355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее » Текст книги (страница 6)
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
  • Текст добавлен: 28 марта 2017, 03:30

Текст книги "Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее"


Автор книги: авторов Коллектив


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 44 страниц) [доступный отрывок для чтения: 16 страниц]

Полезная примесь

В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре – 0,03%, селена всего – 10-5%, теллура же еще на порядок меньше – 10-6%. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы – как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом, серебром, медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.

В СССР известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.

Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера выпадает осадок – шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.

Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но – в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты – селенистую H2SeO3 и теллуристую H2TeO3. Если через этот раствор пропустить сернистый газ SO2, произойдут реакции

H2SeO3 + 2SO4 + H2O → Se↓ + 2H2SO4,
H2TeO3 + 2SO2 + H2O → Te↓ + 2H2SO4.

Теллур и селен выпадают одновременно, что весьма нежелательно – они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.

Так выглядит теллур 

Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.

Теллур вреден

Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об элементе № 52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней – именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.

И сам теллур и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементным теллуром – тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.

При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой, а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика – это надежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.

Элемент № 52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки – сосредоточенного внимания.

ВНЕШНИЙ ВИД ТЕЛЛУРА. Кристаллический теллур больше всего похож на сурьму. Цвет его – серебристо-белый. Кристаллы – гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.

ДВУХЦВЕТНЫЙ АНГИДРИД. Как и положено аналогу серы, теллур проявляет валентности 2-, 4+ и 6+ и значительно реже 2+. Моноокись теллура TeO может существовать лишь в газообразном виде и легко окисляется до TeO2. Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733°C; оно имеет полимерное строение, молекулы которого построены так:

В воде двуокись теллура почти не растворяется – в раствор переходит лишь одна часть TeO2 на 1,5 млн. частей воды и образуется раствор слабой теллуристой кислоты H2TeO3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты H6TeO6. Эту формулу (а не H2TeO4) ей присвоили после того, как были получены соли состава Ag6TeO6 и Hg3TeO6, хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид TeO3 в воде практически не растворяется. Это вещество существует в двух модификациях – желтого и серого цвета: α-ТеO3 и β-TeO3. Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.

ВТОРОЕ ИСКЛЮЧЕНИЕ. При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура – 127,61, а иода – 126,91. Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в правильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.

Кстати, об изотопах. Сейчас известно 32 изотопа элемента № 52. Восемь из них – с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 – стабильны. Последние два изотопа – самые распространенные: 31,79 и 34,48% соответственно.

МИНЕРАЛЫ ТЕЛЛУРА. Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента № 52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe2 и креннерит (Au, Ag) Te2, входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют – весь промышленный теллур является популярным продуктом переработки руд других металлов.

ТЕЛЛУР ВЫСОКОЙ ЧИСТОТЫ. Именно в таком виде элемент № 52 нужен полупроводниковой технике. Получить же высокочистый теллур очень и очень непросто: до последнего времени выручала лишь многократная вакуумная перегонка с последующей зонной плавкой. Правда, в 1980 г. журнал «Цветные металлы» сообщил о новом, чисто химическом способе получения теллура высокой чистоты, разработанном советскими химиками. С некоторыми производными моноазина теллур образует такие комплексные соединения, которые нацело отделяются от соединений магния, селена, алюминия, мышьяка, железа, олова, ртути, свинца, галлия, индия и еще по меньшей мере десятка элементов. В результате порошок теллура, полученный через моноазиновые комплексы, оказывается чище, чем полупроводниковый теллур, прошедший тройную вакуумную дистилляцию и 20 циклов зонной перекристаллизации.

Иод

С иодом знакомы все. Порезав палец, мы тянемся к склянке с подом, точнее с его спиртовым раствором…

Тем не менее этот элемент в высшей степени своеобразен и каждому из нас, независимо от образования и профессии, приходится открывать его для себя заново не один раз. Своеобразна и история этого элемента.

Первое знакомство

Иод был открыт в 1811 г. французским химиком-технологом Бернаром Куртуа (1777–1838), сыном известного селитровара. В годы Великой французской революции он уже помогал отцу «извлекать из недр земли основной элемент оружия для поражения тиранов»[3]3
  Цитируется один из циркуляров того времени. Целиком цитируемая фраза переводится так: «Те, кто пренебрег бы обязанностью извлекать из недр земли основной элемент оружия для поражения тиранов, были бы подлецами или контрреволюционерами». Элементом (не в химическом смысле, разумеется) здесь названа селитра KNO3, доля которой в составе черного пороха – 75%. Остальное – уголь и сера поровну.


[Закрыть]
, а позже занялся селитроварением самостоятельно.

В то время селитру получали в так называемых селитряницах, или буртах. Это были кучи, сложенные из растительных и животных отбросов, перемешанных со строительным мусором, известняком, мергелем. Образовавшийся при гниении аммиак окислялся микроорганизмами сперва в азотистую HNO2, а затем в азотную HNO3 кислоту, которая реагировала с углекислым кальцием, превращая его в нитрат Ca(NO3)2. Его извлекали из смеси горячей водой, а после добавляли поташ. Шла реакция

Ca (NO3)2+K2CO3 → 2KNO3+CaCO3.

Раствор нитрата калия сливали с осадка и упаривали. Полученные кристаллы калиевой селитры очищали дополнительно перекристаллизацией.

Куртуа не был простым ремесленником. Проработав три года в аптеке, он получил разрешение слушать лекции по химии и заниматься в лаборатории Политехнической школы и Париже у знаменитого Фуркруа. Свои познания он приложил к изучению золы морских водорослей, из которой тогда добывали соду. Куртуа заметил, что медный котел, в котором выпаривались зольные растворы, разрушается слишком быстро. В маточном растворе после упаривания и осаждения кристаллических сульфатов натрия и калия оставались их сульфиды и, видимо, что-то еще. Добавив к раствору концентрированной серной кислоты, Куртуа обнаружил выделение фиолетовых паров. Не исключено, что нечто подобное наблюдали коллеги и современники Куртуа, но именно он первым перешел от наблюдений к исследованиям, от исследований – к выводам.

Портрет первооткрывателя иода Бернара Куртуа не сохранился. Сохранился, однако, этот любопытный документ – расписка, написанная Бернаром Куртуа за отца 29 июня 1794 г. Вот ее перевод:

Я получил от Коммуны Доржё 4 бочки селитряного рассола, который они извлекли из своих земель и просили меня принять, так как у них нет никого, кто умел бы извлечь из него селитру.

Дижон, 11 мессендора, года второго единой и неделимой Республики.
Б. Куртуа, за отца 

Вот эти выводы (цитируем статью, написанную Куртуа): «В маточном растворе щелока, полученного из водорослей, содержится достаточно большое количество необычного и любопытного вещества. Его легко выделить. Для этого достаточно прилить серную кислоту к маточному раствору и нагреть его в реторте, соединенной с приемником. Новое вещество… осаждается в виде черного порошка, превращающегося при нагревании в пары великолепного фиолетового цвета. Эти пары конденсируются в форме блестящих кристаллических пластинок, имеющих блеск, сходный с блеском кристаллического сульфида свинца… Удивительная окраска паров нового вещества позволяет отличить его от всех доныне известных веществ, и у него наблюдаются другие замечательные свойства, что придает его открытию величайший интерес».

В 1813 г. появилась первая научная публикация об этом веществе, его стали изучать химики разных стран, в том числе такие светила науки, как Жозеф Гей-Люссак и Хэмфри Дэви. Год спустя эти ученые установили элементарность вещества, открытого Куртуа, и Гей-Люссак назвал новый элемент иодом – от греческого ιοηιδες – темно-синий, фиолетовый.

Свойства обычные и необычные

Иод – химический элемент VII группы периодической системы. Атомный номер – 53. Атомная масса – 126,9044. Галоген. Из имеющихся в природе галогенов – самый тяжелый, если, конечно, не считать радиоактивный короткоживущий астат. Практически весь природный иод состоит из атомов одного-единственного изотопа с массовым числом 127. Радиоактивный иод-125 образуется в ходе естественных радиоактивных превращений. Из искусственных изотопов иода важнейшие – иод-131 и иод-133; их используют в медицине.

Молекула элементного иода, как и у прочих галогенов, состоит из двух атомов. Иод – единственный из галогенов – находится в твердом состоянии при нормальных условиях. Красивые темно-синие кристаллы иода больше всего похожи на графит. Отчетливо выраженное кристаллическое строение, способность проводить электрический ток – все эти «металлические» свойства характерны для чистого иода.

Но, в отличие от графита и большинства металлов, иод очень легко переходит в газообразное состояние. Превратить иод в пар легче даже, чем в жидкость.

Чтобы расплавить иод, нужна довольно низкая температура: + 113,5°C, но, кроме того, нужно, чтобы парциальное давление паров иода над плавящимися кристаллами было не меньше одной атмосферы. Иными словами, в узкогорлой колбе иод расплавить можно, а в открытой лабораторной чашке – нельзя. В этом случае пары иода не накапливаются, и при нагревании иод возгонится – перейдет в газообразное состояние, минуя жидкое, что обычно и происходит при нагревании этого вещества. Кстати, температура кипения иода ненамного больше температуры плавления, она равна всего 184,35°C.

Но не только простотой перевода в газообразное состояние выделяется иод среди прочих элементов. Очень своеобразно, например, его взаимодействие с водой.

Элементный иод в воде растворяется неважно: при 25°C лишь 0,3395 г/л. Тем не менее можно получить значительно более концентрированный водный раствор элемента № 53, воспользовавшись тем же нехитрым приемом, который применяют медики, когда им нужно сохранить подольше йодную настойку (3– или 5%-ный раствор иода в спирте): чтобы йодная настойка не выдыхалась, в нее добавляют немного иодистого калия KI. Это же вещество помогает получать и богатые иодом водные растворы: иод смешивают с не слишком разбавленным раствором иодистого калия.

Молекулы KI способны присоединять молекулы элементного иода. Если с каждой стороны в реакцию вступает по одной молекуле, образуется красно-бурый трииодид калия. Йодистый калий может присоединить и большее число молекул иода, в итоге получаются соединения различного состава вплоть до KI9. Эти вещества называют полииодидами. Полииодиды нестойки, и в их растворе всегда есть элементный иод, причем в значительно большей концентрации, чем та, которую можно получить прямым растворением иода.

Во многих органических растворителях – сероуглероде, керосине, спирте, бензоле, эфире, хлороформе – иод растворяется легко. Окраска неводных растворов иода не отличается постоянством. Например, раствор его в сероуглероде – фиолетовый, а в спирте – бурый. Чем это объяснить?

Очевидно, фиолетовые растворы содержат иод в виде молекул I2. Если же получился раствор другого цвета, логично предположить существование в нем соединений иода с растворителем. Однако не все химики разделяют эту точку зрения. Часть их считает, что различия в окраске йодных растворов объясняются существованием разного рода сил, соединяющих молекулы растворителя и растворенного вещества.

Фиолетовые растворы иода проводят электричество, так как в растворе молекулы I2 частично диссоциируют на ионы I+ и I-. Такое предположение не противоречит представлениям о возможных валентностях иода. Главные валентности его: 1– (такие соединения называют иодидами), 5+ (иодаты) и 7+ (периодаты). Но известны также соединения иода, в которых он проявляет валентности 1+ и 3+, играя при этом роль одновалентного или трехвалентного металла. Есть соединение иода с кислородом, в котором элемент № 53 восьмивалентен, – IO4.

Но чаще всего иод, как и положено галогену (на внешней оболочке атома семь электронов), проявляет валентность 1-. Как и другие галогены, он достаточно активен – непосредственно реагирует с большинством металлов (даже благородное серебро устойчиво к действию иода лишь при температуре до 50°C), но уступает хлору и брому, не говоря уже о фторе. Некоторые элементы – углерод, азот, кислород, сера, селен – в непосредственную реакцию с иодом не вступают даже при высоких температурах.

Меньше, чем лютеция

Иод – элемент достаточно редкий. Его кларк (содержание в земной коре в весовых процентах) – всего 4∙10-5%. Его меньше, чем самых труднодоступных элементов семейства лантаноидов – тулия и лютеция.

Есть у иода одна особенность, роднящая его с «редкими землями», – крайняя рассеянность в природе. Будучи далеко не самым распространенным элементом, иод присутствует буквально везде. Даже в сверхчистых, казалось бы, кристаллах горного хрусталя находят микропримеси пода. В прозрачных кальцитах содержание элемента № 53 достигает 5∙10-6%. Иод есть в почве, в морской и речной воде, в растительных клетках и организмах, животных. А вот минералов, богатых иодом, очень мало. Наиболее известный из них – лаутарит Ca(IO3)2. Но промышленных месторождений лаутарита на Земле нет.

Чтобы получить иод, приходится концентрировать природные растворы, содержащие этот элемент, например воду соленых озер или попутные нефтяные воды, или перерабатывать природные концентраторы иода – морские водоросли. В тонне высушенной морской капусты (ламинарии) содержится до 5 кг иода, в то время как в тонне морской воды его всего лишь 20–30 мг.

Как и большинство жизненно важных элементов, иод в природе совершает круговорот. Поскольку многие соединения иода хорошо растворяются в воде, иод выщелачивается из магматических пород, выносится в моря и океаны. Морская вода, испаряясь, подымает в воздух массы элементного иода. Именно элементного: соединения элемента № 53 в присутствии углекислого газа легко окисляются кислородом до I2.

Ветры, переносящие воздушные массы с океана на материк, переносят и иод, который вместе с атмосферными осадками выпадает на землю, попадает в почву, грунтовые воды, в живые организмы. Последние концентрируют иод, но, отмирая, возвращают его в почву, откуда он снова вымывается природными водами, попадает в океан, испаряется, и все начинается заново. Это лишь общая схема, в которой опущены все частности и химические преобразования, неизбежные па разных этапах этого вечного коловращения.

А изучен круговорот иода очень хорошо, и это не удивительно: слишком велика роль микроколичеств этого элемента в жизни растений, животных, человека…

Схема одного из распространенных методов получения иода – из буровой воды воздушной десорбцией. Так же добывают и аналог иода бром.

1 – буровая вода; 2 – кислота; 3 – башня подкисления и окисления (хлоратор); 4 – хлор; 5 – башня отдувки элементного иода (десорбер); 6 – воздух; 7 – сернистый газ; 8 – уловитель иода (адсорбер); 9 – иодноватистая и серная кислоты (сорбент); 10 – сборник сорбента; 11 – кристаллизатор (здесь иод выделяется из сорбента); 12 – иод-сырец; 13 – безиодная буровая вода

Биологические функции иода

Они не ограничивается йодной настойкой. Не будем подробно говорить о роли иода в жизни растений – он один из важнейших микроэлементов, ограничимся его ролью в жизни человека.

Еще в 1854 г. француз Шатен – превосходный химик– аналитик – обнаружил, что распространенность заболевания зобом находится в прямой зависимости от содержания иода в воздухе, почве, потребляемой людьми пище. Коллеги опротестовали выводы Шатена; более того, Французская академия наук признала их вредными. Что же касается происхождения болезни, то тогда считали, что ее могут вызвать 42 причины – недостаток иода в этом перечне не фигурировал.

Прошло почти полстолетия, прежде чем авторитет немецких ученых Баумана и Оствальда заставил французских ученых признать ошибку. Опыты Баумана и Оствальда показали, что щитовидная железа содержит поразительно много иода и вырабатывает иодсодержащие гормоны. Недостаток иода вначале приводит лишь к небольшому увеличению щитовидной железы, но, прогрессируя, эта болезнь – эндемический зоб – поражает многие системы организма. В результате нарушается обмен веществ, замедляется рост. В отдельных случаях эндемический зоб может привести к глухоте, к кретинизму… Эта болезнь больше распространена в горных районах и в местах, сильно удаленных от моря, а таких мест на нашей Земле великое множество.

О широком распространении болезни можно судить даже по произведениям живописи. Один из лучших женских портретов Рубенса «Соломенная шляпка». У красивой женщины, изображенной на портрете, заметна припухлость шеи (врач сразу сказал бы: увеличена щитовидка). Те же симптомы и у Андромеды с картины «Персей и Андромеда». Признаки йодной недостаточности видны также у некоторых людей, изображенных на портретах и картинах Рембрандта, Дюрера, Ван-Дейка…

В нашей стране, большинство областей которой удалены от моря, борьба с эндемическим зобом ведется постоянно – прежде всего средствами профилактики. Простейшее и надежнейшее средство – добавка микродоз иодидов к поваренной соли.

Интересно отметить, что история лечебного применения иода уходит в глубь веков. Целебные свойства веществ, содержащих иод, были известны за 3 тыс. лет до того, как был открыт этот элемент. Китайский кодекс 1567 г. до н.э. рекомендует для лечения зоба морские водоросли…

Антисептические свойства иода в хирургии первым использовал французский врач Буанэ. Как ни странно, самые простые лекарственные формы иода – водные и спиртовые растворы – очень долго не находили применения в хирургии, хотя еще в 1865–1866 гг. великий русский хирург Н.И. Пирогов применял йодную настойку при лечении ран.

Приоритет подготовки операционного поля с помощью йодной настойки ошибочно приписывается немецкому врачу Гроссиху. Между тем еще в 1904 г., за четыре года до Гроссиха, русский военврач Н.П. Филончиков в своей статье «Водные растворы иода как антисептическая жидкость в хирургии» обратил внимание хирургов на громадные достоинства водных и спиртовых растворов иода именно при подготовке к операции.

Надо ли говорить, что эти простые препараты не утратили своего значения и поныне. Интересно, что иногда йодную настойку прописывают и как внутреннее: несколько капель на чашку молока. Это может принести пользу при атеросклерозе, но нужно помнить, что иод полезен лишь в малых дозах, а в больших он достаточно токсичен.


    Ваша оценка произведения:

Популярные книги за неделю