355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кушнер » Успенский пишет о Колмогорове » Текст книги (страница 1)
Успенский пишет о Колмогорове
  • Текст добавлен: 19 сентября 2016, 13:48

Текст книги "Успенский пишет о Колмогорове"


Автор книги: Борис Кушнер



сообщить о нарушении

Текущая страница: 1 (всего у книги 2 страниц)

Нет памяти о прежнем:

да и о том, что будет,

не останется памяти у

тех, которые будут после.


Екклесиаст, 1:11

1. Недавняя[ii][2]
  Первая редакция настоящей работы написана в 1993 г. (прим. 2004 г.).


[Закрыть]
статья В.А. Успенского [1][1]
  Uspensky V.A. Kolmogorov and Mathematical Logic. The Journal of Symbolic Logic, v. 57, No 2, 385–412, 1992.


[Закрыть]
о работах Колмогорова по математической логике представляется мне значительным событием. А.Н. Колмогоров, несомненно, один из самых выдающихся математиков нашего столетия, оставил огромное духовное наследие. Для того, чтобы сколько-нибудь подробно представить его вклад в самые различные области чистой и прикладной математики понадобились бы усилия большого коллектива авторов. Такой коллектив можно было бы образовать из учеников Колмогорова, ибо в любой математической дисциплине, к которой он обращался, хотя бы ненадолго, хотя бы эпизодически, он оставил свой след и свою школу. Не представляет собою исключения и математическая логика. Хотя работы А.Н. в этой области относительно немногочисленны, они отмечены печатью его гения, и время всё более и более подтверждает непреходящее их значение. Вместе с тем, как я убедился на собственном опыте, по крайней мере, ранние логические работы Колмогорова всё ещё мало известны на Западе.

Вряд ли возможно найти лучшего автора для статьи под названием «Колмогоров и математическая Логика», чем Владимир Андреевич Успенский. Один из ближайших учеников и сотрудников Колмогорова, великолепный математик, один из создателей современной теории нумераций, автор первой советской монографии о рекурсивных функциях, автор ряда других книг, человек, высоко одарённый гуманитарно, Успенский обладает самой высокой профессиональной и персональной квалификацией для написания подобной работы. И если мне чего-то недостаёт в созданном В.А. Успенским великолепном обзоре, то именно личных его воспоминаний, о богатстве которых я могу только догадываться. Разумеется, вряд ли такого рода воспоминания могли найти место в строгом формате статьи для the Journal of Symbolic Logic и, тем не менее, жаль… В течение многих лет В.А. был в центре математической жизни необычайной интенсивности, и я убеждён, что ему под силу подарить историкам математики живые образы таких учёных, как А.Н. Колмогоров, П.С. Александров, П.С. Новиков ... Если настоящие строки побудят В.А. взяться за эту нелегкую задачу, я буду чувствовать, что трудился не зря[iii][3]
  В момент написания  статьи я ещё не знал о существовании великолепного тома «Колмогоров в воспоминаниях», редактор-составитель А.Н. Ширяев, Москва, Наука, 1993. В этой книге можно найти и крайне интересные воспоминания В. А. Успенского («Колмогоров, каким я его помню», стр. 280 – 384. Совсем недавно Владимир Андреевич выпустил двухтомник под характерным названием «Труды по Не Математике», ОГИ, М., 2002. (прим. 2004 г.).


[Закрыть]
.

2. Я впервые увидел Успенского в 60 или 61 году, когда я был студентом механико-математического факультета МГУ. Это действительно были «золотые годы» советской математики. Проходя по коридору факультета (мех-мат занимал с 12 по 16 этаж Главного Здания МГУ), молодой человек, вроде меня, мог в течение минуты встретить А.Н. Колмогорова, П.С. Александрова, А.А. Маркова[iv][4]
  Столетию со дня рождения А.А. Маркова посвящено моё эссе «Учитель», Вестник, Балтимор, №18 (329) – №21, (332), 2003 (прим. 2004 г.).


[Закрыть]
, И.Г. Петровского, С.Л. Соболева, А.Н. Тихонова, Л.А. Люстерника, Д.Е. Меньшова, И.М. Гельфанда, А.Г. Куроша...

В 1959 году, когда я поступил на мех-мат, ещё не улеглось возбуждение, вызванное великолепным достижением студента Колмогорова В.И. Арнольда, решившего одну из проблем Гильберта. Нам предстояло вскоре услышать и о таких именах, как А.А. Кириллов, Я.Г. Синай, Ю.И. Манин, С.П. Новиков...

Сама атмосфера мех-мата была электризующе духовной, сочетание живых, доступных классиков и бурлящей (порой через край) энергии молодёжи было уникальным, во всяком случае, я никогда ничего подобного более не встречал. Сейчас мне кажется, что это был отблеск давно распавшейся Лузитании, о которой так интересно пишет один из её участников Л.А. Люстерник [2–4]. Также, как и тогда, процветал студенческий фольклор, по рукам ходили длинные поэмы о мех-мате, написанные непременным размером Евгения Онегина, на вечеринках исполнялась трагическая песня о студенте, умершем под невыносимым грузом экзаменов. Мелодия и сюжетные идеи были заимствованы из популярной фольклорной песни «Раскинулось море широко» (повидимому, восходящей к русско-японской войне; у многих людей старшего поколения песня эта ассоциировалась с Л. Утёсовым). О времени создания студенческого шедевра судить трудно – мы пели примерно так: «Анализ нельзя на арапа сдавать,/ Тумаркин тобой недоволен.../ Изволь теорему Коши доказать,/ иль будешь с мех-мата уволен». Однако позже мне приходилось слышать эту фразу с Ефимовым вместо Тумаркина. Видимо многие деканы мех-мата побывали в этой песне. Заканчивалась она весьма выразительной строкой, использованной Г.Е. Шиловым в качестве эпиграфа к его популярной книжке о графиках: «А синуса график волна за волной по оси абсцисс убегает...» Это было волнующее время Хрущёвской оттепели, выхода человека в космос... В день, когда запустили в Космос Гагарина, меня пригласил к себе профессор Г.Е. Шилов. Он только что сочинил мелодию песни о Гагарине, недоставало стихов. В тот же вечер песня была исполнена в праздничном концерте. Конечно, это было довольно наивное сочинение, но вряд ли уступавшее многочисленной профессиональной продукции, произведённой в те дни.

Во время любой оттепели остаются опасные, нерастаявшие места. Можно поскользнуться. Один наш однокурсник (было это на третьем курсе, в 1961 г.) разговорился в общежитии, другой однокурсник на него немедленно донёс. Последовал громкий скандал с многочисленными комсомольскими собраниями. «Преступник» был, в конечном счёте, изгнан из комсомола, а затем из Университета[v][5]
  В начале 1995 г. я получил из Москвы газету, в которой цитировалась сов. секретная Справка от 20 ноября 1961 г., адресованная ЦК КПСС и подписанная Зав. отделом науки, вузов и школ ЦК КПСС В. Кириллиным и Зам. зав. Отделом науки, школ и культуры ЦК КПСС по РСФСР Ф. Герасиным. Документ излагал  памятные события «дела Лейкина» в партийной интерпретации. Не без изумления обнаружил я и свою фамилию (написанную через «и») в списке зачинщиков: «Вместе с тем Лейкин и поддерживающие его Шапиро, Буевич, Кушнир (! – Б.К.), Томм, Фирсов, Мищенко и Боримечков до собрания провели определённую работу в группах. Ведение собрания оказалось по существу в их руках» («Нас не травили разве что дустом», Куранты, №166 (933), 2 сентября 1994 г.). Собрание, о котором идёт речь, отказалось исключить Лейкина из комсомола (и, тем самым, из Университета). Конечно, было организовано сверху другое собрание, выполнившее волю партии. В то время я и не подозревал о таком высоком внимании. Очевидно, справке не был дан серьёзный ход в партийных инстанциях. Во всяком случае, я не почувствовал заметных последствий при приёме в аспирантуру, а потом на работу (кроме обычных для «лиц еврейской национальности» затруднений) (прим. 2004 г.).


[Закрыть]
. Из этих собраний особенно запомнился следующий эпизод: молодой комсомольский вожак сообщил большой аудитории, что его отец был в своё время репрессирован. «Ну и что?!» – горячо обратился он к своим сокурсникам. Мы молчали... Нет, не зря известная библейская заповедь об отце и матери была провозглашена на Синае, не так она очевидна, как многим кажется. Призрак Павлика Морозова продолжал бродить по стране, а хватка коммунистической машины не ослабевала. Много лет спустя, один мой старший коллега, вспоминая это время, сказал: «я вступил тогда в партию, чтобы сделать её лучше». Человеческая наивность воистину беспредельна...

Тем не менее, неясные, наивные надежды витали в воздухе, наверное, как и в дни Лузитании. Так же, как и тогда, математика была окружена романтическим ореолом, а об её творцах существовал значительный фольклор. Место Жуковского в персонификации хрестоматийного образа рассеянного, не от мира сего математика занял Дмитрий Евгеньевич Меньшов, выдающийся представитель Лузитании. Перескажу только две из многих легенд.

Однажды Д.Е. прогуливался за городом. Глубоко погрузившись в свои мысли, он каким-то образом миновал часовых, оказался в центре запретной зоны, был задержан и препровождён в Комендатуру. Чтобы понять происшедшую там сцену, необходимо знать, что Д.Е. был весьма высокого роста, очень худой, с короткой, но всклокоченной бородой. Одежде своей он, выражаясь мягко, не уделял большого внимания. Кроме того, Д.Е. обладал необычной хрипловатой и несколько отрывистой манерой речи.

– Ты кто такой?

– Я – математик. –  Смех.

– Может быть, ты ещё и профессор?

– Да, я профессор Московского Университета. – Громкий смех.

– Может быть, ты ещё и академик?

– Нет, я член-корреспондент.– Служивая публика рыдает от смеха...

К счастью, комендант, в конце концов, позвонил в Университет...

Другая легенда. Как-то во время войны Д.Е. читал лекцию студентам, кажется, в Ташкенте. Помещений не хватало, погода была жаркая. Соответственно студенты сидели во дворе, на свежем воздухе, а Д.Е. обращался к ним с небольшого балкончика. Как обычно, Д.Е. воодушевился и начал жестикулировать. Как реагировали на его вдохновение закалённые студенты, неизвестно, но проходившие по улице мусульмане стали опускаться на колени, считая, что приехал почтенный высокоучёный мулла и читает проповедь...

На школьных математических кружках в те годы всё ещё рассказывали о драматическом прорыве в бесконечность, совершённом Кантором. Боюсь, что сейчас молодым людям преподносят что-нибудь более полезное и преходящее: вроде Пролога или Юникса.

Даже неизменный и порою небезопасный старик-ферматист с потёртым футляром от скрипки и стопкой витиевато исписанных листов – очередным доказательством Теоремы Ферма, предлагаемым для немедленного, на месте прочтения всем любопытствующим, – казался неотъемлемым элементом этого необычайного мира[vi][6]
  В футляре от скрипки в зимнее время хранились доказательства Теоремы Ферма. По легендам, не отрицаемым самим их героем, летом Д. плавал на речных пароходах, играл на скрипке для отдыхающей публики, зарабатывая на жизнь и на возможность размышлять над великой загадкой Ферма. По моим наблюдениям производительность труда Д. составляла 1.5-2 доказательства Теоремы Ферма за сезон. В моё время он представлял математической публике доказательства, кажется, под номером 16 (варианты доказательств отмечались добавлением букв, скажем 16 Е). Д. прекрасно знал все ведущие советские Университеты и математические учреждения и всех ведущих математиков. Его отношения с последними были непростыми, с кем-то он, по его утверждению, даже и судился. Легенда утверждала, что вскоре после учреждения фототелеграфа Д. послал в Математический Институт имени Стеклова новогоднюю фототелеграмму. На бланке можно было видеть симпатичную коллекцию ослиных голов, под каждой головой была каллиграфически выписана фамилия очередного знаменитого математика. Впрочем, сам я никогда не видел Д. в агрессивном состоянии, он обычно сидел в углу на скамье, окружённый студентами и рассказывал желающим свою работу. По окончании он просил отзыв вполне умеренного содержания: «Я, такой-то, студент такого-то курса мех-мата, ознакомился с доказательством 16 Е Великой Теремы Ферма, принадлежащим Д.; при поверхностном просмотре явных ошибок не обнаружено».  Трудно сказать верил ли Д. в свои доказательства сам. Однажды он сказал при мне не без гордости: «Это доказательство я показывал Михаилу Михайловичу Постникову; Постников сообщил мне, что мои ошибки становятся всё более и более витиеватыми». Помимо теоремы Ферма, Д. в молодости работал и над perpetuummobile. Здесь он любил рассказывать о доценте, который сначала прогонял его, потом начал называть его идеи гениальными, но в этот момент, когда сотрудничество пошло на лад, доцента забрали в сумасшедший дом. Желающим также позволялось заглянуть в киносценарий «Математический Сталинград», посвящённый участи математиков (названных поимённо), отрицавших идеи Д.


[Закрыть]
.

Павел Сергеевич Александров, уже в моё время носивший очки с огромными выпуклыми линзами, всегда был окружён толпой последователей. Из-за близорукости он порою путал своих учеников с «посторонними» студентами. Так один мой сокурсник был приятно ошеломлён, когда П.С. протянул ему руку в лифте и без долгих предисловий спросил: «Здравствуйте, как поживаете?»  В конце недолгого пути на 13 этаж мой друг признался всё-таки, что он первокурсник. «А я, было, возвёл Вас в аспирантское достоинство» – засмеялся П.С.

Даже в то время память о П.С. Урысоне, трагически погибшем во Франции в 1924 г. (он утонул, купаясь в море), была свежа, как будто беда случилась совсем недавно. Плавание составляло неизменный элемент знаменитых «топологических прогулок» (выездов Александрова с учениками за город), а однажды Александров едва не погиб, купаясь в Днестре, из-за неосторожности водителя катера. Дружба двух «П.С.» была окутана романтическим ореолом, а ученики Александрова любили рассказывать трогательную историю о том, как однажды П.С. Александров подарил П.С. Урысону оттиск с дарственной надписью «ПСУ от ПСА».

П.С. Александров, один из отцов современной топологии был человеком необычайным. Он, например, мог без малейших затруднений произнести длинную цитату из «Фауста» (в оригинале, конечно) во время заседания Учёного Совета (несомненно, заседания эти довольно часто давали повод вспомнить и о Фаусте и о Мефистофеле). Однажды, в середине 60-х годов я был на публичной лекции П.С. о геометрии, каковую он, разумеется, трактовал во французском духе, то есть очень широко. Большая аудитория на первом этаже Главного Здания МГУ была заполнена математиками и прочей университетской публикой. Лекция развивалась блестяще, но в середине её послышался шум в дверях, и после секундного замешательства в зал ворвалась целая армия фото-, теле– и кино-корреспондентов. За ними в окружении группы людей неопределённой профессии и в штатском появился Ректор Университета И.Г. Петровский с Президентом Франции Де Голлем, наносившим в те дни официальный визит в Москву. И Петровский и Де Голль сделали в сторону П.С. жест, смысл которого на всех языках был: «Ради Бога, извините, и не обращайте на нас внимания...» П.С. мгновенно перешёл на французский язык и продолжил вдохновенный рассказ о теории размерности. Гости внимательно слушали из своего первого ряда. Но минут через десять Петровский извинился, прервал лекцию, и П.С. уступил кафедру Де Голлю. Президент в свою очередь извинился и обратился к собравшимся с небольшой речью, в которой он выразил сожаление, что из-за недостатка времени лишен возможности дослушать великолепную лекцию академика Александрова, что он крайне признателен и лектору и Ректору за эту возможность говорить в стенах столь прославленного заведения и т.д. Затем Де Голль и Ректор направились к выходу, а за ними и вся толпа исчезла также быстро, как и явилась. Я, признаться, в этот момент подумал, что, видимо, политика и политики всё же меняются со временем: Наполеон наверняка дослушал бы такую лекцию до конца [vii] .

По-видимому, П.С. мог быть и довольно колючим. На одном из этажей мех-мата висела большая картина, выполненная в лучших традициях социалистического реализма. Картина изображала встречу «Всероссийского старосты» М.И. Калинина с преподавателями мех-мата в тридцатых годах. Вся сцена дышала благолепием, вокруг головы Калинина почти различался нимб. В одном из первых рядов узнавался молодой Александров, видимо задававший лидеру партии и правительства какой-то вопрос. Старожилы любили вспоминать этот вопрос. Дело в том, что туалетов в старом здании мех-мата на Моховой не хватало, и были они в плачевном состоянии. (Об этом, кстати, пишет и Люстерник [3]). Вот Павел Сергеевич и спросил Калинина, не мог бы тот содействовать устройству дополнительного туалета для преподавателей. Калинин, с удовольствием отвечавший на общие вопросы о постановке высшего образования в СССР, о роли науки в коммунистическом воспитании и т.д., рассердился и посоветовал П.С. обратиться к завхозу.

Большим успехом пользовались музыкальные вечера, которые П.С. регулярно устраивал в студенческих общежитиях. Из его огромной коллекции извлекались редкие диски; прослушивания обыкновенно предварялись небольшой его речью. Должен сказать, что я никогда не встречал человека с таким потрясающим красноречием[viii][8]
  Из ораторов, которых я слышал, пожалуй, только И.Г. Эренбург, В.А. Успенский и Б.В. Гнеденко приближались к П.С.


[Закрыть]
. Речь П.С. была великолепно организована, она текла плавно, красиво, без малейших затруднений. Сюжеты, образы, ассоциации рождались сами собой. Однажды на моих глазах П.С. абсолютно плавно, я бы сказал аналитически, перешел от Брамса[ix][9]
  Вкусы П.С. Александрова, насколько я могу судить, были несколько консервативны. Некоторые из его учеников утверждали, что для П.С. музыка на Брамсе заканчивалась.


[Закрыть]
к аморальности бактериологического оружия, а затем столь же плавно возвратился к Брамсу. Мне довелось также несколько раз присутствовать при публичных выступлениях П.С., основанных на его персональных воспоминаниях. Эти его рассказы производили впечатление чуда: на глазах оживали такие имена, как Гильберт, Хаусдорф, Брауэр, Нётер... Не могу удержаться, чтобы не попытаться воспроизвести здесь один из живых рассказов П.С. Речь шла о семестре, проведённом им в Гёттингене, если я не ошибаюсь, в середине 20-х годов. П.С. читал лекции по юной тогда теретико-множественной топологии, параллельно другой математический курс читался Н.Винером, также гостившим в Гёттингене. П.С. был необычайным лектором, Винер же, будучи выдающимся математиком, видимо не был самым лучшим педагогом. Во всяком случае, студенты перемещались от него к П.С., пока у Винера почти никого не осталось. Отношения между молодыми математиками натянулись, так как Винер, видимо, приписывал происходившее проискам П.С. и даже жаловался в Министерство Просвещения. По традиции, все гостившие в Гёттингене учёные наносили визиты местным профессорам. Когда подошла очередь Э. Нётер, Винер попросил её назначить время визита. «Ну, приходите, скажем, завтра часов в семь» ответила Нётер, не особенно интересовавшаяся формальностями. На следующее утро, ровно в 7 утра П.С. (а он жил в доме Нётер) был разбужен настойчивым стуком в дверь. Полагая, что произошло какое-то недоразумение с молочницей, менявшей по утрам пустую бутылку за дверью на бутылку с молоком, П.С., как был, в трусах, прошёл к двери, отпер её, приоткрыл и выглянул наружу... В этот момент рассказа на лице П.С. появился ужас, совершенно не утративший своей свежести за прошедшие полвека. «Вообразите! За дверью стоял Винер во фраке!»

Однажды я выступал на защите кандидатской диссертации в качестве оппонента. Речь шла о теореме Жордана для конструктивной плоскости. Я упомянул, среди прочего, и давнюю работу Брауэра, рассматривавшую аналогичную проблему с интуиционистской точки зрения. Работу эту было нелегко читать. При упоминании о Брауэре П.С. оживился, стал задавать мне вопросы. Видно было, что само имя Брауэра связано для него с самыми живыми воспоминаниями. «Да, Брауэр был великий геометр, его геометрическая интуиция была необычайной. Видимо, поэтому работы его трудно читать» – заключил П.С. этот врезавшийся мне в память разговор.

Последний раз я слышал публичное выступление П.С. в середине 70-х годов опять-таки на кандидатской защите. Представленная работа относилась к математической лингвистике и подводила итоги многолетних исследований автора, видного специалиста в этой дисциплине. К тому времени в советской математике отчётливо сформировалось то, что А.А. Марков однажды в беседе со мной назвал «царством тьмы». В этом царстве были представлены самые разные личности, течения, человеческие слабости. Частично это был обычный конфликт поколений, частично бесталанные личности, использующие комсомольские и партийные каналы в карьерных целях[x][10]
  Я припоминаю одного колоритного студента из отделения механики. Перемежая двойки и тройки, он буквально приполз к своему диплому. Зато его комсомольская энергия била через край. В 80-е годы его можно было видеть на самых высоких постах в Университетской иерархии.


[Закрыть]
, частично талантливые и очень талантливые люди, также не брезговавшие упомянутыми каналами, частично националисты и т.д. В данном случае национальность диссертанта была безупречной (как и диссертация), зато работа была выполнена на кафедре математической логики, возглавлявшейся А.А. Марковым, и, сверх того, в деле имелся положительный отзыв А.Н. Колмогорова. Последнее обстоятельство, видимо, играло роль красной тряпки для упомянутой выше публики. Уже в те годы наметилась тенденция, усилившаяся позже, пренебрежительно относиться к отзывам, предложениям и т.д., подписанным Колмогоровым. Не рискуя прямо атаковать стареющего гиганта, многочисленные моськи вдоволь лаяли за спиной. Будет ли им когда-нибудь стыдно?  Хочется надеяться...

И в этот раз диссертация была атакована двумя представителями темного царства, хорошо известными в Московском Университете[xi][11]
  Один из них, мой однокурсник, талантливый и совершенно беспринципный человек, проделавший головокружительную карьеру, включавшую азартные карточные игры, комсомольскую, партийную работу, работу в администрации Университета и вполне профессиональную математическую работу. Другой был видным специалистом в теории чисел.


[Закрыть]
. За нападавшими стояла молчаливая и хорошо управляемая группа членов Учёного Совета. Совершенно неожиданно для меня в поддержку диссертации выступил известный геометр, один из представителей старшего поколения П.К. Рашевский. Тема диссертации была крайне далека от его интересов, но молчать перед лицом явного разбоя он не мог.

Надо сказать, что один из нападавших, скажем X, демагогически требовал, чтобы диссертант объяснил ему сложные построения в формальных грамматиках за минуту, «на пальцах». П.С. Александров взял слово. У меня упало сердце, когда я увидел его сгорбленную небольшую фигуру, печальные глаза за огромными стёклами очков. Речь не была длинной.

– Мне довелось знать Брауэра – сказал П.С. – и я могу утверждать, что если бы X потребовал от него показать «на пальцах», почему, скажем, трёхмерное образование не может быть топологически отображено на двухмерное, Брауэр, великий Брауэр отказался бы отвечать на такой вопрос X.

Сопоставление имён Брауэра и X прозвучало убийственно!

Не могу не вспомнить здесь слова, сказанные Александровым у гроба одного из его коллег: «Когда я умру, и вы будете меня хоронить, прошу, не говорите, что я был «принципиальным», «принципиальность» – суррогат живых человеческих чувств...» И когда день пришел, на панихиде Александрова этих слов не говорили. Было море цветов, музыки, боли, несколько поколений учеников, коллег, друзей... Был Колмогоров, которого подвели, поддерживая, к гробу Синай и Арнольд, и который пытался, победив болезнь, поразившую  речь его, сказать последнее «прости» другу своей жизни, великому человеку и великому учёному...

3. В.А. Успенский производил и производит сильное впечатление своей артистической манерой чтения лекций и всем своеобразием своей личности. В 1966 или 1967 году в Московском Университете были организованы курсы для учителей математики средних школ. Большое количество учителей со всей страны приехало  в Москву. Успенский прочёл несколько лекций по математической логике, а аспиранты кафедры вели вслед за ним семинарские занятия. На первой же лекции В.А. совершенно ошеломил свою своеобразную аудиторию. Я видел изумлённое восхищение на многих лицах: «Неужели о математике можно говорить так интересно?!». Объясняя, почему импликацию с ложной посылкой целесообразно считать истинной (что, по меньшей мере, неочевидно), В.А. приводил примерно такое рассуждение.

– Представьте себе, что я сказал: «провалиться мне на этом месте, если я вру!» Это значит «если я вру, то я провалюсь». Импликация. Убедительная сила подобных высказываний состоит в том, что они предполагаются истинными. Но ведь посылка-то ложна! Смотрите – В.А. осторожно (дело было на 16 этаже!) попробовал пол ногою – я же не проваливаюсь!

На следующий день я не без содрогания, остро чувствуя свои 25 лет, вошёл в класс, заполненный учителями, в том числе и хрестоматийными убелёнными сединами учительницами. Тут уж мне действительно хотелось сквозь пол провалиться. Аудитория, однако, оказалась крайне доброжелательной. В один момент, когда в задних рядах было особенно шумно (слушатели были заметно возбуждены предстоящей экскурсией по Москве) я остановился и укоризненно посмотрел в аудиторию. Стало тихо, а потом мы все и я, молодой аспирант, и закалённые в сражениях с второгодниками воины педагогического фронта дружно засмеялись. Я пытался рассказать что-то из алгебры логики, но слушатели упорно возвращались к одной и той же теме: Успенский. Сколько ему лет, как долго он занимается математикой... Кто-то даже спросил, женат ли он. Пришлось прочесть маленькую лекцию о Владимире Андреевиче, что я сделал не без удовольствия.

В начале 60-х годов я начал посещать семинар В.А.Успенского по вычислимым функциям. Помню, как на одном из первых же заседаний, В.А., будучи не в состоянии ответить на какой-то вопрос из аудитории, прямо заявил: «Я знаю, что этот семинар рискует потерять всех своих участников из-за тупости руководителя, но я всё-таки не знаю, что Вам ответить!» После каждого заседания слушателям предлагались задачи, и каждый раз в начале семинара задавался всё тот же ритуальный вопрос: «Кто решил задачи?» При этих словах мы дружно поворачивались в дальний правый угол комнаты, куда смотрел  и В.А.. А там высоко тянул руку, широко улыбаясь, человек богатырского сложения.

– Ну, конечно ты, Саша! – заявлял Успенский, –  Ну а кто ещё? Неужели никто?!

«Сашей» был выдающийся математик Александр Владимирович Кузнецов, одна из самых ярких и всеми любимых личностей среди советских математических логиков. Самородок, не имевший даже формального среднего образования, А.В. Кузнецов занимался широким кругом проблем математической логики, всегда  был окружён молодёжью и оставил после своей безвременной смерти в 1984 году[xii][12]
  А.В. Кузнецов родился 28 октября 1926 года и умер 24 июля 1984 года.


[Закрыть]
своеобразную и значительную школу. Доброжелательный, спокойный, с удивительной плавной, распевной манерой речи, он иногда вдруг вспыхивал, подчас в очень неподходящих ситуациях. Я помню, что уже после переезда А.В. в Кишинёв, в один из его наездов в Москву у него случился острый, чтобы не сказать больше, конфликт с офицером милиции, изводившим его придирками из-за прописки. В приступе гнева А.В. сорвал с милиционера погоны. Пострадавший позже особенно возмущался из-за того, что он буквально накануне получил из пошивки совершенно новое обмундирование. Последовало формальное разбирательство и всё могло бы кончиться крайне плачевно, если бы не энергичное вмешательство Маркова и Колмогорова.

А.В. имел свои милые слабости. Однажды он делал длинную серию докладов (об интуиционистских аналогах штриха Шеффера) на семинаре Маркова и Нагорного в Вычислительном Центре АН СССР.  Заседания начинались формально ровно в 11 утра, но А.В. неизменно и с точностью часового механизма появлялся в 11.40. Когда это случилось первый раз, А.В. пространно извинялся и говорил, что ему помешало ... Солнце! Действительно, великолепное, чистое, зимнее московское Солнце рвалось в окно, А.В. щурился с удовольствием... И вправду, до штриха ли Шеффера в такой день? Каждый следующий раз, когда А.В. открывал рот, чтобы приступить к извинениям за очередное сорокаминутное опоздание, Марков опережал его: «Это было Солнце!» торжественно заявлял он. Все смеялись. Удивительная, солнечная атмосфера была на этих докладах А.В. Кузнецова! Говорил и писал А.В. плавно, часто возвращался к уже сказанному, почти половина времени уходила на напоминание изложенного на предыдущем семинаре. Никто не возражал: все были покорены гармоничностью и глубиной его результатов, цельностью его стиля и личности. Это было, как с хорошей книгой, читаешь её,  читаешь и не по себе становится, что меньше и меньше остаётся страниц и всё ближе расставание с её миром... Оставалась правда загадка «кванта опоздания», таинственных сорока минут, повторявшихся с настойчивостью Закона Природы. Проблему решил Н.М. Нагорный.  «Всё очень просто. От дома А.В. до Вычислительного Центра ровно 40 минут пешком. Семинар начинается в 11, следовательно, ровно в 11 А.В. выходит из дому!»

При всей своей основательности, неторопливости А.В. имел отличную реакцию, ценил чувство юмора в других и обладал им сам. В одном из только что упомянутых докладов он по какому-то поводу сказал

– А здесь я буду рассуждать конструктивно! –

– Как же так? Вы же классик! – не без ехидства заметил Марков.

– Ну, знаете, с волками жить, по-волчьи выть! – мгновенно и к всеобщему удовольствию нашёлся А.В.

Добродушие А.В. иногда принималось за наивность. Напрасно. Он был человеком огромного, острого ума, артистической личностью. На Первой Всесоюзной Конференции (Симпозиуме) по Математической Логике в Алма-Ате в июне 1969 года часовой обзорный доклад был сделан одним из лидеров молодой тогда советской школы в математической кибернетике (позже вошёл в употребление термин «дискретная математика»). Лидер этот, без сомнения человек незаурядный, со сложной судьбой, к сожалению, всё больше и больше увлекался внематематическими манёврами, борьбою за власть... Впоследствии его школа почти в полном составе дружно влилась в «царство тьмы». Доклад показался мне несколько странным. Речь шла, если я не ошибаюсь, об оценке числа предполных классов в многозначных логиках. В центре изложения была давняя кандидатская диссертация докладчика, а также впечатляюшие результаты Розенберга (I. Rosenberg), анонсированные в Докладах Французской Академии Наук. После этой публикации ряд результатов Розенберга был, как выражался докладчик, «независимо» доказан в его школе. Следует сказать, что А.В. Кузнецов был одним из пионеров теории многозначных логик, открывшим фундаментальную теорему о конечности числа предполных классов в конечно-значных логиках. Отдавая должное Кузнецову, докладчик, однако, справедливо заметил, что Кузнецов не указал явного перечня предполных классов для трехзначной логики. Такое описание было найдено докладчиком. На следующий день конференция закрывалась. Было много формальных и неформальных выступлений. Пришёл черёд А.В. Он вышел к кафедре, поглядел в большой амфитеатр аудитории. Южное Алма-Атинское Солнце пробиралось через далёкие, узкие окна у самого потолка и играло на его лице. А.В. с явным удовольствием щурился. У него и в самом деле были особые, персональные отношения с Солнцем! А.В. начал говорить в своей обычной, добродушной, несколько убаюкиваюшей манере, продолжая улыбаться Солнцу.

– Конференция была интересной, очень интересной. Большой успех. Очень интересно. Я услышал много замечательных докладов. Но самый понятный доклад сделал вчера Х. Давно я не слышал такого понятного доклада. Да, конечно, я не посчитал предполных классов в трёхзначной логике. Софья Александровна[xiii][13]
  С.А. Яновская (1896 – 1966), выдаюшийся специалист в математической логике и философии математики. Один из организаторов кафедры математической логики в Московском Университете. О её роли в предвоенной математической жизни интересно вспоминает Люстерник [3]. В мои студенческие и особенно аспирантские годы Софья Александровна уже страдала тяжёлой болезнью. Тем не менее, она продолжала читать свой традиционный курс математической логики и соруководить научно-исследовательским семинаром кафедры. С.А. до самого конца сохраняла острый интерес ко всему новому в математике. В один из весенних дней 1966 года я провожал её домой. Прощаясь, она сказала, что эта весна для неё последняя, что она уже не слышит запахов этой весны... 25 октября того же года её не стало. (См. также мои воспоминания Boris A. Kushner, Sof'ja Aleksandrovna Janovskaja: a few reminiscences, Modern Logic, vol.6, no.1, 67–72, January 1996. Русский перевод публиковался в журналах Вопросы естествознания и техники, т.4, стр. 119–123, Москва, 1996 (под названием «Несколько воспоминаний о Софье Александровне Яновской») и Вестник  №14 (273), Baltimore, July 3, 44-46, 2001 (под названием «Мои воспоминания о Софье Александровне Яновской»)  – прим. 2004 г.).


[Закрыть]
говорила мне тогда: «Саша, посчитай классы!» А я не посчитал! – здесь А.В. с полным удовольствием зажмурился и погрузил лицо своё в тёплый солнечный свет... –  Я...поленился!

Задевать А.В., как видно, было небезопасно.

4. Когда в 1961 или в 1962 году, будучи студентом мех-мата, я выбрал специализацию по кафедре математической логике (ср.[5]),интерес к философии и основаниям математики был одним из мотивов. Тогда же я сделал доклад об интуиционистской математике на семинаре по истории математики, а несколько позже на семинаре по математической логике и конструктивной математике (под руководством А.А. Маркова и Н.М. Нагорного). Основным источником моей эрудиции в то время были две небольшие книжки Вейля и Гейтинга [6–7], переведённые ещё до войны известным историком математики А.П. Юшкевичем. Из интересных воспоминаний Юшкевича о Колмогорове [8] можно узнать, что Колмогоров был инициатором этих великолепно выполненных переводов (в то время я ещё пребывал в блаженном неведении трудностей, с которыми сталкивается переводчик подобных работ, особенно в случае автора со столь ярким литературным талантом, как Г. Вейль).  Тогда же я прочёл и две ранние работы (1925 и 1932 года, [9–10]) Колмогорова, посвящённые интуиционистской логике. Содержание этих работ детально охарактеризовано в обзорной статье Успенского [1]. Трудно удержаться от изумления, думая о работе 1925 года. Написанная 22-летним студентом, работа эта отличается огромной зрелостью и намного лет опережает современный юному автору уровень науки. В работе ясно чувствуется творческий почерк колмогоровского таланта: постановка проблем, глубоко мотивированных философски, огромная мощь в разработке необходимого концептуального и технического аппарата, в преодолении конкретных математическиз трудностей. Достаточно сказать, что в этой студенческой публикации впервые предпринято математическое изучение интуиционистской логики, сформулированы аксиоматические системы для этой логики, предвосхищающие гораздо более позднюю аксиоматизацию интуиционистской математики, выполненную А. Гейтингом. Здесь же по существу (с точностью до технических деталей) впервые построено так называемое минимальное исчисление, переоткрытое в 1937 году Иохансоном (которому принадлежит и сам термин). Ещё более важной представляется мне изобретённая Колмогоровым идея погружения классической математики в интуиционистскую, в результате чего становится возможным доказательство непротиворечивости классической математики относительно интуиционистской. С этой целью предложена и первая из известных ныне погружаюших операций, основанная на глубоком проникновении в природу математического оперирования с отрицанием. Сама идея о том, что интуиционистская математика только по видимости уже классической могла быть высказана в то время только пророком. Только в 1933 году эти идеи были переоткрыты К. Гёделем. Вся описанная только что проблематика подсказана глубокими философскими проблемами, связанными с законом исключённого третьего. После критики Брауэра сомнительность этого логического принципа в применении к бесконечным совокупностям ощущалась рядом математических мыслителей, в частности Д. Гильбертом и Г. Вейлем.  Не чужды были эти сомнения и Колмогорову. Во всяком случае, 22-летний студент (в отличие от многих своих старших коллег) ясно ощущал вызов, заключённый в вопросе: почему сомнительность или даже незаконность неограниченного употребления принципа исключённого третьего так долго оставалась незамеченной и почему такое неограниченное употребление не приводит к противоречиям[xiv][14]
  Как хорошо известно, принцип исключённого третьего не несёт ответственности за парадоксы теории множеств.


[Закрыть]
.



А.А. Марков и Б.А. Кушнер, Москва, 1979 год

Ответ Колмогорова на этот вызов вкратце состоит в следующем. Во-первых, употребление закона исключённого третьего вполне оправдано в случае конечных совокупностей, т.е. в области финитарных суждений. Во-вторых, имеет место гораздо более сильное обстоятельство: если бы противоречие было найдено в классической теории, свободно оперируюшей с принципом исключённого третьего, то противоречие существовало бы и в одноимённой интуиционистской теории, в которой использование этого принципа ограничено только безопасными финитными случаями. Иными словами, принцип исключённого третьего не добавляет новых противоречий. И если в первом положении чувствуется заметное влияние Гильберта, то вторая идея (погружения классической математики в интуиционистскую) представляется ошеломляюще новой. Техническим аппаратом для реализации такого погружения оказывается концепция формализации математических теорий, разработанная Гильбертом, и идея погружающей операции, открытая Колмогоровым. Помимо оправдания употребления закона исключённого третьего (важнейшего математического орудия с самых древних времён) подход Колмогорова доставляет, очевидно, и определённое обоснование нашей замечательной, но, как и всё замечательное, не вполне безопасной способности оперировать с актуальной бесконечностью. Классическая математика с её актуально бесконечными множествами погружается в математический мир, где бесконечность допускается лишь в своей гораздо более мягкой, потенциальной форме.


    Ваша оценка произведения:

Популярные книги за неделю