться проводник в магнитном поле. Воплощение этой схемы в виде единой системы централизованного электроснабжения – основная цель электрификации.


    Ваша оценка произведения:

Популярные книги за неделю