355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воронцов-Вельяминов » Звёздный мир » Текст книги (страница 2)
Звёздный мир
  • Текст добавлен: 20 сентября 2016, 19:28

Текст книги "Звёздный мир"


Автор книги: Борис Воронцов-Вельяминов



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

Сколько звезд на небе?

Когда вы отправляетесь блуждать по незнакомому городу, вам полезен его план. Когда вы отправитесь блуждать по звездному небу, вам будет полезна карта звездного неба.

В древности под созвездием понимали группу ярких звезд, характерных своим взаимным расположением, составляющих какую-либо фигуру, если эти звезды мысленно соединить прямыми линиями. Однако почти никогда мы не видим в этих характерных фигурах сходства с теми предметами, именами которых древние астрономы эти фигуры называли.

Сейчас под созвездием понимают целую область на небе внутри определенных границ. К созвездию относят все звезды, которые видны в этой области неба. Однако в пространстве, если для простоты границы созвездия принять за круг, созвездие заключает все звезды, находящиеся внутри конуса с вершиной в нашем глазу и с образующими, проведенными к границам созвездия. Некоторые из звезд данного созвездия в пространстве дальше от своих соседок по созвездию, чем от звезд, видимых нами в совсем противоположной стороне неба.

Два тысячелетия тому назад ввели разделение звезд по блеску на шесть групп, на шесть звездных величин. Самые яркие (их около двадцати) назвали звездами первой величины, более слабые – звездами второй величины, а те, которые едва видимы невооруженным глазом, – звездами шестой величины. Чем звезда ярче, тем ее звездная величина меньше. Удивляться такому разделению звезд по их яркости нечего. Никого ведь не удивляет, что самые крупные плоды относят к первому сорту, менее крупные – ко второму сорту и т. д.

По сравнению со звездами первой величины звезды шестой величины в сто раз слабее. Видимые в бинокль звезды седьмой и восьмой величины соответственно в два с половиной и в шесть раз еще слабее.

Присмотритесь к звездному небу, разыщите на нем с помощью звездной карты созвездия, и вы скоро убедитесь, как легко ориентироваться на небе, держать на учете все звезды, видимые невооруженным глазом.

Их всего около шести тысяч, а сразу над горизонтом их видно только около трех тысяч. Если мы говорим «около», то лишь потому, что острота зрения и прозрачность воздуха бывают различными. В списки занесены и помечены на картах не только все эти звезды, но и множество более слабых.

С уменьшением яркости звезд число их растет.

Так сказать, «поштучно» сосчитаны и занесены в каталоги, а также на карты все звезды ярче одиннадцатой звездной величины. Число звезд более слабых мы тоже знаем, но уже не так точно, да это и не столь важно.

В результате подсчет числа звезд ярче данной предельной звездной величины можно представить следующей таблицей:

Итак, мы держим на строгом учете почти миллион звезд, а всего доступно нашему наблюдению около двух миллиардов звезд. Число внушительное.

Как далеки звезды?

Вы знаете, конечно, что наш земной шар за год обегает крутом Солнца, держась от него на расстоянии 150 миллионов километров. Знаете вы и то, что, кроме Земли, ряд подобных ей небесных тел, называемых планетами, тоже обращается вокруг Солнца, образуя солнечную систему. Самая далекая из известных планет – Плутон – в сорок раз дальше от Солнца, чем Земля. Солнце освещает и согревает Землю и другие такие же холодные и темные планеты.

За пределами солнечной системы к звездам приходится сделать такой большой скачок в расстоянии, что он удался всего лишь столетие назад, гораздо позднее, чем исчезли сомнения в подобии между Солнцем и звездами. Измеритель морских глубин – лот – в области астрономии неоднократно бросался в направлении разных звезд и долго не мог достигнуть ни одной из них, не мог достигнуть «дна».

И вот всего лишь только столетие назад известному русскому астроному В. Струве одновременно с другими учеными, работавшими за границей, удалось произвести достаточно точные измерения и впервые установить расстояние до некоторых звезд. Чувство, испытанное при этом современниками, напоминает радость моряков, которые при долгом плавании безуспешно бросали лот и наконец достали им до дна.

Способ определения расстояния до звезд состоит в точном определении направления на них (то есть в определении их положения на небесной сфере) с двух концов диаметра земной орбиты. Для этого надо определить направление на звезду в моменты, отделенные друг от друга полугодом, так как Земля за это время сама переносит с собой наблюдателя с одной стороны своей орбиты на другую.

Кажущееся смещение звезды, вызванное изменением положения наблюдателя в пространстве, чрезвычайно мало, едва уловимо.

Самой близкой к нам звездой можно считать звезду первой величины Альфа Центавра, не видимую в СССР, хотя одна близкая к ней, не видимая невооруженным глазом звездочка оказывается еще на 1 процент ближе. Кажущееся смещение звезд измерено с точностью до 0,01''.

Под углом около 0,01'' нам представляется поперечник копейки, если ее поставить на ребро на Красной площади в Москве и рассматривать из Тулы или из Рязани. Вот какова точность астрономических измерений! Под углом в 0,01'', говоря точнее, видна линейка, на которую смотрят под прямым углом с расстояния, в 20 626 500 раз большего, чем длина линейки.

Большие расстояния удобнее выражать в световых годах, т. е. в тех расстояниях, которые свет, распространяясь со скоростью 300 000 км/сек, пробегает за год.

С помощью описанного способа и других можно определять расстояния до звезд, отстоящих гораздо дальше чем на триста световых лет. Свет звезд некоторых далеких звездных систем доходит до нас за сотни миллионов световых лет. Это вовсе не значит, как часто думают, что мы наблюдаем звезды, может быть уже не существующие сейчас в действительности. Не стоит говорить, что «мы видим на небе то, чего в действительности уже нет». В самом деле, подавляющее большинство звезд изменяется так медленно, что миллионы лет назад они были такими же, как сейчас, и даже видимые места их на небе меняются крайне медленно, хотя в пространстве звезды движутся быстро. Таким образом, звезды, какими мы их видим, в общем являются такими же и в настоящее время.

Движение неподвижных звезд

В отличие от блуждающих светил – планет, звезды созвездий некогда назвали неподвижными. Между тем неподвижного в мире ничего быть не может. Чтобы заметить перемещение звезд на небе относительно друг друга, надо сравнивать точные определения их положения на небе, сделанные с промежутком времени в десятки лет. Невооруженным глазом они не заметны, и за историю человечества ни одно созвездие не изменило заметно своих очертаний.

Для большинства звезд никакого перемещения заметить не удается, потому что они слишком далеки от нас. Всадник, скачущий карьером на горизонте, как нам кажется, почти стоит на месте, а черепаха, ползущая у наших ног, перемещается довольно заметно. Так и в случае звезд – мы легче замечаем движения ближайших к нам звезд.

Вследствие обращения Земли вокруг Солнца наблюдателю с нее кажется, что в течение года звезды описывают на небе замкнутые кривые линии аб тем меньших размеров, чем звезда дальше от Земли.

Летящая звезда Барнарда – так назвали одну слабенькую звездочку, изученную Барнардом, за ее наиболее заметное среди звезд движение по небу – движется, если хотите, даже не черепашьим шагом, а еще медленнее. За год она «пролетает» по небу дугу в 10'', т. е. чтобы переместиться на видимую величину поперечника Луны (0,5°), ей потребуется более сотни лет. Если ее сфотографировать большим московским астрографом, дающим крупный масштаб, то изменение за год ее положения среди звезд на фотографии составит меньше одного миллиметра. Однако по сравнению с другими звездами это действительно «летящая звезда».

Как ни ничтожны угловые перемещения звезд на небе, называемые собственными движениями, они соответствуют огромной скорости в пространстве, если вспомнить огромность расстояния, с которого мы их видим.

У нас есть еще другая возможность изучать движения звезд – по принципу Допплера: измеряя смещение линий в их спектрах. Скорости звезд, подробно изученные советским астрономом П. П. Паренаго, составляют обычно десятки километров в секунду. Наибольшую из них (583 км/сек) имеет одна слабая звезда в созвездии Голубя.

Правила звездного движения

Первый вопрос, который сразу же встает при изучении движений звезд, – это вопрос, есть ли какая-нибудь закономерность в звездных движениях. Есть ли дороги в нашем звездном городе, по которым движется звездное население, регулируется ли как-либо это движение? Если такое регулирование есть, то роль милиционера в нем играет, конечно, закон всемирного тяготения. Некоторые группы звезд движутся в пространстве параллельно и с одинаковой скоростью, будучи связаны взаимным тяготением и общностью происхождения. Такова, например, группа слабых звезд вокруг Альдебарана в созвездии Тельца, называемая Гиадами. Такова группа из пяти ярких звезд Большой Медведицы, самой яркой звезды неба – Сириуса, а также некоторых других звезд, видимых в разных частях неба.

Кроме таких групповых движений, все звезды принимают участие в сложном вращении вокруг центра тяжести всей нашей звездной системы. Это движение изучалось астрономами П. Г. Куликовским в Москве, К. Ф. Огородниковым – в Ленинграде и другими.

Изучая эти средние систематические движения звезд, являющиеся отражением движения всей солнечной системы, мы приходим к заключению, что она со скоростью 20 км/сек несется в направлении созвездия Лиры. Это ее движение по отношению к сравнительно близким звездам, взятым в совокупности.

Так движение Земли вокруг Солнца, складываясь с движением солнечной системы в пространстве, дает движение по винтовой линии.

Оно сказывается в изменении видимого положения звезд, подобно тому как меняется для вас видимое положение коров в пасущемся стаде, если вы пойдете через него насквозь. Скорость солнечной системы в этом движении того же порядка, что и собственные скорости звезд. Нечего опасаться, что, летя к созвездию Лиры, мы «на него налетим и разобьем его в куски». Скорее можно было бы опасаться, что пуля, пущенная вверх, «в воздушный флот», разобьет его.

Созвездие Лиры – лишь направление, по которому видно множество звезд. Пространство между ними так же просторно, как и пространство между звездами, окружающими Солнце сейчас. Звезду от звезды отделяют световые годы. Если у вас есть охота, попробуйте подсчитать, через сколько лет мы приблизимся вдвое к яркой звезде Веге в созвездии Лиры, если до нее 25 световых лет, а наша скорость 20 км/сек.

Так постепенно удается разобраться в кажущемся хаосе многочисленных движений звезд в нашей вселенной и уточнить картину, нарисованную поэтом:

 
Небесный свод, горящий славой звездной,
Таинственно глядит из глубины.
И мы плывем, пылающею бездной
Со всех сторон окружены.
 
Тютчев

Светимости звезд

Где-то в море в ночной тьме тихо мерцает огонек, и если бывалый моряк не объяснит вам, что это, вы часто и не узнаете: то ли перед вами фонарик на носу проходящей шлюпки, то ли мощный прожектор далекого маяка.

В том же положении в темную ночь находимся и мы, глядя на мерцающие звезды. Их видимый блеск зависит и от их истинной силы света, называемой светимостью, и от их расстояния до нас. Только знание расстояния до звезды позволяет подсчитать ее светимость по сравнению с Солнцем. Так например, светимость звезды, в десять раз менее яркой в действительности, чем Солнце, выразится числом 0,1.

Истинную силу света звезды можно выразить еще иначе, вычислив, какой звездной величины она бы нам казалась, если бы она находилась от нас на стандартном расстоянии в 32,6 светового года, т. е. на таком, что свет, несущийся со скоростью 300 000 км/сек, прошел бы его за это время. Принять такое стандартное расстояние оказалось удобным для различных расчетов. Яркость звезды, как и всякого источника света, изменяется обратно пропорционально квадрату расстояния. Этот закон позволяет вычислять абсолютные звездные величины или светимости звезд, зная расстояние до них.

Когда расстояния до звезд стали известны, то мы смогли вычислить их светимости, то есть смогли как бы выстроить их в одну шеренгу и сравнивать друг с другом в одинаковых условиях. Надо сознаться, что результаты оказались поразительными, поскольку раньше предполагали, что все звезды «похожи на наше Солнце». Светимости звезд оказались поразительно разнообразными, и их в нашей шеренге не сравнить ни с какой шеренгой пионеров.

Приведем только крайние примеры светимости в мире звезд.

Самой слабой из известных долго являлась звезда, которая в 50 тысяч раз слабее Солнца, и ее абсолютная величина + 16,6. В 1944 году открыта звездочка еще в двадцать раз более слабая. Она в миллион раз слабее Солнца!

На другом краю шеренги звезд стоит S Золотой Рыбы, видимая только в странах Южного полушария Земли как звездочка восьмой величины. В действительности она в 400 тысяч раз ярче Солнца, и ее абсолютная величина —8,9. Абсолютная величина нашего Солнца равна +5, т. е. с расстояния в 32,6 светового года мы бы его плохо видели без бинокля.

Если яркость обычной свечи принять за яркость Солнца, то в сравнении с ней S Золотой Рыбы будет мощным прожектором, а самая слабая звезда слабее самого жалкого светлячка.

Итак, звезды – это далекие солнца, но их сила света может быть совершенно иной, чем у нашего центрального светила. Менять наше Солнце на другое нужно было бы с оглядкой. От света одного мы ослепли бы, при свете другого бродили бы, как в сумерках.

Спектры-паспорта звезд

Луч света, проходящий через стеклянную призму, отклоняется в сторону от основания призмы, то есть преломляется, и после выхода из призмы идет уже по другому направлению. При этом лучи разного цвета преломляются различно. Из семи цветов радуги сильнее всего отклоняются световые лучи фиолетового цвета, в меньшей степени – синего, еще меньше – голубые лучи, затем – зеленые, желтые, оранжевые, меньше всего отклоняются красные лучи.

Свет распространяется волнами, и каждому оттенку и каждому цвету соответствует определенная длина волны световых колебаний.

Светящееся тело испускает разные лучи. Но так как они накладываются один на другой, то для глаза они сливаются в один цвет. Например, Солнце, как это мы видим, испускает лучи белого цвета, но если мы пропустим такой луч через призму и тем самым разложим его на составные части, то окажется, что белый цвет луча сложный: он состоит из смеси всех цветов радуги. Смешав эти цвета вместе, мы опять получим белый цвет. Это напоминает такой всем известный опыт. Если изготовить волчок из кружка картона и, расчертив его на полоски, раскрасить их чистыми красками всех цветов радуги, а волчок быстро завертеть, то краски на нем для глаза сольются, и волчок покажется не пестрым, а серым. При надлежащем подборе красок можно получить и белый цвет кружка.

После того как мы рассказали о свойствах призмы, уже можно сказать, что такое спектр. Спектром называется луч какого-нибудь источника света, пропущенный через призму и разложенный ею на свои составные части. Кстати сказать, радуга ведь образуется вследствие преломления солнечного света в капельках воды, действующих в данном случае подобно призме. Поэтому радуга и есть спектр солнечного света, или, короче говоря, спектр Солнца.

Для того чтобы получить спектр в более чистом виде, ученые пользуются не простой стеклянной призмой, а специальным прибором – спектроскопом.

Если мы осветим щель спектроскопа светящимися парами какого-нибудь вещества, то увидим, что спектр этого вещества состоит из нескольких цветных линий на темном фоне. Цвета линий для каждого вещества всегда одни и те же.

Изучая в лаборатории спектры различных химических элементов,[1]1
  И железо, и кислород, и ртуть принадлежат к числу так называемых химических элементов. Химическими элементами называются простейшие вещества, которые никакими химическими способами не могут быть разложены на составные частя. Атом есть мельчайшая частица такого химического элемента, а молекула – мельчайшая частица химического соединения или соединения вместе нескольких атомов.


[Закрыть]
мы можем записать, какие линии дает каждый элемент и какую яркость они имеют. А располагая таким списком линий при рассмотрении спектров разных веществ, мы сможем каждый раз точно определить, с каким же веществом мы имеем дело. Достаточно малейшей примеси какого-либо вещества в металлическом сплаве или в горной породе, и это вещество выдаст свое присутствие, заявит о себе цветным сигналом в спектре.

Смесь паров нескольких химических элементов, не образующих химического соединения, дает наложение их спектров один на другой. По таким спектрам мы и распознаем химический состав смеси. Если светятся не разложенные на свои составные части (на атомы) молекулы сложного химического вещества, т. е. химического соединения, то их спектр состоит из широких ярких цветных полос на темном фоне. Для всякого химического соединения эти полосы тоже всегда определенные, и мы их умеем распознавать.

Спектр в виде полоски, состоящей из всех цветов радуги, дают твердые, жидкие и раскаленные вещества, например нить электрической лампочки, расплавленный чугун и раскаленный прут железа. Такой же спектр дают огромные массы сжатого газа, из которого состоит Солнце.

Вскоре после того как в спектре Солнца были обнаружены темные линии, некоторые из ученых обратили внимание на такое явление: в желтой части этого спектра есть темная линия, которая имеет ту же длину волны, что и яркая желтая линия в спектре разреженных светящихся паров натрия. Что это означает?

Для выяснения вопроса ученые сделали опыт.

Был взят раскаленный кусок извести, дающий непрерывный спектр без всяких темных линий. Затем перед этим куском извести было помещено пламя газовой горелки, содержащей пары натрия. Тогда в непрерывном спектре, полученном от раскаленной извести (свет которой прошел через пламя горелки), появилась в желтой части темная линия. Стало ясно, что сравнительно более холодные пары натрия поглощают или задерживают лучи той же самой длины волны, какую эти пары сами по себе способны испускать.

Подобные опыты были повторены и с разными другими веществами. Таким образом было окончательно установлено следующее: светящиеся газы и пары поглощают свет тех самых длин волн, которые они сами способны испускать, будучи достаточно нагретыми.

Так вслед за первой тайной – причиной окрашивания пламени в тот или другой цвет парами определенных веществ – была раскрыта и вторая тайна: причина появления темных линий в солнечном спектре.

Очевидно, Солнце – раскаленное тело, испускающее, белый свет, спектр которого непрерывен – окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с той самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.

Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.

Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.

Именно по этому пути и пошли ученые. И они установили присутствие в солнечной атмосфере множества известных нам на Земле химических элементов. Среди них находятся газы – водород, азот; металлы – натрий, магний, алюминий, кальций, железо и многие другие. В 1942 году было обнаружено присутствие на Солнце золота, хотя и в небольшом количестве.

Спектры звезд, свет которых (собранный с помощью телескопа) тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.

Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.

Самый легкий из всех газов, из всех химических элементов – водород – составляет на Солнце 42 процента по весу. На долю кислорода приходится 23 процента по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе б процентов от состава солнечной атмосферы. И только б процентов приходится на все остальные элементы, вместе взятые.

Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.

Спектры звезд – это их паспорта с описанием всех звездных примет, всех их физических свойств. Надо лишь уметь в этих паспортах разобраться. Многое еще мы сумеем из них извлечь в будущем, но уже и сейчас мы читаем в них немало.

По спектру звезды мы можем узнать ее светимость (а следовательно, и расстояние до нее), температуру, размер, химический состав ее атмосферы (как качественный, так и количественный), скорость движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести.

Виды спектров: 1– непрерывный, в котором цвета переходят друг в друга, как в радуге; 2 – спектр поглощения: темные линии перерезывают непрерывный спектр; 3 – спектр излучения из ярких цветных линий.

Спектральный анализ дает ученым также возможность определять скорость движения светил к нам или от нас даже в тех случаях, когда эту скорость и вообще движение светил никакими другими способами обнаружить невозможно.

Если какой-нибудь источник колебаний, распространяющихся в виде волн, движется по отношению к нам, то, понятно, длина волны колебаний, воспринимаемая нами, меняется. Чем быстрее приближается к нам источник колебания, тем короче делается длина его волны. И наоборот, чем быстрее источник колебаний удаляется, тем длина волны по сравнению с той длиной волны, которую воспринял бы наблюдатель, неподвижный по отношению к источнику, увеличивается.

В качестве знакомого примера можно привести распространение звуковых волн, которые представляют собой колебательное движение молекул воздуха. Так называемая высота звука или высота данного тона зависит от длины волны звуковых колебаний. Чем короче длина волны звуковых колебаний, тем выше тон звука.

Легко заметить и такое явление. Когда вы стоите на полотне железной дороги и по направлению к вам быстро несется свистящий паровоз, то тон свистка повышается, а когда паровоз, промелькнув мимо вас, станет удаляться, тон понижается.

То же самое происходит и со светом, когда источник света – небесное светило – движется по отношению к нам. Когда светило приближается к нам, длина волны всех линий в его спектре становится короче. А когда источник света удаляется, то длина волны тех же самых линий становится больше. В соответствии с этим в первом случае линии спектра сдвигаются в сторону фиолетового конца спектра (то есть в сторону коротких длин волн), а во втором случае они смещаются к красному концу спектра.

Установлено, что между величиной сдвига линий со своего нормального положения, то есть между величиной изменения длины волны, и скоростью движения существует определенная зависимость. Благодаря этой закономерности мы можем, по данным об изменении длины волны линий в спектре небесных светил, определить скорость их движения к нам или от нас (в километрах в секунду).

Например, величина сдвига линий паров натрия в спектре светила определяется путем сравнения их положения с положением, которое эти линии занимают в спектре паров натрия, находящихся в лаборатории и неподвижных относительно спектроскопа.

Заслуга проверки на опыте закона сдвига линий спектра при движении источника принадлежит крупнейшему советскому ученому – академику А. А. Белопольскому. После его опытов в лаборатории отпали все сомнения в справедливости этого закона, высказывавшиеся некоторыми зарубежными учеными.

Скорости движения звезд измеряются десятками и сотнями километров в секунду, но о движениях их мы уже говорили.


    Ваша оценка произведения:

Популярные книги за неделю