355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Кровь: река жизни. От древних легенд до научных открытий » Текст книги (страница 12)
Кровь: река жизни. От древних легенд до научных открытий
  • Текст добавлен: 3 октября 2016, 20:21

Текст книги "Кровь: река жизни. От древних легенд до научных открытий"


Автор книги: Айзек Азимов


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 14 страниц)

Фосфолипиды – молекулы двойного действия. Жирная кислота растворяется в жире, а фосфорсодержащая группа – в воде. Это создало предпосылку для возникновения интересной теории, касающейся поведения клеточных мембран.

В мембранах клеток находятся как фосфолипиды, так и белки. Это известно точно. Фосфорсодержащая часть фосфолипидов, растворяясь в воде, вероятно, прочно присоединяется к белкам, также растворимым в воде, оставляя жирные кислоты на свободе.

Таким образом получается, что клеточная мембрана состоит из однородного вещества, возможно, с «водными» участками, через которые могут проходить растворимые в воде соединения, и «липидными» участками для прохождения растворимых в липидах веществ.

Если это так, то теория может объяснить действие различных гормонов. Некоторые из них, например инсулин и гормоны гипофиза, представляют собой естественные белки, растворимые в воде. Другие, например половые гормоны и гормоны коры надпочечников, являются липидорастворимыми веществами. В любом случае их молекулы способны связываться с клеточными мембранами и изменять их проницаемость.

Внутри клеток также присутствуют фосфолипиды, особенно в маленьких образованиях, расположенных в цитоплазме, в митохондриях. Именно в них углеводы и жиры расщепляются для получения энергии, и мне кажется вполне вероятным, что фосфолипиды помогают взаимодействию растворимых в воде ферментов и растворимых в жирах жирных кислот.

Фосфолипиды составляют всего 1 % или около того в организме. Однако их важность можно показать на следующем примере: организм никогда, ни при каких чрезвычайных обстоятельствах не прикасается к запасу фосфолипидов. Во время голодания организм сначала использует углеводы, затем жиры, а потом начинает жить на запасе белков. Но фосфолипиды остаются нетронутыми, хотя их энергетическая ценность выше ценности белков или углеводов. Вероятно, сжигание даже малой части фосфолипидов вызовет такие нарушения в работе организма, что если он выживет, то это уже будет хорошо.

Из вышесказанного ясно, как фосфолипиды помогают жирорастворимым веществам проникать сквозь клеточные мембраны и как они способствуют переработке этих веществ в клетке. Но как жирорастворимые вещества путешествуют в крови?

В конце предыдущей главы я подчеркнул важность плазменных белков как средства переноса витаминов, гормонов и других веществ с одного места в другое. Но плазменные белки растворяются в воде, поэтому они должны растворяться и в плазме. Как же тогда они переносят жирорастворимые гормоны и витамины?

Так же как фосфолипиды и белки объединяются при помощи фосфорсодержащей группы в фосфолипидной молекуле для создания клеточной мембраны, обладающей двойными свойствами, так же они могут соединяться в крови, образуя молекулу двойного действия. Соединения, образованные фосфолипидами и плазменными белками, называются липопротеинами.

Растворимые в жирах вещества легко объединяются с липидной частью липопротеинов и с ними переносятся кровью. Белки же растворяются в водной части крови – плазме.

Таким образом, липопротеины, составляющие всего от 3 до 5 % плазменных белков, являются важной частью транспортной системы крови. За последние двадцать лет ученые неожиданно с испугом и восторгом обратили взор к этим веществам, о которых раньше мало знали и роль которых недооценивали.

Чтобы объяснить, почему так произошло, я должен сказать, что одним из важных веществ, растворимых в жирах, является холестерин. Молекула холестерина состоит из четырех колец атомов углерода, ко всем атомам углерода, кроме одного, присоединены исключительно атомы водорода, к одному углероду прикрепляется еще и единственная гидроксильная группа. С ее помощью холестерин может соединяться с жирной кислотой.

В организме более 200 граммов холестерина. Он частично необходим как сырье для образования половых гормонов и гормонов надпочечников, молекулярное строение которых напоминает строение холестерина. Однако для этого требуется совсем мало холестерина.

Большая его часть находится в клеточных мембранах, особенно в липидных оболочках, защищающих нервные волокна. Из-за них сухое вещество мозга (за исключением водного содержимого) на одну пятую состоит из холестерина.

Зачем там нужен холестерин и почему не подходят другие липиды, пока неясно. Однако, какая бы причина ни была, его присутствие очень важно. В крови холестерин связывается с липопротеинами плазмы.

Липопротеины можно разделить на две основные группы. Одна состоит из относительно маленьких молекул, содержащих фосфоглицериды и небольшое количество холестерина. Это альфа-липопротеины. Молекулы, принадлежащие к другой группе, более крупные, причиной больших размеров по крайней мере частично является холестерин, так как на него приходится большая часть липидной доли молекулы. Это бета-липопротеины. («Альфа» и «бета» – первые две буквы греческого алфавита.)

И наконец, мы подходим к самой драматической части. Даже липопротеины не всегда являются идеальным решением проблемы переноса жирорастворимых веществ. В процессе циркуляции крови иногда происходит «отрыв» некоторых веществ. По неизвестной причине это чаще наблюдается у мужчин, чем у женщин, причем у некоторых мужчин чаще, чем у других, причины этого также неизвестны.

Чаще всего от липопротеинов отделяется холестерин, возможно, потому, что он присутствует в крови в довольно большом количестве. После отделения плазма не в состоянии переносить его, и холестерин откладывается на внутренних оболочках кровяных сосудов, где прикрепляется к фосфолипидам. Обычно это происходит в артериях, возможно, из-за того, что в них кровь течет быстрее всего, поэтому и холестерин легко отрывается.

Когда холестерин покрывает внутреннюю поверхность артерий, он сужает их, что ведет к увеличению давления крови на этом участке сосуда. Более того, холестерин вызывает снижение эластичности артериальных стенок – еще одна опасность их разрыва под возросшим давлением. Но и это не все. Внутренняя поверхность артерии становится грубой и неровной, на ней образуются сгустки крови (о них я буду говорить в последней главе), которые могут полностью заблокировать сосуд. Это состояние называется тромбозом.

Если тромбоз происходит в коронарных артериях, питающих сердце, развивается сердечный приступ. Закупорка мелких артерий мозга приводит к голоданию какого-либо участка мозга и вызывает инсульт. В том и другом случае возможен летальный исход.

Отложение холестерина на внутренних стенках артерий называется атеросклерозом. Когда человечество при помощи вакцинации, выработки правил гигиены и антибиотиков победило инфекционные заболевания, атеросклероз стал убийцей номер один для жителей западных стран, преимущественно мужчин.

С атеросклерозом нельзя справиться, когда артерии уже заблокированы, но было бы неплохо заранее знать, кто в большей степени подвержен этой болезни, а кто меньше. Лица, принадлежащие к группе риска, могли бы принять меры предосторожности и прожить дольше. Например, они могли бы раньше снизить интенсивность физической нагрузки.

Поскольку львиную долю холестерина переносят бета-липопротеины, в группу риска могут входить люди, в чьей крови обнаруживается высокое содержание этой группы липопротеинов. Сообщалось, что в крови больных диабетом, которые более других подвержены атеросклерозу, также содержится больше бета-липопротеинов, чем у здоровых людей.

После Второй мировой войны, когда исследования ученых направлены на мирные цели, начался поиск средств, которые позволяли бы более подробно исследовать липопротеины. Были разработаны новые методы изучения этой группы соединений.

Обычно молекулы белков, хотя они и плотнее воды, не оседают в ней, как частицы песка. Сила притяжения заставляет их опуститься вниз, но, оседая, они сталкиваются с молекулами воды и белков, поэтому находятся во взвешенном состоянии. Частицы песка также сталкиваются с молекулами воды, но они настолько крупны, что слабые удары молекул не ощущают. Однако столкновения с молекулами воды имеют значение для более мелких молекул белков.

Мы могли бы заставить молекулы белка осесть на дно, если бы замедлили движение молекул воды, но это можно сделать, только охладив раствор, который замерзнет задолго до того, как движение молекул воды существенно замедлится.

Альтернативным решением будет увеличение силы тяжести молекул белка. Мы не в состоянии усилить земное притяжение, но можно создать силу, похожую на нее. Если поместить белковый раствор в маленький контейнер и начать быстро вращать его, центробежная сила будет давить на содержимое в направлении от центра вращения. Чем больше скорость вращения, тем мощнее эта сила.

В 1930-х годах шведский ученый Т. Сведберг создал центрифугу, которая могла вращаться так быстро, что создавала центробежную силу, в сотни тысяч, даже миллионы раз превосходящую силу земного притяжения. Такое устройство получило название ультрацентрифуги. (Слово «центрифуга» произошло от латинского «бегство от центра».)

В ультрацентрифуге молекулы белка, «пробираясь» сквозь молекулы, движутся от центра вращения. Происходит их оседание, или седиментация.

Скорость седиментации отдельной белковой молекулы зависит от ее размера и формы. Изучение поведения белка при ультрацентрифугировании легло в основу метода определения размера белковой молекулы.

Скорость седиментации измеряется в единицах Сведберга, названных так в честь изобретателя ультрацентрифуги, которые обычно обозначаются S 20. Число 20 означает, что температура раствора в центрифуге составляет 20 °C.

В ультрацентрифуге липопротеины ведут себя точно так же, как и обычные белки, за одним важным исключением. Обычно плотность липидов составляет от 75 до 80 % от плотности воды. Низкая плотность липидов в составе липопротеинов с избытком компенсирует повышенную плотность белков. Поэтому липопротеины легче воды, и чем больше в них липидов, тем меньше их удельная масса.

Под воздействием ультрацентробежной силы липопротеины движутся не от центра, а к центру вращения. Скорость их всплытия измеряется в отрицательных единицах Сведберга, или в единицах флотацииS f.

Плазменные липопротеины в зависимости от скорости всплытия при ультрацентрифугировании были разделены на фракции. Фракция липопротеинов, всплывающих медленнее всего (S f3–8), может различаться у разных людей, но у одного и того же человека она постоянная. На количество липопротеинов в этой фракции не влияет ни характер питания, ни состояние здоровья.

Самого пристального внимания заслуживает фракция S f12–20. Именно ее связывают с возникновением атеросклероза. Если доля липопротеинов в этой фракции у человека высока, увеличивается риск его заболевания атеросклерозом.

Возникает вопрос: можно ли снизить количество липопротеинов S f12–20? Существует ли какая-то особая диета? Кажется, что мы не должны употреблять холестерин вовсе, потому что именно в этой фракции холестерина содержится особенно много и именно он причиняет наибольший вред внутренней оболочке артерий. Но к сожалению, организм может легко сам вырабатывать холестерин, и даже при низкохолестериновой диете, когда из нее исключаются масло, яйца и животный жир, уровень липопротеинов фракции S f12–20 может сохраняться высоким.

Пока решение проблемы не найдено. Ученые интенсивно работают в этом направлении, поэтому посмотрим, что произойдет в течение нескольких следующих лет.

Глава 13
Отражение внешней опасности

Можно заставить белковые молекулы осесть в растворе и не прибегая к помощи центральной силы, о чем говорилось в предыдущей главе. Такой же результат достигается, если сделать их менее растворимыми в воде. Если вода по какой-то причине не может удерживать молекулы белка на расстоянии друг от друга, они собьются в кучу и осядут в виде мелких кристаллов, или волокнистых комочков, или желатиновой массы, в зависимости от вида белка.

Одним из способов разделения молекул белков является изменение свойств воды, в которой они растворены. Можно вскипятить воду, однако нагревание разрушит белки. Можно растворить в воде новое вещество. Молекулы воды окружат ионы или молекулы этого вещества, и тогда молекулы белка получат относительную свободу.

Для этой цели используют проверенное временем вещество – сульфат аммония, который является примером соли, хорошо растворимой в воде. Соль – это любое вещество, которое в растворе разделяется на ионы и образуется при взаимодействии щелочи и кислоты. Примером может служить обычная поваренная соль, которая и дала всей группе это название. В 100 граммах воды при комнатной температуре растворяется около 80 граммов сульфата аммония.

Сульфат аммония порциями добавляется к белковому раствору. Вероятно, что после каждого добавления будет происходить медленное осаждение белков. Если в растворе находится несколько видов протеинов, то вполне вероятно, что один из них может оказаться более растворимым, чем другой. Менее растворимая разновидность будет осаждаться при добавлении относительно малого количества сульфата аммония, которого недостаточно, чтобы вызвать осаждение более растворимых белков.

Использование сульфата аммония или других солей для осаждения белков в растворе называется высаливанием. Высаливание, производимое добавлением соли порциями для разделения белков в растворе на более и менее растворимые, называется солевым фракционированием.

Еще в начале XX века методом солевого фракционирования было установлено, что существует две большие группы плазменных белков. Одна группа осаждалась, когда плазма насыщалась сульфатом аммония наполовину (полунасыщенный раствор). Это были плазменные глобулины. Если отфильтровать осажденный глобулин и добавить к прозрачному фильтрату сульфат аммония до получения насыщенного раствора, оставшийся белок оседал на дно. Это был плазменный альбумин.

В каждых 100 миллилитрах плазмы крови содержится около 6 граммов белков. Из них 2,5 грамма приходится на плазменные глобулины и около 3,5 грамма – на плазменные альбумины.

Молекулы альбуминов меньше молекул глобулинов. В среднем их молекулярная масса равна 69 000 – чуть тяжелее молекулы гемоглобина. Молекулы глобулинов имеют разный размер, и их средняя молекулярная масса – 200 000.

Поскольку молекулы глобулина в три раза больше молекул альбумина, 1 грамм альбумина содержит в три раза больше молекул, чем 1 грамм глобулина. Так как пропорция их в плазме составляет 5 к 7, значит, примерно четыре из пяти молекул плазменных белков представлены альбумином.

Осмотическое давление, описанное в главе 10, зависит от количества белковых молекул в плазме, а не от массы индивидуальных молекул. Следовательно, плазменный альбумин ответствен за 80 % осмотического давления. Альбумин высушивают, измельчают в порошок и запечатывают в контейнеры, после чего его можно использовать, добавив минералы и воду.

Альбумин также обеспечивает львиную долю питательной ценности плазменных белков и является средством транспортировки для более мелких молекул. Однако было бы ошибочно недооценивать глобулины. Они также обладают весьма полезными свойствами.

Осаждение сульфатом аммония является довольно грубым методом разделения, и для выделения плазменных белков разработали лучшие методы.

О двух основных я уже упоминал ранее. Один из них – фракционирование при помощи спирта – метод Кона, о котором говорилось в конце главы 11. Второй – электрофорез, упоминавшийся в связи с аномальными разновидностями гемоглобина в главе 7.

Электрофорез белков плазмы – распространенный в наше время метод. Когда плазменные белки разделяются в результате различных скоростей движения в электрическом поле, самым быстродвигающимся оказывается альбумин. Он отделяется почти сразу.

Однако плазменные глобулины состоят из нескольких типов молекул, поэтому под воздействием электрического поля они разделяются на группы. Существует три основные подгруппы глобулинов: альфа-глобулины, бета-глобулиныи гамма-глобулины– альфа-глобулины двигаются быстрее всех, бета– чуть медленнее, а гамма– самые медленные. («Гамма» – это третья буква греческого алфавита.)

Каждая из этих групп, в свою очередь, состоит из разных типов молекул, и длительный электрофорез может разделить группы альфа– и бета– на подгруппы. Поэтому мы можем говорить о двух разновидностях альфа-глобулинов: альфа 1– и альфа 2-.

Однако самого пристального внимания заслуживают гамма-глобулины. В каждых 100 миллилитрах плазмы содержится 0,66 грамма гамма-глобулинов, которые составляют всего 11 % от веса всех плазменных протеинов. Тем не менее они особенно важны.

Например, при многих инфекциях количество гамма-глобулинов в крови существенно возрастает. Это было замечено еще до того, как электрофорез создал основу для разделения глобулинов на группы альфа-, бета– и гамма-.

Когда белки плазмы разделяли только на глобулины и альбумин, речь шла о соотношении А/Г, то есть соотношении массы альбумина и массы глобулинов в крови. Например, если в 100 миллилитрах нормальной плазмы содержится 3 1/ 2грамма альбумина и 2 1/ 2грамма глобулина, тогда нормальное соотношение А/Г будет равно 1,4.

При многих инфекциях этот показатель снижается. Теперь мы знаем, что это происходит потому, что возрастает количество гамма-глобулинов. Если в 100 миллилитрах плазмы содержится 3 грамма глобулина, то соотношение А/Г становится равным 1,17.

В эпоху зарождения методов фракционирования белков плазмы ученые надеялись, что соотношение А/Г поможет ставить диагноз. К сожалению, уровень глобулина поднимается в результате стольких причин (а уровень альбумина может снижаться, что также изменит соотношение А/Г), что показатель А/Г не оказался сколько-нибудь полезным для диагностики.

Позже, когда электрофорез стал привычным делом, у ученых вновь появилась надежда. Возможно, точный способ, которым плазма заменяется на альбумин и разные виды глобулинов, будет отличаться у здоровых и больных людей. Возможно, у каждой болезни будет своя «электрофоретическая картина». Другими словами, кровь в таком случае можно будет рассматривать как своего рода «отпечаток пальца» для определения состояния здоровья.

Но и эта надежда также не оправдалась. При некоторых условиях изменения могут быть заметны (обычно происходит увеличение количества гамма-глобулинов), но в целом даже при болезни кровь сохраняет свои обычные свойства.

Но вернемся к гамма-глобулинам.

Еще одним указанием на важность этой части плазменных белков является история отдельных детей (по странному стечению обстоятельств все они мужского пола), которые с самого рождения не в состоянии вырабатывать гамма-глобулин. Такие дети часто страдают от бактериальных инфекций и без лечения могут умереть в раннем возрасте. В эпоху антибиотиков шанс выжить возрастает, но лекарства должны быть все время под рукой.

Очевидно, что гамма-глобулины имеют отношение к защите организма от инфекций. В их состав входят белковые молекулы, так называемые антитела, поэтому наступило время поподробнее рассмотреть взаимоотношения антител и инфекций.

Жизнь – это безжалостная борьба. Животные поедают друг друга, или их жертвой становятся беззащитные растения. Но зеленые растения, сами вырабатывающие для себя пищу и не нападающие на своих собратьев, тоже далеко не так безобидны. Они с ожесточением борются за солнце и воду. Одуванчик не питается травой, но все равно губит ее.

Любое живое существо или растение, которому удалось избежать голодных врагов и дожить до естественной смерти, вызванной физическими или химическими нарушениями в работе организма, затем поглощается падальщиками и бактериями.

Микроорганизмы – самые прожорливые живые существа в мире, и тот, кому посчастливилось избежать хищников, не сумеет избежать их. Для того чтобы питаться, им необязательно нужен мертвый организм. Бактерии живут в наших тканях, за чужой счет обеспечивая себе существование. В наших клетках живут вирусы. Существование одного организма за счет другого живого организма называется паразитизмом.

Нам это явление кажется непристойным, но, очевидно, такой образ жизни очень действенный, поскольку некоторые животные и растения, а не только микроорганизмы выбрали именно его. В какой-то мере мы не должны слишком строго судить их, поскольку тоже паразитируем за счет стад скота и полей зерновых. Несомненно, если бы домашний скот и растения могли думать, они бы тоже сочли людей отвратительными.

Существуют микроорганизмы, жаждущие питаться именно нами, поэтому мы должны как-то от них защищаться. Учитывая, что они окружают нас повсюду, что они множатся с невероятной быстротой и в любое время готовы напасть на нас, можно сказать, что нам крупно не повезло.

Первой линией защиты служит наша кожа. Она довольно непроницаема для бактерий, и мы можем чувствовать себя в безопасности, если кожа не повреждена. Но это не стопроцентная гарантия. Некоторые черви-паразиты приспособились проникать и под здоровую кожу.

В нашей броне есть и уязвимые места. Слизистые оболочки глаз и носа, рта и горла тоньше кожи, и их защитное действие не столь эффективно. Доказательствами этого могут служить частые инфекционные заболевания носа и горла. Иногда целостность кожного покрова нарушается, и даже маленькая царапина может привести к смертельно опасному заражению микробами.

Хотя кожа и является превосходным барьером, мы не можем на нее полностью полагаться. Необходима вторая линия защиты – от микроорганизмов, которым удалось проникнуть через кожу. Эта линия защиты находится в крови.

В главе 3 я перечислил три типа форменных элементов в крови: эритроциты, лейкоциты и тромбоциты. Однако я говорил только об эритроцитах и ни разу не упомянул о двух других типах клеток. Теперь пришло время обратиться к лейкоцитам – второй линии обороны против инфекции.

Слово «лейкоцит» происходит от греческих слов «белая клетка», и это действительно их второе название. Лейкоциты имеют цвет, обычный для всех клеток, и называются «белыми», чтобы отличать их от красных клеток. Они имеют обычный размер и ядро, в отличие от красных клеток.

Белых клеток намного меньше, чем красных; всего около 7000 на каждый кубический миллиметр крови по сравнению с 4–5 миллионами красных клеток, так что их пропорция составляет 1:650. Однако во всем организме лейкоцитов достаточно много: около 75 000 000 000 у среднего человека.

Лейкоциты можно разделить на несколько разновидностей, которые отличаются друг от друга размером и формой ядра. Одна разновидность – полиморфоядерные лейкоциты– составляет примерно три пятые части всех лейкоцитов. Как и красные клетки, они образуются в костном мозге. Первоначальными стадиями являются миелобластыи миелоциты. Полиморфоядерные лейкоциты особенно интересны тем, что двигаются подобно одноклеточным амебам. Из клетки выпячивается бугорок в том направлении, куда она хочет двигаться, и клеточная жидкость перетекает в этот бугорок. Затем появляется другой и так далее.

Кажется, что лейкоциты живут самостоятельной жизнью: они передвигаются по стенкам кровеносных сосудов и проходят даже сквозь стенки капилляров, протискиваясь между клетками, из которых состоят капилляры. Могло бы показаться, что лейкоциты наводняют наш организм, как микробы, если бы не знали, на чьей стороне они находятся.

Лейкоцит показывает свое истинное лицо при встрече с настоящим микробом, которому удалось проникнуть через кожу. Лейкоцит поглощает микроб и переваривает его. Этот процесс называется фагоцитозом(от греческих слов «поедание клеток»).

Когда микробы попадают в организм через повреждения на коже, кровеносные сосуды расслабляются таким образом, что к месту вторжения чужака приливает больше крови. С током крови туда попадают и белые клетки. Лейкоциты, находящиеся поблизости, самостоятельно подтягиваются к месту сражения и вступают в битву. Возникает воспаление и отек, а повышенное давление жидкости вызывает боль, и все эти симптомы развиваются вследствие мобилизации защитных сил организма, а не из-за вторжения в него микробов.

Борьба часто бывает ожесточенной, и белые клетки не всегда выходят победителями. Если бактерий значительно больше, лейкоциты погибают. Погибшие клетки скапливаются в очаге инфекции в виде гноя.

Бактерии, уничтожившие белые клетки на месте своего непосредственного вторжения и попавшие в кровь, задерживаются в лимфатических узлах – крупных образованиях, встречающихся на всем протяжении лимфатической системы. Способные к фагоцитозу белые клетки проникают в эти узлы, и опять начинается битва. Лимфатические узлы опухают и становятся болезненными при надавливании, так же как и первоначальное место попадания инфекции. Именно по этой причине одним из признаков наличия инфекции в горле являются опухшие «железы» под нижней челюстью. Это не железы, это ближайшие к месту вторжения инфекции лимфатические узлы.

Если белые клетки можно представить как армию, защищающую организм от чужеродных захватчиков, то эту метафору можно расширить. Иногда армия выходит из повиновения и начинает представлять опасность для тех, кого она должна была защищать.

Это случается, когда костный мозг, вырабатывающий белые клетки, выходит из-под контроля и начинает избыточное производство полиморфоядерных лейкоцитов. Это происходит, когда ткань лимфатических узлов выходит из повиновения и начинает вырабатывать слишком много лимфоцитов, также являющихся разновидностью белых клеток. Лимфоциты образуются в лимфатических узлах, и поэтому они находятся в лимфе. В любом случае незрелые белые клетки заполняют кровь, и их число иногда достигает 100 000 или 1 000 000 клеток на кубический миллиметр, то есть в 15–150 раз больше нормального значения. Число других форменных элементов крови уменьшается, так что возникают анемия и частые кровотечения. (Связь между форменными элементами крови и кровотечениями будет рассмотрена в следующей главе.) В конце концов анемия приводит к смерти, что может произойти как почти сразу же, так и через несколько лет.

Эта форма анемии называется лейкемией(от греческих слов, означающих «белая кровь» или «слишком много белых клеток в крови»). Поскольку лейкемия является результатом неконтролируемого роста, то есть длительного формирования ненужных новых белых клеток, ее можно отнести к группе болезней под общим названием «рак». Лейкемию, действительно, часто называют раком крови.

Причины возникновения и способы лечения лейкемии, так же как и других видов рака, неизвестны. Существует много лекарств, которые оказывают благотворный эффект на многих больных, но до полного исцеления еще далеко.

За белыми клетками есть и третья линия защиты.

При проникновении в организм чужеродных тел, например бактерий или вирусов, органы, вырабатывающие белые клетки, – костный мозг, лимфатические узлы и так далее – начинают, кроме этого, вырабатывать и особые белки. В лимфатических узлах образуются плазменные глобулины (возможно, они образуются лимфоцитами).

Эти белки вступают во взаимодействие с группами атомов, расположенными на поверхности бактериальных клеток или вирусов.

Это возможно благодаря количеству и разнообразию боковых групп аминокислот, входящих в состав молекулы белка. Аминокислоты могут быть расположены таким образом, что боковые группы «вписываются» в поверхность бактерии. Точная природа такого совпадения пока неизвестна. Возможно, оно имеет механический характер, то есть часть аминокислотной цепи белка изгибается вовнутрь, тогда как молекулы бактериальной оболочки выпячиваются наружу, или наоборот. Если это справедливо, то группы атомов белка тесно соприкасаются с атомами бактериальной оболочки в местах ее неровности.

Атомы, подошедшие друг к другу на расстояние своего диаметра, притягиваются слабыми силами ( силами Ван дер Ваальса, по имени физика и химика, который впервые предположил их существование в своих теориях, посвященных поведению молекул газа). Когда атомы белка близко подходят к атомам чужеродного тела, силы Ван дер Ваальса вступают в действие и начинают притягивать обе молекулы друг к другу. Однако для полного их объединения этих сил не хватает. Сочетание зависит от полного соответствия форм молекул.

Альтернативным решением может быть использование некоторыми белками электрических зарядов. Некоторые боковые группы аминокислот несут отрицательный заряд, а другие – положительный. Необходимо создать белок, являющийся зеркальным отражением участка на оболочке бактерии. Там, где у бактерии отрицательный заряд, у белка – положительный, и наоборот. Отрицательные заряды притягивают положительные, и, когда белок попадает в нужное место на поверхности бактериальной клетки, он плотно прикрепляется к ней под воздействием сил притяжения зарядов. Прочность соединения зависит от степени соответствия противоположных зарядов.

В любом случае бактерия служит макетом для создания различных белков. Бактерия, вирус или любая молекула, стимулирующая такое поведение белков и действующая как макет, называется антигеном. Образующийся в ответ белок называется антителом.

Сначала антитела образуются медленно, но примерно через шесть дней их количество заметно увеличивается, и они попадают в кровь. Это можно сравнить с автомобильным заводом, выпускающим новую модель. Сначала он работал медленно, оснащая и переоборудуя автомобиль, а потом начал массовое производство.

Антитела начинают вступать в схватку с антигенами. В результате какой-то участок на поверхности оболочки бактерии или вируса окажется закрытым, и это может серьезно помешать их деятельности. Для сравнения приведем такой пример: допустим, у пианиста на руках внезапно окажутся боксерские перчатки, которые он не может снять.

С бактерией, несущей на себе антитело, может произойти целый ряд неприятностей. Она может тут же погибнуть и подвергнуться расщеплению. Или она приобретает «клейкие» свойства и «склеивается» с другими бактериями, образуя беспомощную массу. Она может просто потерять способность бороться с белой клеткой. Во всех этих случаях бактерия не в состоянии атаковать белые клетки.

Иногда опасна не столько сама бактерия, сколько выделяемые ею ядовитые вещества – токсины. Они могут также действовать как антигены, а антитела либо осаждают их в растворе, либо нейтрализуют их вредные качества.

Как только образуются антитела, они тут же на неопределенный промежуток времени попадают в кровь. Гамма-глобулиновая часть плазмы почти полностью состоит из различных антител. Это собрание «боевых шрамов», полученных организмом в войнах с инфекциями. Именно поэтому биохимики особенно интересуются гамма-глобулинами.


    Ваша оценка произведения:

Популярные книги за неделю