355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Чего не знает современная наука » Текст книги (страница 16)
Чего не знает современная наука
  • Текст добавлен: 8 октября 2016, 11:16

Текст книги "Чего не знает современная наука"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 16 (всего у книги 38 страниц)

Запах как паспорт

Что нам известно об окружающих запахах? Есть приятные и не очень, есть резкие и слабые… Для ученого-химика за запахом кроятся вещества, состоящие порою из достаточно простых молекул. А для биолога запах – это сигнал, посылаемый живыми организмами с помощью специальных веществ – феромонов. Пахучими химическими сигналами пользуются насекомые, подавляющее большинство животных, а также водоросли и даже низшие грибы. Сегодня ученые приходят к выводу о наличии «запахового паспорта», в котором «записаны» вид, пол и индивидуум.

Само слово «феромон» означает на древнегреческом «переносчик возбуждения». Исследования последних лет позволили обнаружить не только половые феромоны, но и феромоны агрессии, тревоги, а также следовые феромоны, которые предназначены для разметки территории и направления движения особей.

О том, что насекомые способны запахом привлекать особей противоположного пола, было известно еще более ста лет назад. Самцы махаона прилетают на запах самки за несколько километров. Для этого на голове насекомых есть специальные «запахоуловители» – антенны. У бабочек пядениц бывают самки, которые не имеют крыльев. Вылупившись, они так и сидят на стволах деревьев. Но эти бабочки издают очень сильный запах, и крылатые самцы сами прилетают к бескрылым самкам. Количества молекул феромона, вызывающих хемосигнал, поразительно малы. Уровень запаховой чувствительности недостижим для химических методов анализа и лучших масс-спектрометрических исследований. Например, самка непарного шелкопряда выделяет 0,01 мг аттрактанта. Он распространяется полосой 200 м на расстояние в несколько километров. Несколько тысяч молекул уже вызывают поведенческую реакцию! Феромонная коммуникация, по-видимому, более актуальна для ночных бабочек. Дневные бабочки видят друг друга по ярким крыльям, а вот ночью, когда темно, запах – одна из немногих возможностей найти друг друга. Современные энтомологи предполагают, и не без оснований, что механизм регуляции численности конкретного вида, основанный на хорошо известной из школьных учебников схеме «хищник – жертва»: хищник размножился – жертва пошла на убыль, жертвы стало мало – хищнику нечем питаться и он сбавляет численность и т. д., не является единственным. Дело в том, что численности хищника и жертвы плохо коррелируют: большие вспышки численности сменяются глубокой депрессией с некоторым запозданием. Тогда что же, если не эта привычная для нас схема? Ученые серьезно заговорили о том, что нарушение хемокоммуникации полов посредством химических сигналов может инициировать резкое изменение численности вида в ту или другую сторону. Так, чрезмерно высокая концентрация полового феромона в воздухе дезориентирует полет самца, и он не находит самку.

Есть и другой пример, который говорит не в пользу модели «хищник-жертва». Последние научные эксперименты с грызунами показали, что наряду с отпугивающим действием запах домашней кошки вызывает также значительные изменения репродуктивной функции грызунов: замедляется половое созревание хомячков, у мышей снижается размер помета и массы новорожденных, а соотношение полов в пометах сдвигается в пользу самцов.

В водной среде «узы» создаются тоже посредством хемокоммуникации. В аквариум, где находился байкальский бычок – желтокрылка, достаточно было капнуть одну капельку воды из другого аквариума, в котором жила самка бычка, чтобы через секунду бычок начал активно ее искать. Причем капали не рядом с бычком, а на существенном расстоянии от него. Получается, что достаточно всего несколько молекул феромонов, чтобы бычок их почувствовал. Это пример так называемого экологического хемомедиатора (передачи сигнала). Но феромоны можно назвать и хеморегулятором, так как они регулируют поведение конкретного живого существа. Можно привести другой пример воздействия феромонов-хеморегуляторов. Есть два типа рачков в биопланктоне. Одни – «мирные». Они едят только биопланктон, а другие – хищники. Они едят все, в том числе и первых рачков. Было обнаружено, что есть химические вещества, которые выделяют рачки-хищники, а мирные улавливают эти сигналы и, во-первых, стараются избегать хищников, а во-вторых, у мирных рачков даже строение меняется: вырастают шипы – острые иголки на поверхности тела, которые делают этих рачков менее легкой добычей.

О следовых феромонах написаны целые монографии, так как в следах, которые оставляют животные, содержится колоссальная информация. Например, муравей, нашедший пищу, возвращаясь в муравейник, метит тропинку определенным феромоном в очень маленьких концентрациях. Другие муравьи уже бегут по этому следу. Ученые шутят, что это – химическая нить Ариадны.

Запах хранит и «индивидуальную» информацию. Например, мыши распознают около 20 других особей «персонально». И в основном через химические сигналы. С помощью запаха мышь узнает, какого возраста встретившаяся ей особь, какая у нее степень тревожности, находится ли она в состоянии поиска партнера.

Саламандры (хвостатые амфибии) также способны отличить своего сородича от особи близкого вида, самца от самки, знакомую особь от незнакомой. Очень часто хвостатые амфибии имеют свои собственные участки, которые огораживают с помощью меток и защищают от других претендентов. Метки – это первый барьер для пришельца. Если он не обращает на них внимания, хозяин делает следующее предупреждение – принимает агрессивные позы. В ответ на них незваный гость может принять позу подчинения и отступить. В противном случае хозяин вынужден напасть на него. В своих баталиях саламандры стараются наносить удары по носовой части морды и по хвосту. Вероятно, потому, что железы, дающие возможность саламандрам метить свою территорию, находятся у основания хвоста и по бокам головы, на «щеках».

Последние научные эксперименты показали, что с помощью запаха грызуны способны различать пол не только своего, но и других видов, причем эта способность связана с воспитанием. Сирийские хомячки, выращенные вместе с крысами, запечатлевают запах приемных родителей и меняют обонятельную ориентацию: запах крыс становится для них более привлекательным. Но оказалось, что после первого «полового опыта» природа берет свое: хомячки «вспоминают» свой видовой запах.

Самыми сенсационными по праву считаются эксперименты, в которых было обнаружено влияние запаха больных грызунов на иммунную систему здоровых. При контактах группы животных, облученных ионизирующей радиацией (в нелетальных, то есть не вызывающих гибель, дозах), с необлученными у последних буквально через сутки отмечались нарушения иммунитета и ухудшение параметров крови. Как будто обе группы почти в равной степени подверглись ионизирующему воздействию. После нескольких лет упорного изучения обнаруженного эффекта удалось установить, что он обусловлен летучими веществами. Буквально на молекулы и атомы пришлось разбивать взятую на анализ мочу из облученного организма, чтобы выявить неизвестные ранее компоненты, которые отсутствуют у здоровых животных, но воспринимаются их обонянием и индуцируют опосредованные нарушения иммунологической реактивности и содержания некоторых элементов крови.

Сегодня учеными уже установлено, что механизмы восприятия запаха у различных видов позвоночных, насекомых и моллюсков одинаковы, хотя степень чувствительности может сильно различаться. По-видимому, запах может анализироваться с помощью весьма ограниченного набора основных принципов. Однако ученые до сих пор рассуждают о том, как идет развитие систем восприятия запаха: по сходному плану, под давлением естественного отбора или оно в основном запрограммировано в давно существующих генах и только развертывается в более или менее совершенной форме у животных разного уровня? Такой вопрос сейчас не выглядит крамольным и имеет под собой конкретные молекулярно-биологические основания. Например, совсем недавно ученые обнаружили удивительное сходство структуры генов, которые определяют развитие зрительной системы, но у неродственных животных: позвоночных и насекомых! Такое сходство трудно приписать происхождению от общего предка, поскольку в эволюции эти линии разошлись на довольно низком уровне и развивались параллельно. Возможно, это сходство – следствие какого-то принципа, мало еще учтенного современной биологией. Аналогичные вопросы стоят и в области изучения эволюции систем запаха. К тому же, анализ запаховой рецепции достиг уровня, позволяющего обсуждать механизмы процессов запахового восприятия на молекулярном плане.

Елена Белега, канд. физ. – мат. наук

Ритмы и циклы

Задумываясь о том, что такое ритм, в первую очередь мы представляем себе временные промежутки между событиями. Регулярность и периодичность их следования мы часто склонны считать гармонией, а неправильность и хаотичность – диссонансом. Проще всего услышать ритм в музыке – и структура музыкального произведения, и длительность, и высота звучащих нот воспринимаются нами как непосредственное проявление времени.

Но ритм не обязательно связан со временем. Ритмичность, «правильность» следования можно увидеть и, к примеру, в законах строения вещества. Пожалуй, самым ярким примером этому служит периодический закон Менделеева.

Это величайшее открытие прошлого столетия стало логичным завершением трудов многих химиков, пытавшихся отыскать «путеводную нить» в невообразимом разнообразии химических элементов, опираясь на свойства многих из них.

Идея создания периодической таблицы, что называется, витала в воздухе: попытки систематизации химических элементов предпринимались многими учеными.

В 1817 году немецкий химик Иоганн Вольфганг Деберейнер выделил несколько групп по три элемента, обладающих сходными физическими и химическими свойствами. Атомные массы триад тоже подчинялись определенному правилу: масса среднего элемента примерно составляла среднее арифметическое масс самого легкого и самого тяжелого элементов триады.

В 1863 году Де Шонкуртуа расположил атомные массы по спирали на поверхности цилиндра, разделенной на вертикальные полосы. При этом элементы со сходными свойствами оказались расположенными на одной вертикали.

Джон Ньюлендс заметил, что если расположить элементы в порядке возрастания их массы, то каждый восьмой элемент будет чем-то подобен. Ньюлендс назвал это правило «законом октав» по аналогии с музыкальной октавой. Но его системе следовали только первые 17 элементов.

Периодическая система была создана Д. И. Менделеевым в 1869 году. Почти одновременно с этим, в 1870 году, Лотар Мейер продемонстрировал периодичность химических свойств элементов в зависимости от их атомной массы.

А как нам почувствовать этот ритм – ритм физической формы?

Современная наука представляет себе строение атома так: в центре атома находится положительно заряженное ядро, вокруг которого на электронных оболочках располагаются электроны. Заряд ядра уравновешивается общим числом электронов. Сами же электронные оболочки имеют свою тонкую структуру, так называемые уровни, на которых и поселяются электроны. Есть определенные физические законы заселения уровней электронами. Но самое важное для нас сейчас то, что физико-химические свойства элементов определяются прежде всего заселенностью оболочки с самым высоким уровнем энергии, так называемой конфигурацией. Как правило, это самая внешняя оболочка, а строение начинается и завершается в каждом горизонтальном ряду – периоде. Итак, у элементов одного периода разная конфигурация, но одно и то же количество электронных оболочек и одинаковое строение завершенных, внутренних оболочек (остова).

По мере развития Вселенной происходит эволюция химических элементов: от легкого водорода – к более тяжелым. Постепенно, шаг за шагом увеличивается заряд ядра, соответственно увеличивается и население электронных оболочек. Причем электроны могут появляться лишь на незавершенной оболочке. Так же постепенно (по мере роста заряда ядра) изменяются и свойства элементов.

Стремление к совершенству, которое выражается в завершенности всех электронных оболочек, настолько сильно, что именно оно определяет многие химические свойства элементов. Самые первые элементы каждого периода имеют по одному электрону на достраиваемой оболочке. До ее завершения им еще далеко. Этим элементам проще «отдать» свой единственный электрон в химических взаимодействиях, что они и делают, бурно реагируя даже с водой. По мере завершения оболочки элементы уже не так легко расстаются с электронами, а предпоследним элементам каждого периода уже проще «отобрать» недостающий электрон, нежели отдать свой. Стремясь к совершенству, они также бурно вступают в реакции. У последних элементов каждого периода все оболочки завершены, все уровни «заселены». Они уже «совершенны» и практически не вступают в реакции.

Но природа в своем творчестве не терпит остановок, химическая эволюция продолжается, и электроны следующих элементов вынуждены заселять новые оболочки. При этом они с готовностью оставляют «свое» ядро, вступая в реакции, результатом которых является совершенство завершенных оболочек, но уже в химических соединениях. До сих пор остается загадкой, будет ли когда-либо завершена вся Периодическая таблица и какой максимальной массой может обладать ядро.

Элементы со сходной конфигурацией, но разным остовом образуют вертикальные столбцы Периодической системы – группы. Химические свойства элементов одной группы различаются только скоростью вступления в химические реакции: чем тяжелее ядро, тем менее ярко выражены свойства группы. Очень тяжелые элементы, находящиеся внизу таблицы, неустойчивы – радиоактивны.

Первые три периода в таблице короткие. А начиная с четвертого в ней появляются «лишние» элементы. Все они обладают очень похожими физическими свойствами, и в быту мы их часто называем металлами. Чем же они отличаются? Оказывается, самой «энергетичной» у них является не внешняя подоболочка, а предпоследняя, поэтому с ростом заряда ядра сначала завершается ее строение, а уже потом – строение самой внешней.

Ритмичность изменения свойств элементов, отраженная в периодической системе, настолько ярка, что по ней можно проследить их основные физико-химические свойства. Электропроводность, тип наиболее характерной химической связи для соединений элементов, тип образуемой кристаллической решетки – все эти и другие свойства элемента могут быть определены по его местонахождению в Периодической системе. Сразу после открытия периодического закона в таблице было несколько белых пятен, которые довольно быстро заполнились благодаря тому, что стало ясно, какими свойствами должны обладать еще не открытые элементы.

Стремясь охватить все проявления периодичности, многие исследователи создавали свои формы Периодической системы. Наиболее известными сейчас являются короткая (в ней группы и подгруппы расположены в одном столбце, но выделены разным цветом), длинная (подгруппы расположены в горизонтальных рядах между группами), и лестничная, придуманная Нильсом Бором.

Начав разговор о ритмичности в строении вещества, проявляющейся в Периодическом законе, через представление о химической эволюции мы вновь вернулись к ритму как свойству всех процессов, протекающих во времени. Ритм есть везде, где есть развитие, это одно из всеобщих свойств природы, подмеченное еще в древности. «Все есть вибрация и ритм», – гласит один из законов мифического Тота Гермеса. Ряд примеров, подтверждающих эту мысль, может привести и современная биология.

Чтобы разобраться в разнообразии природных объектов, наука стремится их как-то систематизировать, то есть подметить какие-то общие свойства и согласно им распределить объекты по группам. Чем более общим является признак, тем большую группу можно создать, а более мелкие, конкретные, уточняют родство объектов. Эти группы в биологии называют таксонами. Самый крупный таксон – это царство. Их всего четыре: животные, растения, микроорганизмы и грибы. Наиболее мелкими, то есть самыми «конкретными», таксонами являются род и вид. (Можно провести параллель с семьей и отдельным человеком.)

Существует закономерность проявления черт, присущих конкретному виду животных в их эмбриональном развитии. Самыми первыми проявляются черты таксона высшего ранга, потом – черты следующих, более мелких, и последними – черты вида. Так, например, в эмбриональном развитии млекопитающих первыми проявляются общие черты всех позвоночных животных. В ходе эмбриогенеза органы трансформируются, и зародыш постепенно приобретает конкретные черты вида, а также и собственные, индивидуальные. При этом стадии эмбрионального развития в ключевых стадиях как бы повторяют историю эволюции вида. Таким образом можно проследить эту историю, сопоставляя данные палеонтологии, эмбриологи и сравнительной анатомии. Конечно, не все так прямолинейно. И на любой стадии индивидуального развития могут произойти изменения, которые станут началом нового эволюционного этапа. Но они должны зафиксироваться на генетическом уровне, что, естественно, отразится на эмбриологическом развитии.

Но и сами генетические изменения тоже подчиняются некоторому ритму. В 1920 году Н. И. Вавиловым был открыт закон гомологических рядов наследственной изменчивости. Закон был сформулирован для растений, но применим он и к животному миру. Оказалось, что родственные и близкие роды и виды проявляют удивительную правильность при наследственных изменениях (мутациях). Зная измененные формы одних родов и видов, можно предсказать вариации формы у родственных им и начать искать их. Искать буквально – в природе или экспериментируя. Подобно периодическому закону при поиске неоткрытых химических элементов, закон гомологических рядов позволяет найти новые формы живых организмов, основываясь на их «структуре», то есть на строении их органов, окраске и т. д.

Как видно из этих примеров, развитие форм всех природных объектов происходит очень постепенно. Да, эволюция строения атомов элементов происходила при условиях, абсолютно не сравнимых с условиями развития живого мира на Земле. Но если для многих известных нам явлений можно сформулировать свои периодические законы, то как-то само собой возникает ощущение, что это проявление одного великого закона. Как его назовут в будущем, мы не знаем. Пока у нас есть только рабочее название: Его Величество Ритм.

Лада Терлова

Трансформация в природе, или Чудо возвращения к жизни

Мы привыкли, что все пребывает в движении: вселенная со всеми своими галактиками, Солнечная система с планетами и их спутниками… Смена времен года постоянно напоминает нам об изменениях в природе, и сами мы – свидетели и участники постоянного изменения: родившись, мы растем, потом мужаем, потом мудреем, потом уходим… но никогда не останавливаемся в движении.

Но так люди размышляли не всегда. Известен исторический анекдот, в котором античный философ Зенон в очередной раз взялся доказывать, что движения не существует. Тогда Антисфен – другой античный философ – принялся ходить вокруг него. Зенон не выдержал:

– Сделай милость, прекрати, постой спокойно хоть минутку.

– Ах, вот оно как! А кто с пеной у рта доказывал, что движения нет? – торжествовал Антисфен.

Сегодня мы уже другие и, пожалуй, не будем спорить, а согласимся с еще одним античным мыслителем, Гераклитом, что все течет и все изменяется. Но наше стремительное время порой заводит в тупик: изменений в жизни бывает так много, что начинаешь невольно подозревать и саму жизнь, и ее законы в некоторой непоследовательности. Однако и в этом античные греки навели определенный порядок. Аристотель, ученик Платона, в своей работе «Физика» разделил все возможные движения на четыре типа:

1. Изменение положения тел друг относительно друга.

2. Количественное изменение – рост, изменение размера.

3. Качественное изменение – изменение свойств.

4. Существенное изменение, которое есть разрушение и новое рождение.

Но Аристотель был мудр и не остановился на этом. Он серьезно задумывался над тем, что все изменения имеют свои причины и свою цель, свою направленность. Сегодня вопросы «почему?», «откуда?», «а дальше что?» мы склонны относить скорее к детским, но так уж ли они просты, как может показаться на первый взгляд?

Например, причины изменений, которые мы наблюдаем здесь, на Земле, покрыты поистине «звездной пылью». Откуда взялась эта таблица химических элементов, из которых «собрано» все в природе и в нас самих?

Рождение (или синтез) элементов происходило в звездах. Сама звезда рождается, когда в ней начинается превращение самого легкого элемента – водорода – в гелий. И для этого нужны особые условия, не реализуемые на Земле, а именно: высокие температуры и высокие давления.

Но и сами звезды бывают разные. Есть звезды первого поколения, в которых происходит синтез элементов до кислорода; в звездах второго поколения синтезируются элементы до железа, а в звездах третьего поколения – все дальнейшие.

У звезды тоже есть свой жизненный цикл. Когда он заканчивается, кольцеобразная оболочка звезды, состоящая из элементов и простых молекул, увеличивается, звезда затухает, вся эта кольцеобразная масса «схлопывается» и происходит взрыв – рождение сверхновой звезды. Все рожденное звездой вещество разлетается по Вселенной, и его частицы становятся самостоятельными кирпичиками для следующих звезд и других объектов.

Как же тогда быть со знаменитым изречением omnia transit – «все проходит»? Получается, что его никак невозможно трактовать как то, что все предается забвению. Вселенная находится в движении, в ней все идет своим путем: не исчезает, а изменяется, трансформируется. Слово «трансформация» пришло в наш язык от латинского transformatio и означает «преобразование, превращение».

Уйти, чтобы вернуться

Дмитрий Иванович Менделеев расположил все химические элементы, которые когда-то родились в звездах, а теперь «живут» здесь, на Земле, согласно их свойствам.

Взглянем на таблицу. По горизонтали элементы плавно изменяют свои химические и физические свойства: от ярко выраженных металлов (например, натрия) к диэлектрикам и благородным газам («благородными» их назвали из-за уникальной способности практически не менять свои свойства). При переходе на новый период мы возвращаемся опять к металлу, но с несколько усиленными качествами, и опять движемся по горизонтальному ряду к диэлектрику и далее – к благородному газу. Очевидна частичная повторяемость, но не полный возврат к старым свойствам: ведь каждый период начинается со щелочного металла, но более активного, чем на предыдущей ступени. И Дмитрий Иванович это заметил: его периодический закон состоит в периодическом возвращении к началу, к истокам. Вот и получается: чтобы идти вперед, надо вернуться.

Но периодическое повторение свойств на новом этапе происходит не только в химических элементах, но и в биологических системах.

Вернуться, чтобы уйти

В биологии был открыт биогенетический закон.

Кому не посчастливилось наблюдать, как из икринок появляются головастики, тот не оценит всего чуда этого процесса. Потому что развитие головастиками не заканчивается. Они трансформируются в лягушек. Но и не в этом все чудо! Ученые наблюдали ранние стадии развития рыб, земноводных, рептилий и млекопитающих… и обнаружили совершенно очевидное сходство их форм. Все сначала похожи на маленьких головастиков! Но в дальнейшем начинают проявляться индивидуальные черты каждого класса. Когда же все эти внешне одинаковые существа начинают трансформироваться в то, чем должны стать? Изменения накапливаются очень медленно, но наступает исключительный момент – «момент истины», когда каждое существо становится похожим на своих предков: становится тем, кем должно быть.

А что же человек?

Развитие зародыша, в том числе человеческого, – это чудо трансформации и особое таинство природы. Мы можем лишь наблюдать, как это происходит: как из одной клетки (зиготы, что означает «соединенные вместе»), получившейся в результате слияния двух клеток, возникает сложное целое. Прав был Аристотель, предположив четыре типа движения! Они все заключены в жизни одной маленькой клетки. Вначале из одной формируется множество клеток, представляющих собой некую аморфную массу. Потом начинают выделяться специальные клетки, которые потом станут тканями, органами и частями человеческого организма. Также возникает и некоторая система взаимосвязи органов, которая позволит разным частям стать единым целым.

Эмбрион человека растет и изменяет свою форму. Нам уже известно, что на каком-то этапе этого роста формируются жабры, хвост, а потом все это трансформируется. Клетки хвоста и жабр, «умирая», становятся строительным материалом, из которого зарождаются другие органы и ткани.

Родившийся человек продолжает движение. Мы меняем свое расположение, перемещаясь в пространстве в буквальном смысле слова. Внутри организма циркулируют жидкости, мигрируют клетки. Организм непрерывно растет! К примеру, рост волос – тоже проявление этого вида движения. Что же можно сказать о качественном изменении? Изо дня в день мы внешне вроде бы сильно и не меняемся. Но каждый день мы уже не совсем те, что были вчера… Наши клетки непрерывно возобновляются. Каждую минуту разрушаются миллиарды клеток, а из «израсходованного» материала тут же синтезируются новые.

Сегодня ученым хорошо известны циклы, согласно которым все в организме возобновляется. Даже столь прочная и стабильная костная ткань обновляется раз в 10–12 лет, и раз в 3–4 месяца происходит возобновление кальция, находящегося в костях: он переходит из кости в кровь и обратно.

Есть еще интересный пример возобновления. Если в организме гибнут клетки, то они должны чем-то замещаться. Стволовые клетки – это хорошо сформированный эволюцией «отряд быстрого реагирования», который при необходимости готов заменить клетки той или иной ткани. Скорее всего, о стволовых клетках Аристотель не знал, но обозначенный им тип движения, который сопровождается существенным изменением, – это, пожалуй, и о них в том числе. И в результате человеческий организм – это идеальный пример движения, как и другие живые существа!

Но взглянем на Землю. Хотя бы здесь все должно быть постоянно! Но даже материки, к которым мы привыкли за последние этак пару тысяч лет, и те непрерывно движутся.

Циклы глобальных масштабов

Сегодня в науке есть несколько теорий по поводу того, как сформировались континенты. И они не сильно отличаются от той картины, которая сохранилась в мифологии. Сегодня наука говорит о начальном едином континенте Пангее и окружающем его океане. В определенный момент Пангея раскалывается на отдельные блоки, и впоследствии все должно закончиться слиянием континентов в единый континент.

На протяжении истории Земли учеными фиксируются четыре таких цикла раскола и объединения континентов. Интересно, что если Земля сохранит такое движении и в дальнейшем, то через 50–60 млн лет положение материков будет таким, как на иллюстрирующей этот процесс картинке. Как можно предположить, будет происходить сближение Африканского континента с Евразией.

На первый взгляд может показаться, что это движение только механическое, то есть поменяется только взаиморасположение материков. Но это не совсем так. Когда материки сталкиваются, то формируются горы, а также изменяется магнитное поле Земли и, следовательно, меняется климат. Это приводит к изменению характеристик тех осадочных пород, которые образуются в соответствующем климате.

А внутри самой Земли непрерывно движется мантия: более легкие мантийные вещества поднимаются к поверхности. Больше всего таких явлений зарегистрировано на дне океана, и называется это подводным вулканизмом или гидротермами. Здесь лава прорывается на подводную поверхность и вступает во взаимодействие с водами океана: происходит встреча океанской воды и огня. Здесь-то как раз и осуществляется трансформация элементов, которые поступают из недр Земли вместе с магмой: возникают рудные минералы, различные газы. В глубинных гидротермах рождается и органическая жизнь.

На поверхности Земли тоже нет постоянства: лава прорывается через водную оболочку и выходит на поверхность. Именно такое вулканическое (магматическое) происхождение ученые предполагают у Исландии. Магматические породы разрушаются водными потоками, ветрами и превращаются в осадочные породы, сносятся водами в водоемы и там откладываются. Здесь тоже можно отметить, что сначала произошло разъединение, то есть некоторая дифференциация, а потом опять слияние в более мощную форму. Наконец, если осадочные породы погружаются на большие глубины, то под действием высоких температур они трансформируются и образуют метаморфические породы.

Рождение яшмы – только один поражающий пример процесса, сочетающего в себе все четыре типа движения в природе. Кремнезем, который является пеплом при вулканических извержениях, попадает в водоем, где образуется его водная форма – опал. Опал используется водными организмами – радиоляриями – для построения домиков. Когда радиолярии умирают, опал погружается на дно водоема, спрессовывается и из него рождается яшма прекрасной, причудливой формы.

Непостоянное в постоянном, или Из жизни минералов

Жизнь минералов тоже имеет свои циклы. Минералы рождаются в магматических расплавах, магматических очагах или водных растворах. Во время роста минерал стремится приобрести наиболее совершенную форму и чистоту – стать драгоценным камнем. Жизнь минерала продолжается многие миллионы лет. Как правило, она скрыта от глаз и протекает в глубинах Земли, в пещерах. А вот когда жизнь минерала заканчивается, он появляется на поверхности и… разрушается. Это и есть начало новой жизни. Если это растворенный минерал, то в какой-то момент появляется новый зародыш. Если минерал разрушен механически, то он даст начало осадочным горным породам. В этот момент минерал может даже восстановить свою форму, снова начать путь к совершенству. И возможен третий вариант – он может превратиться во что-то новое: в глубинах Земли это метаморфические горные породы. Под воздействием высокого давления и температуры минерал прекращает свое существование, трансформируясь в другой набор минералов, которые могут жить в новых условиях.

«Все течет, все изменяется»

Конечно, это о воде! Вот уж что-что, но не природную воду можно подозревать в отсутствии движения. Все реки текут в океаны – это теперь знает каждый младший школьник. Водою покрыто 75 % площади нашей планеты, и 97,6 % запасов воды на Земле сосредоточено в морях и океанах. Все четыре океана – Тихий, Атлантический, Индийский и Северный – связаны между собой морскими течениями. Поверхностные океанские воды перемещаются под действием ветра, глубинное движение океанов и морей вызвано разностью плотности воды: чем холоднее и солонее вода, тем она плотнее. В приполярных районах вода на поверхности охлаждается и становится еще более соленой и плотной. Эта плотная вода опускается на глубину и очень медленно – со скоростью несколько метров в день – течет в сторону экватора. Области интенсивного образования глубинных течений находятся близ Гренландии и в морях Уэдалла и Росса в Антарктике.


    Ваша оценка произведения:

Популярные книги за неделю