355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Черток » Ракеты и люди. Горячие дни холодной войны » Текст книги (страница 14)
Ракеты и люди. Горячие дни холодной войны
  • Текст добавлен: 9 сентября 2016, 17:23

Текст книги "Ракеты и люди. Горячие дни холодной войны"


Автор книги: Борис Черток



сообщить о нарушении

Текущая страница: 14 (всего у книги 44 страниц) [доступный отрывок для чтения: 16 страниц]

2.3 СТРОИМ «МОЛНИЮ-1»

Проектирование самого спутника, разработка его конструкций и всех систем с первых дней 1962 года вышли за пределы проектной группы Дудникова. В работу активно включились управленцы, электрики, тепловики, антенщики.

«Молнии-1» повезло в том отношении, что молодым коллективам никто не мешал фантазировать. Первое время казалось, что вместо работы идет игра, как у детей, понарошку. На самом деле «детишки» быстро взрослели, учитывали опыт неудач на других, уже слетавших, автоматах.

По «Молнии-1» СП предоставил мне гораздо больше прав и свобод, чем по любым другим объектам. Из заместителей Главного я был связан с Цыбиным, которому подчинялся конструкторский отдел Болдырева. Другие заместители старались в эту работу не вмешиваться.

Своей главной целью я считал объединение усилий специалистов наших отделов и смежных организаций для комплексного решения задачи. Понять людей, поддержать творческую атмосферу, наладить тесные товарищеские связи для решения каждой конкретной задачи куда труднее, чем разобраться в технических проблемах.

Увлеченные своей локальной задачей, узкие специалисты иногда забывали о технологии сборки, удобстве эксплуатации, методике испытаний, возможностях производства, наземной подготовке. Молодая команда проектантов Дудникова и в этих вопросах не осталась в стороне.

Хорошим помощником оказался и назначенный Королевым на должность ведущего конструктора «Молнии-1» Дмитрий Слесарев. Королев любил говорить, что ведущие конструкторы – это «глаза и уши Главного». Так оно и было. Но Слесарев не злоупотреблял своим правом докладов Главному. С его участием было легко решать массу текущих конфликтных вопросов.

В середине 1962 года начали поступать рабочие чертежи. В работу по «Молнии-1» включился, пожалуй, самый основной исполнитель – наш завод.

Директор опытного завода Роман Анисимович Турков одновременно был первым заместителем начальника ОКБ-1, то есть Королева. На заводе он был полновластным хозяином в самом хорошем смысле слова. С ним у меня установились не просто деловые, а доверительные и дружеские отношения. Прошедший через тяжелейшую школу производства пушек в дни Великой Отечественной, он не очерствел, подобно многим заслуженным руководителям. Внешне суровый и требовательный, он внутренне был человеком добрым, чутким, любившим и ценившим в других прямоту и чувство юмора.

У Туркова была блестящая память. Он умел к месту рассказать поучительную историю из производственных событий военного времени. При этом он смотрел на более молодых слушателей с едва заметной доброй усмешкой.

Другим руководителем на производстве, от которого зависела «Молния-1», был Исаак Хазанов. Кипучая энергия, инициатива, незаурядные организаторские способности вскоре сделали его вторым лицом на заводе. Одним из его ценных качеств было умение быстро устанавливать контакты со смежными производствами, другими заводами. Мы нередко попадали в безнадежные ситуации по производственным возможностям. Хазанов обладал редкими способностями в таких случаях находить спасителей на стороне.

Я не пожалел красок, чтобы живописать Туркову и Хазанову перспективы спутниковой связи, детально ознакомил их с проектом и предупредил, что нам не избежать большого количества изменений в процессе производства. Я умолял форсировать изготовление первых агрегатов и механизмов, чтобы мы могли до полета испытать их на ресурс в течение шести – восьми месяцев.

Зеленый свет изготовлению «Молнии-1» на заводе был дан только в середине 1962 года. Как только производство развернулось, пошел поток конструкторских изменений.

Турков иногда после очередного изменения конструкции привода, антенны или приборов управления в ходе производства говорил мне по телефону, что я нахожусь в роли мужа, который узнает о неблаговидном поведении жены последним.

– Но мне, – кричал Турков, – уже надоело из-за твоей любимой «Молнии» срывать работы по всем другим изделиям.

Мы договорились, что с Хазановым разберемся и все доложим Туркову. Такие разборки с Хазановым непосредственно в цехах всегда заканчивались решениями в пользу повышения надежности независимо от объема переделок.

Королев не терпел, если ему не докладывали о внесении каких-либо изменений в чертежи «Востоков» и «Восходов» независимо от степени серьезности. Изменения в технической документации «Молнии-1» его не волновали. Конструкторы больше боялись самого Туркова, чем его угроз «доложить Королеву».

Обычно Турков начинал рабочий день с обхода цехов. При этом он безошибочно выбирал самые «узкие» места. Возвратившись к себе в кабинет, обзванивал руководителей и спрашивал:

– Вот в «пятом» после всех доработок такой-то клапан по вашим допускам на герметичность не проходит. Что будем делать?

Заместитель Главного или начальник отдела в то утро еще ничего по этому поводу не знал и срочно вызывал подчиненных, которым учинял разнос:

– Почему директор завода нашел время мне звонить, а ты ничего не докладываешь?

Таким методом узкие места выявлялись и преодолевались быстрее, чем при нудном «вправлении мозгов» на диспетчерских совещаниях.

Изготовление «Молнии-1», сборка, монтаж всей начинки, экспериментальные работы и, наконец, окончательные заводские испытания сконцентрировались на «втором производстве». Так стали называть лесистую территорию, доставшуюся нам от Грабина. Все производства на этой территории подчинялись Герману Семенову. Он был производственником-универсалом. В НИИ-88 он был начальником опытного цеха Королева, затем уехал в Днепропетровск и прошел школу серийного ракетного производства. Родственные отношения с Королевым (Герман был женат на сестре Нины Ивановны) никак не облегчали его положения. Наоборот, его начальники и подчиненные считали, что с него можно спрашивать строже и больше якобы потому, что Королев в случае чего поможет.

Я не раз убеждался, что СП к Герману был более требователен, чем к другим. Герман иногда на производственных оперативках беззлобно пародировал Королева, заканчивая совещания ударом мощного кулака по столу с восклицанием: «Чтобы было! А то по шпалам!»

После переселения Бушуева на первую территорию, поближе к Королеву, в 1961 году я занял его место в бывшем кабинете Грабина, и мы с Германом фактически несли ответственность за все, что творилось на «втором производстве».

На любом авиационном или ракетно-космическом заводе самым посещаемым высокими руководителями местом обычно является сборочный цех. До нашего объединения мы имели на первой территории только один сборочный цех № 39. Здесь проводилась сборка ракет, первых «семерок» и первых космических аппаратов. Технологическая линия цеха заканчивалась контрольно-испытательной станцией.

В 1962 году сборку и испытания космических аппаратов передали «второму производству». Для этого организовали новый сборочный цех № 44. Начальником его был назначен Григорий Марков. «Молнию-1» предстояло собирать в этом цехе.

Обладавший фигурой тяжелоатлета Марков в белоснежном халате встречал гостей чуть застенчивой улыбкой. Он и на самом деле был человеком добрым и застенчивым, хотя в цехе установил строгий порядок, чистоту и образцовую дисциплину. Несмотря на поток изменений, который вверенные мне отделы обрушивали на сборочный цех, у меня с Марковым никогда не возникало конфликтов.

В конце 1962 года Марков закончил сборку первой «Молнии-1».

Заключительным аккордом технологического процесса производства ракеты и космического аппарата являются испытания. КИС, который прежде был частью сборочного цеха, превратился в самостоятельное подразделение. Административно КИС находился в составе завода. Однако обилие инженерных проблем, сложность технологии испытаний, требовавших участия десятков инженеров -разработчиков систем, сделали КИС местом, где проверяется не столько качество продукции завода, сколько интеллект инженеров, разработавших аппарат. Самое трудное – начать испытания и закончить их. Трудно начать – потому что всегда чего-либо не хватает: комплектации, инструкций, испытательных пультов и всякого другого оборудования. Трудно кончить – потому что за время испытаний появляется масса замечаний, по каждому из которых надо принимать решение.

Начальник КИСа, в отличие от любого начальника цеха, обязан помногу раз за день общаться с десятками инженеров-разработчиков самых разных специальностей своих и смежных предприятий. Надо уметь терпеливо выслушать каждого, грамотно изложить накопившиеся претензии и, по возможности не останавливая графика испытаний, найти выход из первоначально безвыходных положений.

«Безвыходные» ситуации возникали обычно на стыках разных систем. Обязательно что-либо в аппаратуре не стыковалось по логике или сопряжению электрических схем, не соответствовало инструкциям. Самыми неприятными были паразитные связи и взаимовлияния систем, никак не предусмотренные их творцами.

В случаях явного отказа прибора в процессе испытаний принималось решение о его замене. Но снять и заменить прибор – это еще полдела. Испытания нельзя считать законченными, пока разработчик отказавшего прибора не представит заключения о причинах отказа и не выдаст документа, гарантирующего надежность вновь установленного.

Бюрократические процедуры получения заключений со многими подписями требовали времени. Это затягивало испытания, но дисциплинировало всех участников. Каждый начинал понимать, что проскочить КИС с надеждой последующих доработок на полигоне можно только легально, получив на то согласие Главного конструктора и старшего военного представителя.

Решения по сложным, комплексным вопросам принимались в КИСе на оперативных совещаниях. По «Молнии-1» обычно они проводились под моим началом.

Начальником КИСа на «втором производстве» был Анатолий Андриканис. Трудным экзаменом для двадцативосьмилетнего начальника было испытание всех «Молний-1». В самых сложных ситуациях надо было уметь доказать, что необходимы еще день или неделя для испытаний. Сроки, как правило, бывали сорваны еще до передачи объекта в КИС. Руководители всех рангов, включая заместителей министров, ответственных за программу, стремились как-то наверстать упущенное за счет сокращения цикла работ в КИСе. Вот здесь-то и требовались от начальника КИСа мужество, выдержка, чтобы устоять от соблазна вытолкнуть на полигон недоиспытанный космический объект.

Андриканис в те годы еще только учился быть стойким и по-хорошему упрямым. За последующие 30 лет руководства заводскими испытаниями он выпустил такое количество космических объектов, что по этому показателю вполне может претендовать на внесение в Книгу рекордов Гиннеса.

Из всего обилия технических изобретений впервые создаваемой системы космической связи я выделю следующие: бортовой ретранслятор, систему управления, остронаправленные следящие за Землей антенны, наземные станции.

Бортовой ретранслятор фактически состоял из пяти приемопередающих блоков. Капланов рассудил правильно, что нарушение связи по вине ретранслятора грозит скомпрометировать всю идею. Он обосновал выбор только одной частоты по линии «земля» -»борт» – 800 мегагерц и по линии «борт» – «земля» – 1000 мегагерц (я округляю цифры). Передатчики трех ретрансляторов имели мощность излучения по 40 ватт каждый. Истинный ресурс передатчиков был еще неизвестен. Мы считали, что при работе каждого до первого отказа можно будет дотянуть до года. На случай нехватки электроэнергии ретранслятор имел еще два передатчика мощностью по 20 ватт каждый. Самым критическим элементом передатчика по надежности считалась лампа бегущей волны (ЛБВ). Именно в ней энергия бортовой электростанции преобразовывалась в энергию токов высокой частоты. ЛБВ имели очень низкий КПД такого преобразования. Основная часть энергии уходила в тепло. Поэтому наши инженеры-тепловики Олег Сургучев и Евгений Белявский предложили выделить все ЛБВ в отдельный агрегат и придумали для него жидкостное охлаждение. Температурный режим всего аппарата поддерживался с учетом постоянной ориентации продольной оси спутника на Солнце.

В плоскости солнечных батарей на герметичном отсеке корпуса был установлен радиатор-нагреватель, постоянно освещаемый Солнцем. Его поверхность оклеили фотоэлектрическими преобразователями, увеличив таким образом общую площадь солнечных батарей. За радиатором-нагревателем вокруг цилиндрической обечайки гермоотсека был установлен радиатор-холодильник. Автоматическое переключение потока циркулирующей в радиаторах жидкости позволяло охлаждать блок ЛБВ и поддерживать тепловой режим всего аппарата.

Режим ретрансляторов требовал особого внимания при их включении во время наземных испытаний. Они могли «сгореть» еще на Земле не только от перегрева, но и при отключении антенны. Энергия, не имея возможности превращаться в радиоволны, превращалась в тепло. Пока набирались опыта эксплуатации, все же умудрились в КИСе один ретранслятор сжечь. Капланов, узнав об этом, положил под язык таблетку. Я запретил включение ретранслятора в отсутствие представителей Капланова.

Наибольшего числа изобретений потребовало создание комплекса системы управления. Ни одна из многих систем, уже созданных к тому времени, не была принята даже «за основу».

Для «Молнии-1» небольшая команда из коллектива Раушенбаха придумала новую многорежимную систему управления, в основе своей сохранившуюся до настоящего времени. Совмещение многих функций, возложенных на систему при длительном сроке службы, оказалось возможным благодаря многоцелевому использованию гироскопического стабилизатора принципиального нового типа – трехстепенного силового гироскопа с управляемой скоростью вращения ротора.

Гироскопический стабилизатор играл ведущую роль практически во всех режимах работы системы ориентации. Его довольно сложная теория была разработана Евгением Токарем. Изготовить такой стабилизатор – это специальная электрическая машина – мы сами не могли. За эту работу – без принуждения и с завидным энтузиазмом – принялись специалисты в институте Андроника Иосифьяна. Работу возглавил Николай Шереметьевский. Гироскопический стабилизатор «Молнии-1» стимулировал во Всесоюзном научно-исследовательском институте электромеханики новое научно-техническое направление – силовую гироскопическую стабилизацию для космических аппаратов.

Система ориентации начинала работать с гашения угловых скоростей спутника после его отделения от носителя. Затем происходил поиск Солнца специальным солнечным датчиком и приведение продольной оси спутника, перпендикулярной плоскости солнечных батарей, к направлению на Солнце. Изменением угловой скорости вращения маховика-гироскопа осуществлялось вращение всего аппарата вокруг направления на Солнце до тех пор, пока одна из двух параболических антенн не занимала положение, позволяющее ей следить за Землей. Необходимый угол разворота контролировался специальным оптическим датчиком.

Чтобы приток электроэнергии за счет освещения батарей Солнцем был максимальным, непрерывную ориентацию на Солнце надо было удерживать на всем «длинном» участке орбиты, пока спутник не входил в тень Земли над южным полушарием. Во время полета по «солнечному» участку одна из двух остронаправленных антенн ретранслятора должна непрерывно ориентироваться, отслеживая направление на центр Земли. Для проведения коррекции орбиты был придуман хитрый маневр, при котором перед достижением перигея спутник ориентировался так, чтобы в точке перигея корректирующий импульс двигательной установки был направлен по касательной к орбите. В тех случаях, когда не хватало управляющих моментов силового гироскопического стабилизатора или требовалась его «разгрузка», работали реактивные микродвигатели в простейшем «релейном» режиме.

Динамика ИСЗ, управляемого одним электродвигателем-маховиком, и все режимы «релейного» управления были разработаны Владимиром Бранцем, Владимиром Семячкиным и Юрием Захаровым.

Средний возраст динамиков-теоретиков и разработчиков аппаратуры системы управления составлял 30 лет. Они на «целых» четыре года были старше и опытнее проектантов. Этих четырех лет оказалось достаточно, чтобы сделать реальной казалось бы задуманную «понарошку» систему.

Инженеры, проектировавшие «Молнию-1» в начале шестидесятых, стали уважаемыми учеными, имеющими многочисленных учеников. Но ни они сами, ни их ученики теперь не решили бы подобной задачи без десятков персональных компьютеров и парка мощных машин вычислительного центра, без отработки системы на аналого-цифровых моделях! В то время никто не помышлял о таких возможностях.

Впрочем, изобретатель центробежного регулятора для паровой машины Уатт владел математикой в пределах четырех действий, а первые паровозы Стефенсона, развивавшие скорость до 50 км/ч, создавались в начале XIX века даже без использования логарифмической линейки. В XX веке теория центробежных регуляторов и паровозостроения обросла таким математическим аппаратом, в котором, будь живы сами изобретатели, они бы не скоро разобрались.

Для управления современными спутниками просто невозможно создать систему без использования бортового компьютера, который берет на себя заботу о выборе динамических режимов работы в соответствии с программой полета, включении в нужное время бортовой аппаратуры, проводит диагностику, контролирует расход «рабочего тела», выполняет еще много расчетов, которые в то далекое время возлагались на бортовое программно-временное устройство (ПВУ) и наземные службы.

Исаак Сосновик и Нина Квятковская изобрели транзисторное ПВУ, управлявшее бортовыми системами в соответствии с программой, которую можно было заложить с Земли по командной радиолинии. Саму командную радиолинию, объединенную с аппаратурой контроля орбиты и передачи телеметрии в виде единого комплекса, заказали СКБ-567. Ходарев, Малахов и вся набравшаяся горького опыта на автоматических аппаратах «Марс» – «Венера» (MB) радиокомпания создали для «Молнии-1» служебную радиосистему.

Труден был выбор головного разработчика бортового комплекса управления. Эту работу обычно возглавлял Юрий Карпов. В его активе были комплексные разработки идеологии и электрических схем всех первых спутников, «Востоков» и венеро-марсианских аппаратов. Очередной задачей для него был новый пилотируемый корабль 7К-ОК или изделие 11Ф615.

Для «Молнии-1» не без конфликтов и колебаний мы приняли решение: бортовой комплекс создавать одновременно с наземным испытательным оборудованием (НИО), так чтобы можно было сразу испытать весь космический аппарат и при этом вместо десятка операторов у пультов по каждой системе иметь одного-двух только у центрального пульта, дополнив его устройством для автоматической регистрации их действий, правильных или ошибочных. За такую комплексную разработку взялся радиоотдел Анатолия Шустова. Отдел значительно вырос за счет специалистов, влившихся в него после нашего объединения с коллективом Грабина.

Весь комплекс под руководством Шустова начала разрабатывать лаборатория Виктора Попова. Однако инженеры, ранее ушедшие от нас на работу в аппарат ВПК, сманили его в кремлевские апартаменты. Недолго проработав в Кремле, он перешел в аппарат ЦК КПСС и до 1991 года оставался «нашим человеком» в оборонном отделе ЦК.

Лабораторию Попова принял Петр Куприянчик. Он правильно рассудил, что чем проще схема «борта», тем легче автоматизировать ее испытания, но тем сложнее «земля».

В литературе по космонавтике я не встречал упоминаний о проблемах разработки наземного испытательного оборудования. И это несмотря на то, что такое оборудование является непременным вторым планом многочисленных фотографий, кино – и телекадров на ракетно-космические темы. Разработка наземных испытательных комплексов и всего наземного оборудования негласно считалась работой менее престижной, чем разработка бортовой аппаратуры. Такое предубеждение перешло в ракетно-космическую технику из авиации.

В современной авиации «земля»: аэродромная, испытательная, навигационная, то, что называется УВД – управление воздушным движением, – приобретает все большее значение. Однако каждый пассажир современного лайнера знает, что он летит на «Иле», «Ту» или «Боинге», но понятия не имеет о фирме или главном конструкторе, разработавшем сложнейшее радиоэлектронное оборудование для УВД.

В ракетно-космической технике «земля» играет гораздо большую и более ответственную роль, чем в авиации, поэтому для этой техники недооценка «земли» – вредное заблуждение. Только хорошая «земля» дает возможность полноценно проверить и выпустить в космос надежный «борт». Плохая «земля» может привести к аварии еще до запуска. Катастрофа 24 октября 1960 года – жестокий, но поучительный тому пример. Мы имели сотни случаев, к счастью без человеческих жертв, отказов «борта» еще на Земле по причинам ложных команд, подаваемых испытательной «землей».

Петр Куприянчик организовал совместную разработку бортовой схемы «Молнии-1» и испытательной «земли».

Основной объем электрических испытаний был осуществлен наземной станцией, которая получила индекс 11Н650. Ее идеологию разрабатывали Анатолий Максимов, Борис Бугеря, Артур Термосесов. Я высказал идею о полной автоматизации испытаний. При этом потребовалась система регистрации всех испытательных операций. Спрос породил предложение. Инженер Борис Барун предложил Куприянчику устройство автоматической подачи команд на «борт» с помощью перфорированной ленты и автоматическую систему цифропечати всего происходящего на другой ленте. Такая автоматическая система получила название «Волна». Чертежи сложного по тем докомпьютерным временам испытательного оборудования были разработаны в приборном конструкторском отделе Чижикова под руководством Ивана Ивановича Зверева.

«У меня фамилия птичья, – говорил Чижиков, – со зверями я плохо уживаюсь». Идя навстречу «пожеланиям трудящихся», мы разделили конструкторские отделы. За Чижиковым остался «борт», а Звереву поручили всю испытательную «землю». Таким образом, «земля» получила полноценный конструкторский отдел. Нашим приборным производством было изготовлено только два комплекта станций 11Н650 вместе с «Волной»: для КИСа и технической позиции полигона. Уже при испытании первой «Молнии-1» мы поняли, что эпоха полной автоматизации еще не пришла. Требовалось создать компромиссную полуавтоматическую систему, более универсальную, чем 11Н650. Как часто бывает, трудности, возникающие в процессе создания нового, приводят к решениям более удачным, чем первоначально предполагалось.

Идея создания унифицированной наземной испытательной станции «висела в воздухе». В поисках оптимальных решений Юрий Карпов вместе со своими уже обстрелянными на полигонах сподвижниками Владимиром Куянцевым, Владимиром Шевелевьм, Ремом Николаевым предложил структуру испытательной станции, в которой не было полной автоматизации, но зато обеспечивалась более глубокая диагностика, гибкость и возможность оперативного изменения технологии испытаний. В системе предлагалась уплотненная многоканальная линия телесигнализации.

К первым «Молниям» эта система «не успевала». Однако необходимость создания подобной системы была столь очевидной, что я предложил объединить и форсировать разработку всей «земли» в едином коллективе. Работу возглавили Петр Куприянчик и Артур Термосесов. В 1964 году появился изготовленный нашим приборным производством первый образец универсальной испытательной станции.

Соответствующее управление Министерства обороны узаконило эту разработку в качестве универсального средства для наземных испытаний космических объектов и присвоило станции индекс 11Н6110.

Впервые с помощью этой станции начали испытывать первые корабли 7К – будущие «Союзы». Опыт оказался столь удачным, что возникла потребность в изготовлении серии. Это было уже не под силу нашему производству. Без внешнего принуждения за серийный выпуск 11Н6110 взялся директор Азовского оптико-механического завода Георгий Васильев. Станция со временем нашла такое широкое применение, что всего их было выпущено более сотни. Удачные технические решения оказываются долгожителями несмотря на моральное старение. Даже в 1990-е годы, при триумфальном шествии цифровой вычислительной техники с ее безграничными возможностями для автоматизации самых различных видов испытаний, диагностики и обработки информации, старые станции 11Н6110 (спустя 30 лет!) остаются в эксплуатации на заводах и полигонах. В 1966 году, когда мы начали передавать «Молнию-1» Михаилу Решетневу в красноярский филиал, испытания ориентировались уже только на 11Н6110.

На современных спутниках связи выбор типа и конструкции антенн – одна из кардинальных проблем. Для «Молнии-1», не имея опыта, мы решили задачу «в лоб» и предложили две параболические антенны, резервирующие друг друга, диаметром по 1,4 метра. Они устанавливались на специальных штангах и управлялись электрическим приводом. Капланов поддержал наше предложение. Это придало уверенность антенщикам, которые отвечали за преобразование энергии передатчиков его ретранслятора в «конечный продукт» – энергию радиоволн.

Для передачи сигналов с «борта» на все наземные пункты, находящиеся одновременно в зоне радиовидимости, требовалось разработать бортовую антенну направленного излучения на прием и передачу одновременно.

К этому времени антенная лаборатория Михаила Краюшкина разрослась и выделилась в самостоятельный отдел. Коллектив отдела объявил, что антенные проблемы в радиотехнической части они берут на себя, начиная от расчетов и моделирования до сдаточных испытаний. Самую трудную часть задачи выполняли Владлен Эстрович, Иван Дордус, Геннадий Сосулин, Надежда Офицерова и механики макетной мастерской.

На этой и многих последующих разработках очень доходчиво было показано, какое значение для сокращения общего цикла разработки имеют смекалка и золотые руки квалифицированных рабочих, находящихся непосредственно при лаборатории, а не только в цехах завода. С появлением ЦВМ удалось значительно сократить продолжительность расчетно-теоретических работ, предшествующих выпуску чертежей. Однако ни одна остронаправленная антенна, при всей мощи современной вычислительной техники, не получалась без предварительной отработки на макетах. В этом процессе лабораторного моделирования трудно переоценить роли мастера и рабочего, которые понимают инженера с полуслова и не требуют детальных чертежей. Только после многоразовых переделок завод получал оформленные по всем правилам чертежи на изготовление летных образцов антенн. Те, кто окончательно изготавливали антенны в металле, не догадывались, что их проектирование начиналось с решения системы дифференциальных уравнений, открытых еще в прошлом веке.

На облучателе антенны устанавливались «трубы Медведева». Так мы называли оптические датчики, которые, захватив в свое поле зрения края диска Земли, посылали сигналы для управления приводом антенны и разворотом всего объекта так, чтобы в течение всего сеанса связи антенна ориентировалась на центральную часть видимого диска. Борис Медведев – инженер оптико-электрической «Геофизики» – тогда только начинал создавать свой ставший впоследствии богатым перечень всевозможных датчиков для космической техники, а затем и для подводных ракет.

Электромеханический привод для управления антенной оказался сложным механизмом. Он должен был работать в условиях космического вакуума непрерывно в течение каждого сеанса связи. Это была одна из труднейших задач обеспечения надежности. Лев Вильницкий, начальник отдела рулевых машин, приводов и механизмов, и Владимир Сыромятников основное время проводили в цехах завода, дожидаясь, когда можно будет выхватить первый образец привода для отработочных испытаний.

Я умолял Туркова и Казакова форсировать изготовление первых механизмов, чтобы мы могли до полета испытать их на ресурс в течение шести-восьми месяцев.

Идею создания бортовой электростанции, по нашей терминологии СЭП – системы электропитания, тоже изобретали заново. Для питания основного потребителя – ретранслятора и расходов на все прочие служебные системы за время сеанса связи, а это 8-9 часов, требовалось получать от солнечных батарей непрерывно до 1500 ватт.

В 1961 году такая мощность для космического аппарата казалась столь же грандиозной, как в 1921 году мощность Волховской ГЭС, первенца плана ГОЭЛРО. Ее мощность – 60 тысяч киловатт -тоже казалась фантастической.

Александр Шуруй, отличившийся у Грабина искусством управления по радио противотанковой ракетой, разработал электростанцию для «Молнии-1».

«СЭПом для „Молнии-1“ я вправе гордиться», – говорил Шуруй, вспоминая героическую эпопею начала шестидесятых годов.

Разработку «Молнии-1» я решил использовать для «революции» в космонавтике: ввести новый единый для всех на «борту» и «земле» стандарт – 27 вольт, вместо той чехарды, которая была на космических объектах. На стандарт 24 – 27 вольт предполагала переходить и авиация. Нам грозило отставание.

После объединения с коллективом Грабина численность и квалификация электротехнических групп выросла настолько, что мы могли взять на себя головную роль по разработке нового стандарта и доказать его преимущества на реальном космическом аппарате. «Молния-1» была для этого очень подходящим объектом. Одновременно аналогичную революцию следовало провести и на «Зените», электрооборудование которого под началом Карпова разрабатывали Шевелев и братья Петросяны. После моих обвинений в твердолобом консерватизме они стали нашими союзниками по новому 27-вольтовому стандарту.

Убедившись, что поддержка «снизу» будет обеспечена, я должен был обзавестись союзниками среди смежников.

Основной потребитель – Капланов поддержал меня без всяких оговорок. Переход на 27 вольт позволял в два раза снизить массу бортовой кабельной сети. Мы понимали, что «Молния-1» – это только начало. Еще в 1959 году вышли постановления о проектах больших носителей и новых тяжелых космических кораблях. С учетом этой перспективы мы доказывали все преимущества 27 вольт.

После дискуссий, в которых новый номинал не встретил дружной поддержки большинства, я объявил решение о 27 вольтах как ультиматум головной организации. К такому приему я прибегал редко, стараясь избегать конфликтов, приводящих к арбитражу у Королева.

Неожиданно возразил Рязанский. Он должен был перенять у СКБ-567 изготовление управляющего радиокомплекса, аппаратурно заимствованного с 12-вольтовых венеро-марсианских объектов. Требовались переделки, и, как обычно, возникали осложнения на заводах.

Королев поддержал меня в самой решительной форме. Стандарт 27 вольт ± 3 вольта был узаконен и действует до сих пор во всей ракетно-космической технике.


    Ваша оценка произведения:

Популярные книги за неделю