355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » «Открытия и гипотезы» №3, 2012 » Текст книги (страница 3)
«Открытия и гипотезы» №3, 2012
  • Текст добавлен: 7 октября 2016, 16:04

Текст книги "«Открытия и гипотезы» №3, 2012"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 3 (всего у книги 8 страниц)

Конец эпохи

Император, как и обещал, направил к печенегам послов, но договориться с кочевниками они не смогли или не захотели. Святослав же с войском, не зная об этом, начали путь домой. В районе днепровских порогов печенеги перекрыли русичам путь. Отягощенные добычей и не имея достаточных сил для успешного сопротивления, воины Святослава отступили на Белобережье, где и провели всю зиму. Местное население, очевидно, неспособно было прокормить такое количество гостей. Продовольствия просто не хватало на всех. Начался голод. Поэтому едва только весенняя погода позволила продолжать путь, русы двинулись вверх по Днепру.


Печенеги снова поджидали их на порогах. Князь принял бой, в котором погибли и он сам, и большая часть войска. Лишь немногим вместе со Свенельдом удалось пробиться и по суше вернуться в Киев.

Так закончилось время Святослава. Попытка создать империю от Волги до Дуная провалилась. Преемники князя были не в состоянии удерживать под своей властью территории бывшего Каганата. Владимир Святой, занявший трон через шесть лет после гибели отца, направил все усилия на дипломатическое сближение с Византией. Русь, уставшая от заморских походов, требовала от своего правителя не только и не столько воинских качеств (хотя их отсутствием Владимир тоже не страдал), но мудрой и продуманной политики управления. Именно в его эпоху (978 – 1015 гг.) будет налажено управление страной и создан административный аппарат, система сборов даней, реформы которой начались еще при Ольге, окончательно оформится в целенаправленную налоговую политику, Русь из разноплеменной общности окончательно станет государством. Викинги, которыми, по сути, были и Олег, и Игорь, и Святослав, из повседневной реальности в считанные годы отойдут в область преданий, легенд и анахронизмов.

А. Терещенко
ШУТОЧНЫЕ ЗАДАЧКИ
*********************************************************************************************

Загадки-шутки пригодятся в любой веселой компании, так как сложно догадаться какой же ответ, а над разгадкою будет смеяться каждый.

1. Копейка весит 1 г, а две копейки 2 г.

Что тяжелее 1 кг копеечных монет или полкило двухкопеечных монет?

2. Почему белые медведи не едят пингвинов?

3. Что вы можете найти в секундах, минутах и днях, но не в годах, декадах и веках?

4. На столе лежит 3 карандаша разной длины.

Подписка – надежный способ получения журнала!

В середине самый длинный карандаш. Как его удалить из середины, не трогая его?

5. На лугу пасутся две абсолютно одинаковые лошадки, с одинаковым аппетитом, в одно и то же время. Но у одной лошадки хвост вдвое короче. Какая лошадь больше съест травы?

6. Одно яйцо варится 3 минуты. Сколько будут вариться 2 яйца?


РЕАНИМАЦИЯ В ХОЛОДИЛЬНИКЕ
*********************************************************************************************

Группа, объединяющая ученых, клинических врачей и инженеров в Реанимационном центре Пенсильванского университета, работает над поиском методов возвращения к жизни пациентов, пробывших длительное время в состоянии клинической смерти.

По словам профессора реаниматологии доктора Хонглина Чжоу, смерть начинается на клеточном уровне. Каждая клетка имеет тугую внешнюю мембрану, которая служит для отделения содержимого от окружающей среды и фильтрации молекул, необходимых для ее существования. По мере приближения к гибели клетки, ее мембрана ослабевает. Когда проходимость мембраны достигает точки, когда содержимое клетки выходит наружу, ее судьба становится предрешенной. Объединить мертвые клетки наука сейчас не в состоянии. Однако выяснилось, что некоторые клетки могут оставаться живыми довольно долгое время, даже несмотря на резкую потерю доступа к кислороду.

Наиболее восприимчивыми к потере питания являются клетки головного мозга необратимые изменения в органе начинаются уже спустя 5-10 минут после остановки кровообращения. Более того, резкое поступление кислорода и питательных веществ к клеткам, лишенным их в течение длительного времени, ведет тех к неизбежному самоуничтожению.

Причины этого до конца не выяснены, однако ученые нашли способ, как продлить время жизни клеток. В 1999 году шведская студентка-медик Анна Багенхольм провалилась под лед. Более 40 минут друзья пытались вытащить ее, и сердце девушки остановилось. Спустя еще 40 минут на место прибыли медики, которые погрузили девушку на вертолет и начали реанимационные мероприятия. Сердце Анны вновь забилось только через 3 часа 55 минут после остановки, а со временем она почти полностью выздоровела.

Исследователи изучили ее случай и пришли к выводу, что, несмотря на столь долгое время пребывания в состоянии клинической смерти, биологическая смерть не наступила благодаря низкой температуре (по прибытию в больницу температура ее тела составляла всего 13 градусов). Таким образом, быстро снизив температуру тела пациента, врачи имеют больше времени для реанимации.


ТАБЛЕТКИ ТРЕЗВОСТИ НА ПОДХОДЕ
*********************************************************************************************

Экстракт плодоножек конфетного дерева (Hovenia dulcis, японское изюмное дерево) используется в Китае для лечения похмелья в течение по меньшей мере 500 лет. Сотрудники Калифорнийского университета в Лос-Анджелесе под руководством Цзин Лян исследовали активный компонент экстракта дигидромирицитина (ампелопсин) в эксперименте на крысах.

В ходе исследования ученые вводили животным количество алкоголя, эквивалентное 15–20 330-миллилитровым порциям пива, выпитым человеком в течение двух часов. Крысам из экспериментальной группы добавили к спирту амелопсин, а контрольная группа получала только алкоголь.

После инъекции животных клали на спину в V-образную люльку и фиксировали время, за которое они смогут перевернуться на лапы. У животных из контрольной группы это занимало в среднем 70 минут, в то время как экспериментальная группа справилась с задачей в среднем всего за пять минут.

В другом эксперименте дигидромирицитин предотвратил поведение, характерное для алкогольного опьянения и похмелья, у животных, находящихся в лабиринте. В частности, крысы из экспериментальной группы в отличие от контрольной не прятались в углах, а искали выход так же, как трезвые животные.

В ближайшее время исследователи рассчитывают приступить к испытаниям дигидроми-рицитина на людях, однако потенциальное практическое применение этого вещества уже вызвало опасения экспертов. Так, директор по клиническим вопросам американского

Национального исследовательского института злоупотребления алкоголем и алкоголизма Маркус Хайлиг заявил, что существование антидота («таблетки трезвости») может не снизить, а увеличить потребление спиртного. Когда человек может нейтрализовать действие выпитого, он меньше сдерживается, пояснил эксперт.

Подготовил Ф. Туров

ИЗ ЧЕГО ДЕЛАЮТ РАСТЕНИЯ
*********************************************************************************************

Садовод покупает черенок яблони; любитель узамбарских фиалок бережно несет домой мохнатый листок, подаренный единомышленником; в метре от тополя с обломанной вершиной из земли лезет целая роща молодых побегов – все это примеры вегетативного размножения у растений. А вегетативное размножение – это бесполое размножение, при котором растение-потомок генетически идентично материнскому.

«Химия и жизнь»

*********************************************************************************************

Все выполнимо на свете!

Словно молоденький ствол,

Раз под рукою поэта

Посох цветами зацвел

Новелла Матвеева

У многоклеточных животных вегетативное размножение – редкость, а в царстве растений оно широко распространено. Широко, однако, не повсеместно. Кто из нас не огорчался в детстве, когда узнавал, что сорванные полевые цветы не могут пустить корни и обязательно завянут! Некоторые растения ни в какую не желают размножаться вегетативно, другие «согласны» только на определенные способы (скажем, луковица, но не лист). Почему так и от чего это зависит – важный вопрос как для теоретической биологии, так и для практических нужд.

Зададим чисто теоретический вопрос: а каков минимальный размер этой самой многоклеточной части, способной дать жизнь новому растению? (Для практических целей, понятно – чем меньше, тем лучше.) Чисто теоретический ответ: в пределе должно хватить и одной клетки. В ней имеется вся необходимая генетическая информация, да и при половом размножении зародыш развивается из одной клетки, которая образована слиянием яйцеклетки и спермия, проникшего в завязь из пыльцевой трубки…

На самом деле в так называемом двойном оплодотворении у цветковых растений участвуют минимум пять клеток (яйцеклетка плюс один спермий дают зародыш, две полярные материнских клетки плюс еще один спермий – эндосперм, источник питательных веществ для зародыша в семени, подробности смотри в школьном учебнике ботаники). Как мы увидим далее, это важно. Но в принципе все верно: каждое живое существо, а значит, и каждое растение, от фиалки до секвойи, начиналось с единственной клетки. И даже десяток клеток с точки зрения быстрого и дешевого размножения выгоднее, чем целый клубень.

Лабораторные эксперименты подтвердили: целое растение можно вырастить из крохотного кусочка ткани in vitro – в пробирке, колбе или чашке Петри, в стерильных условиях. Эксплантом, то есть родоначальником культуры, может быть и почка, и побег, и фрагмент стебля или корня.

Идеи о возможности культивировать растительные клетки впервые возникли еще на рубеже XIX и XX веков, но, чтобы воплотить их в жизнь, потребовалось много экспериментов. Способность культур растительных тканей к неограниченному росту в 30-е годы показал французский исследователь Роже Готре и независимо от него – американец Филипп Уайт. (Пишут, что культура каллусной ткани моркови, полученная Готре, сохранила жизнеспособность до наших дней.)

К перспективной теме обратилось множество ученых по всему миру, и в следующие два десятилетия были достигнуты значительные успехи. Американский ученый Фредерик Стюард, работая с тканью моркови, получил из нее в 1958 году целые растения. В монографии Готре «Культура растительных тканей», вышедшей годом позже, упоминаются уже 142 вида высших растений, выращиваемых in vitro. Сегодня, если вы

наберете в окошке поисковика «тканевая культура», а лучше «tissue culture», то найдете подробные инструкции для учителей биологии, желающих повторить в классе опыты Готре и Стюарда, и сайты любителей редких растений, испытывающих на своих любимцах современные биотехнологии. Теперь это возможно, но тогда все было впервые.

Идея культуры растительных клеток кажется простой: возьмите кусочек растительной ткани, по возможности свободной от посторонних микроорганизмов, и поместите эксплант на специальную среду. Наибольшее распространение получила среда Мурасиге – Скуга (она названа в честь Тосио Мурасиге и Фольке Скуга, работавших в Висконсинском университете в Мэдисоне) и ее модификации. Среда содержит агар-агар (по консистенции она похожа на твердый холодец), сахарозу и минеральные вещества. В нее также добавляют антибиотики, чтобы подавить размножение бактерий, и, главное, растительные гормоны, или фитогормоны, – вещества, регулирующие рост и направление развития клеток.


Первое, что происходит с клетками в культуре, – дедифференциация. Они утрачивают характерные признаки клеток листа или корня и становятся «просто клетками», способными дать начало каждой из тканей растения. Фактически этому способствует само отделение кусочка ткани, освобождающее клетки от диктата организма.

Известно, что судьбу клетки в значительной мере определяют ее окружение, характер контактов с другими клетками, хотя механизм этого влияния изучен не до конца.

Многие растительные гормоны хорошо знакомы современным цветоводам и огородникам, и для них не будет неожиданностью, что клетки в культуре заставляет делиться определенная комбинация ауксинов и цитокининов. Сравнительно высокие концентрации ауксинов стимулируют рост, причем особенно активно влияют на корнеобразование. Гиббереллины также стимулируют рост, ускоряют развитие листвы, созревание семян. Абсцизовая кислота, напротив, – гормон покоя: она останавливает созревание плодов, тормозит прорастание, уменьшает испарение влаги листьями, замедляет синтез ферментов, участвующих в фотосинтезе, а название ее происходит от abscission – «опадение листьев».

Созреванием плодов и листопадом управляет также этилен. На самом деле об эффектах растительных гормонов, об их взаимодействиях между собой можно сказать еще многое, но главное понятно: это инструменты, с помощью которых биотехнолог может работать с культурой клеток, как скульптор с глиной и металлом. То есть получать все, что ему угодно, в пределах возможностей материала.

Из делящихся клеток в культуре образуется каллусная ткань (до эры клеточных биотехнологий каллусом называли аморфные шрамы и наплывы, закрывающие раны растений). Через определенный срок часть каллуса пересаживают на новую среду. Иногда бывает удобно вместо твердой среды использовать жидкую и растить культуру в колбе на качалке – тогда клетки и их небольшие скопления образуют в растворе суспензию. В некоторых случаях клетки обрабатывают специальными ферментами, разрушающими твердую клеточную стенку, – такие «голые» клетки называют протопластами.

Выращивать новые растения из культуры клеток (такие растения называют регенерантами) можно различными способами. Если из каллуса развиваются органы растения – корни или побеги, а из побега, в свою очередь, вырастает целостное растение, то говорят об органогенезе. Одна из возможных схем – микропобеги укореняют в растворе или среде с ауксином, а когда корневая система становится достаточно развитой, маленькое растение извлекают пинцетом или специальным крючком и высаживают в простерилизованный грунт. Этот сценарий напоминает вегетативное размножение в природе. Но есть и другой путь: соматический эмбриогенез. При этом из клеток культуры в определенных условиях формируются зародыши растений – эмбриоиды, почти такие же, как в семенах, и уже из них получают растения-регенеранты.

А теперь от теоретических вопросов перейдем к практике. Для чего нужны методы клеточной инженерии, позволяющие выращивать и размножать растения «в пробирке»?

Технологии природных лекарств


Цена на дикорастущий женьшень в Китае громадная и, по рассказам манз, простирается до двух тысяч рублей серебром на наши деньги за один фунт корня. Возделываемый же на плантациях женьшень стоит несравненно дешевле и продается только по 40–50 руб. серебром за фунт.

Н. М. Пржевальский. Путешествие в Уссурийском крае. 1868–1869.

Первая и, может быть, самая важная задача – получение растений или растительных тканей, из которых можно добывать полезные вещества. Их называют веществами вторичного метаболизма, в отличие от первичных метаболитов, которые необходимы самому растению в его «домашнем хозяйстве» и встречаются в клетках всех растений. В основном это вещества, ответственные за контакты с внешним миром, – например, эфирное масло или горечь, отпугивающие травоядных животных, либо компоненты аромата цветка. Они нужны растению, но без них оно прожить может, а вот без глюкозы – никак. Биохимические пути синтеза вторичных метаболитов – как бы надстройка над системой жизненно необходимых реакций. Но именно среди них встречаются уникальные лекарственные соединения.

В XIX веке европейцы знали о корне женьшеня в основном из книг знаменитых путешественников. Теперь препараты женьшеня продаются в каждой аптеке, его экстракты добавляют в косметику и тонизирующие напитки, и все это стоит совсем не дорого. На вопрос, каким образом целебный таежный корень попал из легенды на прилавки, покупатель в аптеке, подумав, отвечает: «Ну, его же окультурили, не собирают в тайге, а выращивают». Правильно, только растет женьшень восемь лет, и все это время посадки должна обслуживать целая армия людей. Гораздо практичнее выращивать в реакторах биомассу, производящую целебные вещества. В культуре можно получить до двух граммов сухой биомассы с одного литра среды за сутки (масса одного корня женьшеня на плантации увеличивается на 1–2 г в год).

Для промышленной биотехнологии мало нарастить каллусную ткань или суспензию, нужно еще настроить ее метаболизм на производство нужных веществ. В этом биотехнологам помогает целый корпус наук. Фитохимия изучает строение вторичных метаболитов и их локализацию в растениях – каждому травнику известно, что у одного растения полезен корень, у другого цветы, и ни в коем случае не наоборот. Биохимия растений исследует пути синтеза лекарственных веществ, физиология – их роль в жизнедеятельности растения. Все это необходимо знать, чтобы грамотно работать с культурами клеток.

Перечислять лекарственные растения, выращиваемые в биореакторах, можно долго, и список их все время растет. Культуры женьшеня настоящего, американского и японского производят тритерпеновые гликозиды гинзенозиды (панаксозиды). Из тиса ягодного получают таксол, или пакпитаксел, для лечения рака. Тис в Европе, как пишут ботанические энциклопедии, распространен мало и растет. он исключительно медленно – а между тем только во время испытаний нового противоракового препарата было уничтожено 12 тысяч деревьев. Стевия, из которой получают перспективный подсластитель стевиозид, растет только в Южной и Центральной Америке, а в наших широтах ее культивировать затруднительно: она не переносит температуры ниже +12 °C. В таких случаях биореакторы – вообще единственный выход. Диоскорея дельтовидная в культуре производит фуростаноловые гликозиды и диосгенин, из которого, в частности, получают гормональные препараты, раувольфия змеиная – алкалоид аймапин, применяемый как антиаритмическое средство…

Чаще всего для последующей экстракции в пробирках выращивают не растения, а каллусную ткань. В качестве экспланта берут ткань, богатую нужным веществом и способную к каллусогенезу. Например, у тиса это хвоя, у можжевельника сибирского, почки, побеги. Затем самое важное – подбор условий для оптимального биосинтеза и поиск штаммов-суперпродуцентов. А уже после этого приходит время переместиться из лабораторного сосуда в промышленный биореактор.

Букет клонов

Он протянул мне пластиковый контейнер, разделенный на две части. Нижняя часть была заполнена какой-то жидкостью, в которую спускался стебель. В другой половине была большая, только что распустившаяся роза. В ту ужасную ночь она показалась мне бокалом кларета.

Роджер Желязны. Роза для Экклезиаста

Замечали, как много стало на городских улицах киосков с надписью «Цветы»?

Пессимисты даже волнуются: каждый день привозят целые снопы безупречных роз и хризантем, и к вечеру они не до конца раскупаются – это ж какой убыток, раньше такого не бывало, да вправду ли это цветочная торговля или, может, прикрытие для криминальных структур? Насчет криминальных структур не знаем, но раньше такого действительно не было.

Одна из тех незаметных перемен, которые принесли в нашу жизнь биотехнологии: розы для каждого в любое время суток.

Здесь уже речь идет не о получении каллуса, а о клональном микроразмножении. Клональное – потому что все растения, выращенные таким путем, будут генетическими копиями «прародителя», от которого взят эксплант. (Да-да, если вы купили для своей девушки пять роз, то, возможно, это пять клонов одной и той же розы.) Микроразмножение – потому что из одного листа можно получить десятки растений.

Конечно, не всегда это бывает лист. Можно побудить к развитию уже существующую меристему, то есть растущую ткань – верхушку стебля, пазушные и спящие почки. Можно добиться того, чтобы почки появлялись уже в ткани экспланта, или же индуцировать соматический эмбриогенез – чтобы ткань порождала зародыши растения. Еще один метод – дифференциация почек из каллуса.

Эта технология произвела революцию в цветоводстве и садоводстве. Вегетативное размножение всегда имело огромную коммерческую значимость, а для некоторых видов цветов и плодовых деревьев оно практически не имело альтернативы. Никто не выращивает яблоню из косточки или тюльпаны из семян, все здравомыслящие люди приобретают саженцы и луковицы. К тому же семена – это результат полового размножения, а при половом процессе, как известно со времен Менделя, смешиваются признаки отцовского и материнского организмов. Для отбора и выживания наиболее приспособленных это полезно, поскольку повышает разнообразие, порождая новые комбинации признаков. Но садоводы обычно предпочитают стабильность – что изображено на фотографии в каталоге, то и должно вырасти, и никакой генетической лотереи.

Стабильность признаков при размножении семенами обеспечивается поддержанием чистых линий (которые получают, например, путем самоопыления), но вегетативное размножение зачастую бывает технически проще.

Однако не у всех видов оно возможно.

Сосны не черенкуются вообще, у разных видов орешника укореняется лишь 15–20 % черенков. Договориться с такими упрямыми растениями можно в лаборатории. Теоретически в любом растении есть клетки, которые могут проявить тотипотентность, если суметь подобрать к ним ключик.

Принципиальную возможность клонального микроразмножения впервые показал на орхидеях французский ученый Жорж Морель (1960). Из одного протокорма – шарообразной структуры, которая образуется после прорастания семени орхидеи, – за год он получил миллионы растений.

Было бы странно, если бы фирмы, торгующие цветами, декоративными и плодовыми культурами, не ухватились бы за эти технологии. «На одном квадратном метре можно разместить десять штативов, в каждом штативе 75 пробирок, и в каждой пробирке может быть от одного до трех растений, – рассказывает доктор биологических наук, Елена Анатольевна Калашникова, профессор кафедры генетики и биотехнологии Российского государственного аграрного университета – Тимирязевской сельскохозяйственной академии. – В итоге примерно полторы тысячи растений мы можем спокойно получать на квадратном метре». Этот первый этап экономит очень много труда и места.

В производстве цветов сейчас лидируют Нидерланды, Эквадор, Польша. «Голландия маленькая, примерно как полторы Киевских области, но зайдите в любой цветочный магазин, и вы увидите культуры голландского происхождения, – говорит Е. А. Калашникова. – Голландия практически отказалась от традиционных технологий и получает посадочный материал in vitro. Оборот цветов в ней колоссальный, голландские цветы поступают во все страны земного шара. Статистики подсчитали, что эта маленькая страна может обеспечить экземплярами любого растения из тех, что там продаются, каждого жителя Земли, от грудных младенцев до стариков».


А почему же эти розы, которые продают в киосках, совсем не пахнут? – возмущаются горожане. Запах где? Запах в тканевой культуре шиповника морщинистого (он же роза ругоза), из которой получают эфирные масла. Искусственный отбор, как и естественный, не всегда может преследовать две цели сразу. Или впечатляющий внешний вид, крупный размер и быстрый рост – или благоухание. Хотя гвоздики из тех же киосков пахнут неплохо…

Великие фантасты не любят подолгу задерживаться в лабораториях, но, несомненно, славный ботаник Кейн из рассказа Желязны, чтобы вырастить цветок для марсианской танцовщицы, первым делом отправился в походное криохранилище за каллусной тканью Rosa sp. Хорошо, что она у него была, иначе так бы и погибла древняя мудрая цивилизация.

Е. Клещенко

    Ваша оценка произведения:

Популярные книги за неделю