Текст книги "Электричество: просто и безопасно [в вопросах и ответах]"
Автор книги: авторов Коллектив
Жанры:
Справочники
,сообщить о нарушении
Текущая страница: 1 (всего у книги 13 страниц)
Сергеев Н.В.
«Электричество: просто и безопасно»
в вопросах и ответах
Введение
В настоящее время основными источниками электрической энергии служат разного рода электростанции, с помощью которых различные другие виды энергии преобразовываются в электрическую. По своим основным параметрам подобные электростанции можно поделить на несколько ключевых трупп:
– тепловые;
– атомные;
– гидроэлектростанции.
Тепловые электростанции функционируют за счет того, что в них происходит процесс сгорания угля, нефти или природного газа. Тепло, которое выделяется в ходе этого процесса, испаряет воду в котлах. Именно с помощью этого пара происходит вращение ротора генераторов. В них механическая энергия переходит в электрическую.
Атомные электростанции работают на аналогичном принципе, однако здесь используется совершенно иной тип топлива. В качестве топлива используются различного рода радиоактивные элементы, которые способны выделять тепло в процессе радиоактивного распада.
Гидроэлектростанции вообще не используют тепловую энергию в процессе своего функционирования. Здесь источником энергии, как это видно из их названия, служит движущаяся вода, которая и приводит в действие ротор генератора электрической энергии.
Кроме того, встречаются ветряные и гелиоэлектростанции, геотермальные, приливные и т. д. Однако в нашей стране использование подобных электростанций не слишком развито.
Тепловые электростанции классифицируют на две основные группы:
– конденсационные;
– теплофикационные.
Конденсационные электростанции функционируют таким образом, что в ходе их работы тепловая энергия практически полностью превращается в электрическую.
Теплофикационные электростанции (они же теплоэлектроцентрали или ТЭЦ) превращают тепловую энергию в электрическую, но делают это частично, так как основная масса тепловой энергии тратится на то, чтобы снабжать теплом предприятия и жилые дома. Следует отметить, что конденсационные паротурбинные электростанции возводят, главным образом, там, где происходит добыча угля, торфа или горючих сланцев.
При возведении гидроэлектростанций решается не только проблема электроснабжения округи, но и в значительной степени улучшается ситуация, связанная с судоходством на реке, где строится такая электростанция. Помимо этого, гидроэлектростанция может быть использована для орошения земель, водоснабжения и в некоторых других областях человеческой деятельности.
Если же в районе отсутствуют запасы топлива, а также нет рек с приемлемыми ресурсами, которые необходимы для строительства гидроэлектростанций, то в этом случае сооружают атомные электростанции. Они функционируют на ядерном топливе, однако расход такого топлива крайне незначительный. Полученная электроэнергия доходит до потребителей по специальным линиям высокого напряжения (как правило, такие линии способны выдерживать напряжение 110 кВ, но бывает и больше). Перед тем как непосредственно попасть к потребителю, электроэнергия проходит через повышающие трансформационные подстанции.
Для того чтобы нагрузка между электростанциями была распределена как можно более равномерно, а также для более надежного снабжения потребителей электроэнергией используют параллельную работу электростанций на общую электрическую сеть. Она включает в себя непосредственно сами электростанции, линии электропередач, трансформационные подстанции, а также тепловые сети, которые объединены в единую систему с помощью общего режима производства и распределения как электрической, так и тепловой энергии. Подобные системы образуют одну общую электрическую сеть, которая охватывает целую республику, край или область.
Электросети используют для того, чтобы передавать и распределять электрическую энергию, которая идет к потребителям. Такие сети включают в себя распределительные устройства, а также специальные воздушные или кабельные линии, способные выдерживать различные напряжения. Запитываются данные сети через распределительное устройство генераторного напряжения электростанции или же через распределительные устройства вторичного напряжения, которые обычно размещают на понижающей подстанции.
Электрические сети могут быть двух разновидностей:
– постоянного тока;
– переменного тока.
Постоянный ток используется в сети железных дорог, метро, трамвайных и троллейбусных линиях, а также в некоторых предприятиях. Все остальные снабжаются за счет переменного тока, который обычно проводят трехфазным переменным током, а его частота составляет 50 Гц.
Гидрогенераторы и турбодефисы способны вырабатывать электроэнергию, напряжение которой может составлять 6, 10 или 20 кВ. Такую энергию транспортировать на значительные расстояния крайне невыгодно, так как будут достаточно большие потери. В связи с этим на специальных повышающих электроподстанциях данное напряжение увеличивается до 110, 220 и 550 кВ, только после этого электроэнергия передается на необходимое расстояние. Перед непосредственной передачей потребителю электроэнергия попадает в понижающие подстанции, где общее напряжение снижается до 35, 10 и 6 кВ.
Предприятия и целые города снабжаются электроэнергией за счет распределительных устройств и подстанций, которые должны, по возможности, находиться как можно ближе к потребителям.
Распределительное устройство предназначено для того, чтобы принимать и правильно распределять электроэнергию. Оно имеет в своей структуре коммутационные аппараты, сборные и соединительные шины, помимо этого в нем находятся разного рода вспомогательные устройства, например компрессорные, аккумуляторные и т. д. Также в распределительное устройство помещают защитные конструкции, автоматику и измерительные приборы.
Распределительные устройства по. своему типу могут делиться на две группы:
– открытые распределительные устройства – у них все оборудование находится под открытым небом;
– закрытые распределительные устройства – все составные элементы устанавливают в специальных помещениях.
Электроустановка, которая предназначена для того, чтобы преобразовывать и распределять электрическую энергию по потребителям, называется подстанцией. Она включает в себя трансформаторы, или преобразователи, энергии иного рода, распределительные устройства, а также устройства управления и вспомогательные конструкции. В зависимости оттого, на базе чего функционирует та или иная подстанция, она может быть одного из двух видов:
– трансформаторная;
– преобразовательная.
Если та или иная конструкция не входит в состав подстанции, но при этом она используется для приема и распределения электроэнергии на одном напряжении, без проведения преобразования или трансформации, то это устройство принято именовать распределительным пунктом.
На то, каким будет качество электрической энергии, влияет постоянство частоты и стабильность напряжения в пределах нормы. При этом частота электрического тока задается электростанцией сразу для всей системы.
В зависимости от конфигурации сети общий уровень напряжения может меняться по мере того, как он будет подходить к потребителю, на него также будет оказывать непосредственное влияние условия загруженности оборудования и общий расход электрической энергии. Напряжение электрической сети и электрооборудования приведены к одному общему стандарту.
ОСНОВЫ ЭЛЕКТРОМОНТАЖНЫХ РАБОТ
Общие сведения
Как производят сборку и установку системы?
В процессе сборки и установки электротехнических конструкций нужно выполнять электромонтажные работы. Под ними понимаются сооружение кабельных и воздушных линий, закрытых или открытых подстанций, монтаж осветительного оборудования, различных электрических приборов.
Чем руководствуются при проведении электромонтажных работ?
В настоящее время существует целый комплекс нормативных документов, связанных именно с проведением электричества в квартиру или дом. При этом главными документами, регламентирующими порядок проведения электричества, являются строительные нормы и правила, или же СНиПы, правила устройства электроустановок, правила противопожарной безопасности, техники безопасности, ведомственные инструкции, а также инструкции производителей электрооборудования. Установку электрооборудования необходимо производить, руководствуясь, в первую очередь, рабочими чертежами, а также документами, полагающимися к этому оборудованию.
Какими понятиями оперируют при работах, связанных с электричеством?
Перед проведением электромонтажных или электротехнических работ нужно запомнить, что означают следующие понятия:
– напряжение;
– отклонение напряжения;
– мощность;
– сила электрического тока;
– электрическая нагрузка;
– электрическое сопротивление;
– электрическая энергия.
Что такое напряжение и как его использовать без вреда для здоровья?
Для того чтобы передать электроэнергию на достаточно большое расстояние, обычно используют напряжение в несколько десятков или даже сотен тысяч вольт. При этом в бытовых условиях напряжение не должно превышать 220 В.
Если сравнивать такое напряжение с сетями электропередач, то оно будет достаточно небольшим. По этой причине 220 В зачастую называют «низким» напряжением, однако это не означает, что оно будет полностью безопасным, так как при неправильной установке или эксплуатации энергосистем могут быть получены опасные для человеческой жизни травмы.
Если дотронуться до оголенных проводов, находящихся под напряжением 220 В, то через тело пройдет электрический ток, который в итоге может привести даже к летальному исходу.
В случае если электричество используется в достаточно стесненных условиях, допустим, в подвалах, или же если существует достаточно высокая вероятность поражения электрическим током, то здесь нужно использовать совсем малое напряжение – от 12 до 42 В.
Какое напряжение принято считать безопасным?
Потенциально опасным считается любое напряжение, однако 12 В вряд ли причинят какой-либо серьезный ущерб человеческому здоровью. При этом напряжение 36–42 В допустимо использовать лишь в том случае, если нужно подключить стационарные светильники, но их все равно придется дополнительно защищать.
Если в каком-либо хозяйственном помещении полы сделаны из любого диэлектрика или же отделаны материалами, не проводящими электричество, то в этом случае напряжение до 42 В можно применять спокойно, не опасаясь за свое здоровье, а также за здоровье других людей.
Как получить напряжение 12 или 42 В?
Для получения такого напряжения вам нужно использовать специальные трансформаторы, которые на выходе будут давать 12 или 42 В, причем их подключают в общую электрическую сеть.
Что такое отклонение напряжения?
Прохождение электрического тока по проводам линии электропередач в любом случае сопровождается определенными потерями. Это приводит к тому, что в конце линии напряжение будет меньшим по сравнению с тем, которое было в начале. Для того чтобы до всех потребителей электроэнергия подходила с необходимым напряжением, на трансформаторной подстанции его приходится немного повышать (приблизительно на 5–8 %). Такой шаг не может не сказаться на электроприборах.
Например, электродвигатели и светильники, снабженные люминисцентными лампами, практически не чувствуют подобных отклонений из-за не слишком высокой чувствительности. Однако с нагревательными приборами дело обстоит значительно сложнее. Например, если напряжение будет ниже необходимого, то в этом случае производительность значительно упадет. Если же оно будет чересчур высоким, то у аппаратуры снизится срок службы.
Различные полупроводниковые приборы, например телевизоры, музыкальные центры, компьютеры и т. д., в случае возникновения различных отклонений напряжения могут вообще выйти из строя.
В последнее время в подобные устройства стали монтировать системы, позволяющие стабилизировать напряжение, тем самым в значительной степени увеличить срок их службы. За счет подобных стабилизаторов создается нечувствительность к отклонениям в напряжении в относительно большом диапазоне. Если же в инструкции к подобному прибору не приведены аналогичные данные, то допустимое отклонение должно составлять 5 %, то есть прибор будет работать при напряжении от 210 до 230 В.
Зачастую в частном секторе или же в сельской местности напряжение может «скакать», из-за этого нужно использовать специальные трансформаторы или стабилизаторы напряжения. Однако сильнее всего заметно слабое напряжение в обыкновенных лампочках накаливания, так как они попросту светят тусклее.
Какая мощность тока должна использоваться в повседневной жизни?
В бытовом электроснабжении используют электрические приемники, мощность которых может колебаться от десятых или даже сотых долей ватта до нескольких тысяч ватт (это относится, например, к электрическим плитам). Между прочим, следует отметить, что та мощность, которая указана на приборе, далеко не всегда соответствует номинальной мощности, которую этот прибор будет потреблять. Допустим, мощность тока, которую потребляют лампочки накаливания, в значительной мере зависит от напряжения. В случае если значение этого напряжения будет на 5–7 % выше по сравнению с номинальным, то мощность увеличится приблизительно на 10–15 %. Для электроинструментов мощность напрямую зависит от того, какое сопротивление они будут преодолевать в процессе эксплуатации, однако в любом случае этот показатель не должен быть выше по сравнению с номинальной мощностью.
Что такое сила электрического тока?
Значение силы тока в электрических проводах можно определить за счет мощности электроприборов, которые присоединены к данной сети. Для вычисления силы тока однофазного приемника вам нужно разделить мощность на напряжение, а также на коэффициент мощности – это безразмерная величина, значение которой не больше единицы. Для ламп накаливания и для обогревателей такой коэффициент всегда будет равен 1, если же нужно вычислить силу тока применительно к электродвигателю или трансформатору, то это значение будет меньше.
Чем ниже коэффициент мощности для того или иного прибора, тем большее количество электрического тока будет идти по проводам. Из-за этого увеличатся потери энергии. Для того чтобы специально сделать коэффициент мощности большим, используют специальные конденсаторы, которые необходимо подключать параллельно нагрузке.
Как рассчитать силу тока в проводах?
Это можно относительно точно сделать в том случае, если принять мощность электроприборов и напряжение номинальными. Однако здесь велика вероятность того, что номинальная и фактическая сила тока будут иметь разные величины.
Как рассчитывают электрическую нагрузку?
Самое большое значение силы тока, который проходит по проводу, принято считать электрической нагрузкой этого провода. Например, можно привести значения силы тока для при боров с коэффициентом мощности, равным единице при напряжении 220 В (табл. 1).
Как вычислить электрическую нагрузку на несколько электроприборов?
В случае если необходимо вычислить электрическую нагрузку, которая получается вследствие работы нескольких электрических приборов, необходимо сложить их номинальные токи. Однако делать это допустимо лишь, когда их коэффициент мощности примерно одинаков или же приближается к единице.
Если эти условия не соблюдаются, то нужно отыскать среднее значение коэффициента мощности (как правило, это значение находится в пределах от 0,8 до 0,9), потом определяют силу тока, основываясь на сумме номинальных мощностей.
Общую нагрузку, которая будет приходится на провод фазы из трехфазного электроприбора, определяют, базируясь на том, что на каждую из фаз приходится по 1/3 мощности. Кроме того, вам нужно учитывать еще и тот факт, что фазное напряжение в 1,73 раза меньше по сравнению с линейным. Здесь для определения нагрузки мощность трехфазного электроприбора нужно разделить на номинальное линейное напряжение, затем на коэффициент мощности и на 1,73.
В чем особенность использования трехфазного электрического тока?
Если общая электросистема пропускает через себя трехфазный ток, то в этом случае одну из этих фаз необходимо выделить для того, чтобы запитывать однофазные электроприборы.
Как вычислить силу тока в фазном проводе?
Для этого нужно сложить все нагрузки как трехфазных, так и однофазных электроприборов. На электрический ток в других фазных проводах однофазные электроприборы не оказывают существенного влияния, однако они будут определяют ток в нулевом проводе. Если к сети подключены лишь трехфазные электроприборы, то это означает, что в нулевом проводе вообще нет тока.
Что такое электрическое сопротивление?
Если напряжение тока, подходящего к электроприбору, составляет 220 В, а сила тока в этом случае равна 1 А, то сопротивление равно 220 Ом. Если сопротивление сделать большим, то сила тока будет уменьшаться пропорционально. Если воспользоваться существующей зависимостью силы тока и номинальной мощности, то можно путем несложных вычислений определить, что сопротивление электроприбора на 220 В при мощности 15 Вт будет равно 3200 Ом. Если же мощность прибора будет составлять 1,5 кВт, то сопротивление будет равняться всего лишь 32 Ом.
Какое обычно сопротивление в электрической сети?
В обычной электрической сети, которая используется в повседневном быту, сопротивление проводов, как правило, находится в пределах от нескольких десятых долей Ома до 1–2 Ом.
Из-за чего может происходить нагревание проводов?
Обычно провода, находящиеся под напряжением, не нагреваются, однако незначительное повышение их температуры может происходить из-за сопротивления и силы тока.
В том случае, если соединение электрических проводов сделано не слишком качественно, например слабо затянуты винты, провода плохо контактируют друг с другом или же с их концов не была удалена изоляция, то в этом случае сопротивление получается больше по сравнению с расчетным. Из-за такого положения вещей перегрев может получиться достаточно опасным, что в конечном итоге может привести к возгоранию.
В случае если в сети произойдет короткое замыкание, сила тока может возрасти до сотен ампер, что, как правило, в несколько раз больше по сравнению с допустимой величиной. Если предварительно не были произведены соответствующие меры по защите проводки, то это может привести к тому, что провода загорятся из-за того, что их температура будет слишком высокой. Это может даже привести к оплавлению изоляционного слоя, что повлечет за собой дополнительное возникновение короткого замыкания.
Как производят измерение израсходованной электроэнергии?
Данный показатель вычисляется с помощью специальных электросчетчиков. Если мощность потребляемого тока равна 1 кВт, то за 1 час будет израсходован 1 кВт·ч. Аналогичное количество электрической энергии будет потрачено электроприбором мощностью 500 Вт за 2 часа.
Типы электропроводок. Характеристика и схемы
Какими бывают электроустановки?
По всем требованиям безопасности, которые приводятся в соответствующих нормативных документах, все электроустановки делятся на две группы:
– напряжением до 1000 В;
– напряжением свыше 1000 В.
К электроустановкам также относят вводные устройства, через которые они связываются с линиями электропередач, разного рода наружные и внутренние электропроводки, кроме того, сюда же входят все электрические приборы.
Как устанавливать электроустановки?
Независимо от того, где находится электроустановка, сооружать, монтировать и использовать ее можно лишь в соответствии с правилами устройства электроустановок, строительными нормами и правилами, правилами техники безопасности, правилами пользования электрической и тепловой энергией, правилами пожарной безопасности. Кроме того, особое внимание нужно уделить еще и инструкции завода, на котором была выпущена та или иная электроустановка.
Какие существуют специальные термины?
В инструкциях, а также сводах правил зачастую упоминаются разного рода термины, понятия и определения. Необходимо разъяснить основные из них, чтобы в случае встречи с данным термином, вы поняли, что именно он означает:
– групповая сеть – сеть, от которой запитываются осветительные приборы и розетки;
– двойная изоляция электроприемника – это система, состоящая из двух слоев изоляции – основного, или рабочего, и защитного или дополнительного. При использовании данного вида защиты доступные для прямого соприкосновения части электроприемника не будут находиться под напряжением даже в том случае, если верхний слой изоляции будет поврежден;
– двойная изоляция проводов и кабелей – это бытовое название проводов или кабелей, которые имеют два слоя покрытий. Первый слой изолирует жилы, по которым проходит ток, а второй – представляет собой оболочку, которая объединяет эти две жилы и предохраняет их от негативного внешнего воздействия. Этот внешний слой предназначен для герметизации. Но он не является изоляционным слоем;
– заземление – специальное соединение электрического прибора с заземляющим устройством;
– зануление, используемое в электроустановках, напряжение которых не превышает 1 кВ, – специальное соединение частей конструкции, не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях, где используется трехфазный ток;
– заземляющее устройство включает в себя непосредственно сам заземлитель и заземляющие проводники;
– замыкание на землю – части электроустановки, находящиеся под напряжением, с частями, которые дополнительно не имеют изоляции от земли, или же непосредственно с землей;
– замыкание на корпус – соединение частей конструкции, находящихся под напряжением, с конструктивными элементами установки, которые под напряжением не находятся;
– изолятор – устройство, которое предназначено для того, чтобы изолировать элементы электрического оборудования, которые находятся под различными потенциалами, а также оно используется для недопущения открытого замыкания на землю или корпус;
– квалифицированный обслуживающий персонал – люди, которые прошли специальную подготовку. Ими были получены знания и практические навыки в необходимом объеме, нужном для работы с той или иной электрической установкой;
– потребитель электрической энергии – это любое помещение (квартира, дом, завод и т. д.), которое было подключено к электрической сети;
– приемник электрической энергии, или электроприемник – установка, с помощью которой потребитель получает электрическую энергию;
– электроустановочные изделия – различного рода патроны, выключатели, переключатели, розетки, вилки, предохранители и прочее оборудование аналогичного типа;
– электропроводка – это целая система проводов и кабелей вместе с креплениями, защитными установками и элементами, которая была смонтирована с учетом всех предписаний правил устройства электроустановок.
Какими бывают электроустановки?
В зависимости от основных функций, а также от общей конструкции системы, все электроустановки можно разделить на несколько групп:
– силовые – с их помощью приводятся в действие насосы и различного рода технологическое оборудование;
– осветительные – используются исключительно для освещения и для подключения в сеть бытовых приборов.
По мере защиты от отрицательного воздействия внешней среды их можно также разделить на две группы:
– открытые – располагаются непосредственно на открытом воздухе;
– закрытые – такие электроустановки устанавливают в помещении.
Все электроустановки могут быть как стационарными, так и передвижными.
Какими бывают жилые дома?
Жилые дома делятся на две группы – одноквартирные и многоквартирные. Однако классификаций жилых строений достаточно много и базируются они на самых различных принципах:
– по количеству этажей: одноэтажные, двухэтажные и многоэтажные;
– с мансардами и верандами или же без них;
– с погребами и подвалами или без них;
– отапливаемые и неотапливаемые дома;
– по материалу: кирпичные, деревянные, из гипсоблоков, из бетонных плит и т. д.
Необходимо заметить, что в домах и коттеджах люди живут постоянно, а в дачных домиках – сезонно.
Как правильно произвести классификацию жилых помещений?
В соответствии с санитарными нормами и правилами все конструкции, образующие собой помещение, делят на три основные группы:
– сгораемые;
– трудносгораемые;
– несгораемые.
Что относится к несгораемым материалам?
В первую очередь, несгораемыми являются естественные и искусственные неорганические материалы, которые достаточно часто используют при строительстве домов. В эту группу входят металлы, гипсовые и гипсоволокнистые плиты. Однако в последнем случае нужно оговорится, так как несгораемыми подобные материалы будут лишь в том случае, если в них содержится не более 8 % от их массы органического вещества. Также несгораемыми являются минераловатные плиты, изготовленные на синтетической, крахмальной или битумной базе, в случае если ее содержание не более 6 % относительно всей массы плиты.
Какие материалы являются трудносгораемыми?
Трудносгораемыми принято называть материалы, которые содержат в своем составе как сгораемые, так и несгораемые вещества. К этим материалам можно отнести асфальтный бетон, гипсовые и бетонные материалы (в том случае, если в них содержится более 8 % массы органического наполнителя), разного рода минераловатные плиты, изготовленные на базе битумной связки. При этом битума должно быть от 7 до 15 % по массе. Также к этим материалам нужно отнести глиносоломенные материалы, плотность которых составляет 900 кг/м3 или даже больше, войлок, тщательно пропитанный глиняным раствором.
К трудносгораемым материалам может быть отнесена и древесина, которую предварительно тщательно пропитали антипиренами, цементный фибролит и различные полимерные материалы.
Какие материалы являются сгораемыми?
Сгораемыми принято считать все органические материалы, не отвечающие требованиям, которые предъявляются к несгораемым или трудносгораемым строительным материалам.
Какие требования предъявляются к помещениям?
Если следовать правилам установки электроприборов, то помещения, где используются различные силовые или осветительные электрические системы, электроприборы, различные конструкции с электрическим приводом, подразделяют на несколько групп:
– сухие;
– нормальные;
– влажные;
– сырые;
– особо сырые;
– жаркие;
– пыльные;
– помещения с химически активной средой;
– пожароопасные помещения;
– взрывоопасные помещения.
К сухим принято относить такие помещения, в которых относительная влажность воздуха не больше 60 %.
Нормальные – это помещения, где поддерживается достаточный уровень влажности, а также не наблюдается условий типа «особо сырые», «жаркие» или «пыльные».
Влажными считают такие помещения, где влажность воздуха находится в пределах от 60 до 75 %. Водяной пар или влага в подобном помещении выделяются в течение небольшого промежутка времени и в незначительном количестве.
Сырыми называют помещения, если в них влажность воздуха более 75 %. Особо сырыми принято считать такие помещения, влажность в которых приближается к 100 %. Такое помещение распознать очень просто – на стенах, полу и потолке просматриваются капли конденсировавшейся жидкости.
Если вы собираетесь проводить электричество в дачный домик, то есть он не будет отапливаться в течение зимнего периода времени, то в этом случае его помещения должны быть отнесены к категории «-влажные» или «сырые».
Если вы проживаете в частном доме, то, в принципе, в нем могут находиться помещения разных типов, как сухие, так и влажные, сырые, особо сырые.
В некоторых случаях встречаются даже пожароопасные. Вам придется учитывать все эти моменты, когда вы будете прокладывать в своем доме электрическую проводку, так как у каждого вида данных помещений имеются свои особенности в этом плане.
Какие бывают помещения с точки зрения электробезопасности?
В зависимости от сочетаний факторов окружающей среды помещения, например от показателей влажности, уровня температуры, а также от того, проводят ли полы электрический ток, помещения можно условно разделить на несколько групп.
1. Помещения, в которых нет повышенной опасности поражения электрическим током.
2. Помещения с незначительной опасностью. Они определяются тем, что в них соблюдается одно или сразу несколько условий, из-за которых возникает опасность поражения электрическим током. Например, такими условиями могут быть: сырость, наличие пыли, проводящей через себя электрический ток, полы, изготовленные из проводниковых материалов, например из металла, земли, железобетона, кирпича и т. д., достаточно большая температура. Кроме того, одним из вероятных условий поражения человека электрическим током может стать возможность его одновременного прикосновения к заземленным элементам строения, аппаратам и механизмам, а также к металлическим корпусам электрооборудования.
3. Особо опасные помещения. В таких помещениях риск получить удар электрическим током возрастает в несколько раз. Особо опасное помещение определяется наличием как минимум одного из условий, которые создают эту увеличенную опасность: особо сырые помещения, а также одно или несколько условий из предыдущего пункта.
Как правильно на чертеже изобразить схему электропроводки?
В большинстве случаев схемы электропроводок в квартире или доме выполняются отдельно для каждого этажа (если их несколько), при этом они делаются в масштабе 1:100 или 1:200.
Наружная электропроводка не требует слишком подробного вычерчивания, поэтому ее можно схематично изображать в масштабе 1:500 или 1:1000. Все элементы электропроводки имеют свое схематичное изображение на чертеже.
На плане электрическая проводка должна быть показана в однолинейном исполнении. Непосредственно рядом с линиями указывают марку и сечение кабеля или провода, а также условно обозначают, как будет проложен кабель:
– Т – в металлической трубе;
– П – в пластмассовой трубе;
– Мр – в гибком металлическом рукаве;
– И – на изоляторах;
– Р – на роликах;
– Тс – на тросах.
Количество жил в проводе, а также площадь их сечения показывают на чертеже через произведение. Допустим, если вы встретили обозначение ПВ2 (1х2,5), то это сообщит вам о том, что на чертеже изображены два одножильных провода марки ПВ, а сечение токоведущей жилы будет составлять 2,5 мм. Если проводов более двух, то их нужно обозначать с помощью засечек под углом 45°.
В случае если в схеме будет приведен светильник, то в виде дроби нужно указать мощность лампы (она находится в числителе), а также высоту нахождения этого осветительного прибора над полом (в знаменателе).
В виде примера на рис. 1 изображена общая схема жилого частного дома вместе с блоком хозяйственных построек.