355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Первушин » Тайны инопланетных цивилизаций. Они уже здесь » Текст книги (страница 9)
Тайны инопланетных цивилизаций. Они уже здесь
  • Текст добавлен: 9 октября 2016, 19:04

Текст книги "Тайны инопланетных цивилизаций. Они уже здесь"


Автор книги: Антон Первушин


Жанры:

   

Публицистика

,

сообщить о нарушении

Текущая страница: 9 (всего у книги 13 страниц)

Немного статистики

Первый эксперимент, проведенный американским радиоастрономом Фрэнком Дрейком в 1960 году (проект «Озма»), включал поиск сигналов на волне 21 сантиметр (радиолиния водорода) от двух ближайших к нам звезд солнечного типа – тау Кита и эпсилон Эридана. Наблюдения проводились на 26-метровом радиотелескопе Национальной радиоастрономической обсерватории США.

В 1968-69 годах поиски сигналов от звезд солнечного типа были проведены Всеволодом Сергеевичем Троицким. Наблюдения велись на радиоастрономической станции (НИРФИ) в Зименках, близ Горького, с помощью радиотелескопа диаметром 15 метров на волне 30 сантиметров. Были обследованы 11 ближайших звезд и галактика М-31 (Туманность Андромеды).

Первоначально поиск сигналов внеземных цивилизаций осуществлялся только в США и Советском Союзе. Но позднее география поисков существенно расширилась, эксперименты проводились в Канаде, Австралии, Франции, ФРГ и Нидерландах. Всего в период с 1960 по 1985 годы было выполнено 45 экспериментов, на которые затрачено около 75 тысяч часов наблюдательного времени. За первое десятилетие (1960–1970 годы) было проведено четыре эксперимента. После 1971 года, когда состоялась первая советско-американская конференция по поиску инопланетного разума СЕТИ (SETI – сокращение от английского Searching for Extraterrestrial Intelligence), активность ученых резко возросла – к 1975 году уже проводилось до семи экспериментов в год.

Если же проанализировать, как распределялось по годам полное (суммарное) время наблюдений, то окажется, что основная доля приходится на два эксперимента: поиск импульсных сигналов с ненаправленными антеннами (Троицкий и др.) и обзор неба на волне 21 сантиметр, выполненный на Огайской радиоастрономической обсерватории (США) с помощью радиотелескопа Крауса (Диксон и др).

Эксперимент Троицкого проводился на волнах 50, 30, 16, 8 и 3 сантиметра. Для исключения местных помех были организованы одновременные наблюдения в нескольких далеко разнесенных пунктах: в Горьковской области (Зименки, Васильсурск, Пустынь), в Мурманской области (Тулома), в Крыму (Карадаг) и на Дальнем Востоке (Уссурийск). Кроме того, в 1972 году наблюдения выполнялись с борта научно-исследовательского судна «Академик Курчатов» в экваториальных водах Атлантики. Эти исследования привели к обнаружению ранее неизвестного спорадического радиоизлучения, генерируемого в верхних слоях ионосферы и в магнитосфере Земли под воздействием потоков фотонов, излучаемых Солнцем.

Огайский эксперимент проводился начиная с декабря 1973 года. Известно, что при посылке узкополосного сигнала частота его из-за движения передатчика и приемника (обусловленного как вращением планеты, так и движением всей планетной системы вместе с ее центральной звездой) смещается. Поскольку ни отправитель, ни получатель ничего не знают друг о друге, их относительное движение остается неизвестным. Следовательно, неизвестно и смещение частоты сигнала. В условиях этой неопределенности радиоастроном Роберт Диксон предложил руководствоваться принципом «антикриптографии», согласно которому каждый из партнеров по связи корректирует частоту сигнала к какому-то общему для них стандарту. В качестве такого стандарта, согласно Диксону, принимается источник, неподвижный относительно центра Галактики. Основываясь на этом, Огайский радиообзор проводился на частоте радиолинии водорода, скорректированной к центру Галактики. Поначалу использовался 8-канальный, а затем 50-канальный приемник с полосой каждого канала 10 кГц. В августе 1977 года в нескольких каналах приемника был зарегистрирован интенсивный кратковременный сигнал, природа которого остается неизвестной…

Что ищем?

В настоящее время в поисках внеземных цивилизаций методами радиоастрономии можно выделить следующие направления.

Первое. Поиск узкополосных сигналов от конкретных астрономических объектов. В основном он ведется на частотах радиолиний водорода 21 сантиметр, гидроксила – 18 сантиметров и водяного пара – 1,35 сантиметра. Для этого применяются крупнейшие радиотелескопы и весьма совершенная высокочувствительная многоканальная приемная аппаратура, содержащая десятки, сотни, тысячи, вплоть до миллиона спектральных каналов и позволяющая проводить анализ спектра в реальном времени. В отдельных экспериментах была достигнута разрешающая способность в несколько герц и даже долей герца. Основное внимание уделялось ближайшим звездам солнечного типа, в некоторых случаях – другим объектам (близким галактикам, шаровым скоплениям).

Второе. Поиск импульсных сигналов неизвестного направления. Здесь использовались как обзоры неба с помощью крупных радиотелескопов (проводившиеся с целью поиска пульсаров), так и наблюдения с ненаправленными антеннами, охватывающие весь небесный свод. Последние эксперименты обладают относительно низкой чувствительностью и рассчитаны на обнаружение только самых сильных сигналов.

Третье. Исследование некоторых «особых» объектов: центр Галактики, изучение статистической структуры радиоисточников. Особняком стоит радиообзор в линии 21 сантиметра, выполненный на Огайской обсерватории.

Предпринимаются попытки включить поиск сигналов внеземных цивилизаций в программу изучения небесных тел. Так, группа исследователей из Калифорнийского университета в Беркли и Лаборатории реактивного движения (США) сконструировала специальное устройство («SERENDIP»), предназначенное для сопутствующих поисков внеземных цивилизаций. Оно представляет собой относительно простой автоматизированный 100-ка-нальный спектральный анализатор, который работает параллельно с основной аппаратурой, исследуя промежуточную полосу частот. При этом осуществляются поиск и запись на магнитную ленту любых сильных сигналов, наблюдающихся только в одном спектральном канале – 2,5 кГц. Такое приспособление использовалось на обсерватории Хэт Крик при наблюдениях с помощью 26-метрового радиотелескопа на волнах б, 18 и 21 сантиметра. Сам телескоп работал по астрономической программе. С 1979 года подобное устройство («SERENDIP-2») применяется на 64-метровом радиотелескопе НАСА в Голдстоуне. Поиск осуществлялся в направлениях, которые определялись положением космических объектов НАСА на небесной сфере.

Любопытный пример сопутствующих наблюдений был продемонстрирован на 64-метровом радиотелескопе НАСА – в Австралии. Ученым удалось уговорить руководство НАСА, чтобы во время ремонта механической части антенны радиотехническая аппаратура продолжала функционировать. Они установили 256-канальный анализатор спектра и с его помощью провели наблюдения на частотах 8 и 22 ГГц той части неба, куда смотрела антенна. Когда график ремонта позволял, антенна смещалась по высоте, и таким образом был проведен частичный обзор неба.

На каких частотах ищем?

Возможно ли определить оптимальные частоты, на которых с наибольшей вероятностью вещает другая цивилизация? Не стоим ли мы перед неразрешимой задачей, пытаясь угадать, на какой волне передают свои послания существа с иными взглядами на мир?

Можно полагать, что другие цивилизации, скорее всего, выбрали бы такую же частоту, как и наша, поэтому можно надеяться определить наилучшие частоты для поиска.

Нужно научиться отличать радиопередачи, которые цивилизация использует в своих внутренних целях и которые мы можем лишь «подслушать», от посланий, целенаправленно переданных другим цивилизациям или по крайней мере в межзвездное пространство в надежде, что они будут кем-то приняты. Хотя эти две цели отчасти совпадают, тем не менее, опираясь на собственный опыт, мы знаем, что радио– и телевизионные передачи организуются у нас исключительно для земной аудитории (вряд ли радио и телевидение преследуют иные цели). В то же время легко убедиться том, что эти диапазоны обладают решающими преимуществами над другими диапазонами, их можно рекомендовать для связи любого типа. Самая главная причина использования радиоволн для межзвездной связи обусловлена экономичностью такого способа обмена информацией. При исследовании Галактики преимущество радиоволн над видимым светом для дальней связи быстро становится очевидным. Мы не можем сфотографировать ядро Галактики или спиральные рукава за ним, потому что находящиеся в галактическом диске газ и пыль поглощают свет далеких звезд. Однако относительно легко «видеть» эти области с помощью радиоволн почти всех частот, за исключением нескольких, на которых поглощают атомы и молекулы межзвездной среды, а в Солнечной системе радиоволны легко проникают сквозь облака Венеры. Если осуществлять связь оптическими методами, то луч, посланный, например, из другой планетной системы с помощью мощного лазера в сочетании с гигантским телескопом, будет вынужден соперничать с колоссальным потоком излучения в оптической области от самой звезды. Значительно легче передавать послания в радиодиапазоне, где уровень излучения звезды гораздо ниже.

Однако существует космический фон радиоизлучения, обусловленный двумя источниками: реликтовым излучением, оставшимся от начальных стадий расширения Вселенной, и синхротронным излучением, генерируемым электронами при их движении по винтовым траекториям вдоль силовых линий магнитных полей. Эти два источника ограничивают «радиоокно» в спектре электромагнитного излучения, относительно свободное от помех, и можно ожидать, что именно в пределах этого окна осуществляется связь между технологически развитыми цивилизациями.

Вопрос о возможностях связи с другими мирами впервые обсуждался в 1959 году Моррисоном и Коккони. Они указали, что наиболее подходящей частотой, на которой сигнал искусственного происхождения следует искать в первую очередь, является частота 1420 МГц, соответствующая переходу между подуровнями сверхтонкой структуры в атомах водорода. Некоторые атомы в результате столкновений переходят на верхний подуровень и затем излучают на этой характерной частоте. Поэтому в нашей Галактике и в других спиральных галактиках, межзвездный газ которых на 90 % состоит из водорода, непрерывно испускается радиоизлучение на частоте 1420 МГц с длиной волны 21,1 сантиметра. Любое разумное существо, которое изучает нашу Галактику, должно знать о радиоизлучении на этой частоте, наиболее распространенном и вездесущем. Более того, излучение с частотой 1420 МГц может распространяться на большие расстояния и затем регистрироваться. Наконец, в полосе вокруг частоты 1420 МГц меньше всего помех.

Благодаря эффекту Допплера и движениям атомов водорода в Галактике как по направлению к нам, так и от нас целая полоса частот от 1419 до 1421 МГц заполнена радиоизлучением нейтрального межзвездного водорода. Это излучение, которое многократно поглощается и вновь переизлучается, позволило построить карту распределения межзвездного водорода в Галактике путем исследований в полосе частот от 1419 до 1421 МГц. Но за пределами этой довольно узкой полосы условия гораздо лучше. Как мы уже упоминали, на частотах несколько выше или несколько ниже 1420 МГц сравнительно немногие атомы и молекулы служат естественным источником помех для радиосигналов. Однако приходится считаться и с шумами, создаваемыми человеком: только обеспечив надежную защиту от помех в полосе шириной несколько мегагерц вокруг частоты 1420 МГц, радиоастрономы смогли продолжить свою работу на Земле!

Предположим, что наша или любая другая цивилизация по «естественным» причинам выбрала частоту вблизи 1420 МГц для межзвездной связи. Допустим также, что эта частота используется для местной связи и мы можем надеяться «подслушать» иные цивилизации на этой частоте. Тогда нам все же предстоит столкнуться с важной проблемой: на какой именно частоте, близкой к 1420 МГц, передается послание, чтобы можно было точно настроить наши приемники? Искать ли нам в области более высоких или более низких частот?

Если исходить из представлений, что вода играет важную роль для большинства других форм жизни, как и для нас, то можно признать справедливость предложения, высказанного американским физиком Бернардом Оливером. Поскольку каждую молекулу воды Н20 можно представить в виде Н + ОН, Оливер указал, что диапазон частот между 1420 и 1612 МГц – наиболее подходящий канал для межзвездной связи. Если важность воды осознают все формы жизни, то из того факта, что ее молекула является суммой Н + ОН, можно заключить, что просвет между 1420 и 1612 МГц – это именно тот диапазон частот, в котором должна осуществляться межзвездная связь. Оливер называет эту полосу «водяной ямой», в которой галактические цивилизации общаются друг с другом.

Где ищем?

Соседние звезды, похожие на Солнце, предоставляют наилучшие шансы для обнаружения других цивилизаций, поскольку интенсивность радиосигналов, излученных любой цивилизацией, падает пропорционально квадрату расстояния. Однако радиотелескопы, направленные на тау Кита и эпсилон Эридана, не зарегистрировали каких-либо сигналов, свидетельствующих о существовании там цивилизаций. Следовательно, нужно приступить к длительному поиску и исследовать звезду за звездой, прежде чем появится шанс обнаружить ближайшие цивилизации.

Какие звезды следует изучить первыми?

При прочих равных условиях поток радиоволн от ближайших цивилизаций будет интенсивнее, чем от удаленных. При удвоении расстояния от заданного источника интенсивность радиосигналов, то есть поток радиоизлучения, достигающий каждой конкретной антенны за одну секунду, уменьшится в четыре раза. Это важнейшее обстоятельство заставляет прежде всего направить антенны на ближайшие звезды, а затем на более удаленные. И вновь возникает вопрос: какие из этих миллионов звезд заслуживают особого внимания?

Исходя из очевидных фактов, легко сделать следующий вывод: ни одна из звезд не заслуживает особого внимания, хотя одиночные звезды кажутся более подходящими кандидатами, чем двойные и кратные системы. Звезды, светимость которых близка к солнечной, предпочтительнее звезд с низкой светимостью, таких как звезда Барнарда, поскольку у слабых звезд маленькие экосферы. Если ограничиться звездами, светимость которых составляет не менее 1 % светимости Солнца, то нужно исключить 80 % звезд нашей Галактики – но оставшиеся 20 % все же составят 80 миллиардов звезд, в том числе много сотен тысяч звезд в пределах чувствительности наших приемников. Конечно же, следует отбросить и звезды наибольшей светимости с временем жизни менее 1 миллиарда лет, то есть того минимального срока, который, как считается, необходим для развития жизни и цивилизации. Однако таких звезд всего лишь около 1 % в Галактике, так что мы немного выиграем, исключив их з нашего поиска.

Как распознать искусственный сигнал?

Наши планы поисков внеземных цивилизаций по их радиосигналам основываются на предположении, что применимость радиоизлучения универсальна и любая другая цивилизация будет, вероятно, использовать его для передачи посланий. При анализе существующих на Земле средств связи видно, что основной поток радиоизлучения дают телевидение на частотах от 40 до 850 МГц и мощные военные радиолокационные системы, которые сканируют небо с помощью интенсивных радиоимпульсов, непрерывно меняя их частоту.

Что бы мы услышали, если бы удалось «подслушать» другую цивилизацию, которая использует радиоволны подобных частот для внутренней связи?

При достаточной чувствительности антенн можно было бы отличить одну телепрограмму от другой и в конце концов даже узнать содержание этих программ. Этот анализ помог бы решить, стоит ли устанавливать двусторонний контакт.

При больших расстояниях и меньшей чувствительности приемников мы могли бы констатировать, что в некоторой области неба возникает мощный поток радиоизлучения, но не определили бы содержание посланий. В этом случае не было бы уверенности, что обнаружена другая цивилизация, а не естественный источник радиошума. Однако мы приблизились бы к решению этого вопроса, если бы заметили, что интенсивность некоторых сигналов регулярно меняется во времени по сложному закону.

В других системах планеты, скорее всего, вращаются, как и наша Земля, поэтому если источники радиосигналов неравномерно распределены по поверхности, а луч зрения не проходит точно через ее северный или южный полюс, то наблюдатель заметит периодические вариации интенсивности приходящего радиоизлучения. Картина изменений будет повторяться ежесуточно, поэтому наблюдатель может сделать вывод о существовании либо сверхмедленного пульсара, либо искусственного источника радиосигналов.

Как мог бы инопланетный наблюдатель с уверенностью отличить Землю, совершающую один оборот в сутки, от пульсара, который делает один оборот в секунду? Любого наблюдателя натолкнуло бы на мысль о том, что он имеет дело не просто с радиоизлучением медленного пульсара, допплеровское смещение сигналов, которое вызвано движением Земли вокруг Солнца и повторяется с периодом в один год. Наблюдатель, находящийся в другой планетной системе, установил бы, что частоты радиосигналов от каждого телевизионного канала (каждая телевизионная станция вещает на определенной частоте) смещаются в обе стороны от своего среднего значения на десятки герц. Таким образом, внеземной исследователь Солнечной системы открыл бы не только то, что радиоволны излучаются из окрестностей Солнца, но и то, то их интенсивность меняется с периодом в сутки, а частота – с периодом в год. Наблюдатель мог бы заключить, что вокруг Солнца обращается объект, совершающий один оборот по орбите за год и один оборот вокруг своей оси за сутки и излучающий радиоволны, которые и позволяют судить об этих движениях объекта.

Источник радиоизлучения, интенсивность которого меняется с периодом порядка суток, а допплеровское смещение – с периодом порядка нескольких месяцев или лет, вероятнее всего, является населенной разумными существами планетой, а не пульсаром с необычными свойствами. Но нельзя быть полностью уверенным в этом, пока точный анализ не покажет, что радиоизлучение действительно содержит информацию.

Разумеется, чтобы зарегистрировать радио – и телевизионные станции другой планеты, необходимо, чтобы они там были. На Земле развитие радио началось недавно и проходило очень бурно. За последние 30 лет мощность возросла в 1000 раз, и этот рост продолжается, хотя медленнее, чем в 1950-х годах.

Область в пределах 70 световых лет от Солнца содержит около 4000 звезд. Только на этих звездах и на планетах, возможно, существующих вокруг них, могли быть приняты радио– и телевизионные сигналы, излученные с Земли начиная с 1910 года. Эти звезды попадают внутрь «радиосферы», которая непрерывно расширяется во все стороны от Земли со скоростью света. На этих звездах еще предстоит услышать лишь слабые сигналы от великолепных радиопостановок 1930-х годов; должно пройти еще много лет, прежде чем до большинства из них дойдут «последние известия» о Второй мировой войне. Лишь через 400 лет наши радиосигналы достигнут миллиона ближайших звезд, так что они еще пребывают в неведении о существовании разумной цивилизации на Земле…

Проект «SETI на дому»

Понятно, что для того, чтобы найти хотя бы один источник искусственного радиосигнала, необходимо «просканировать» все небо. Полученная информация потребует колоссальных компьютерных мощностей для обработки.

Понимают это и ученые. В 1996 году радиоастрономы Девид Гедье и Крейг Каснофф решили распределить обработку получаемых данных между энтузиастами поиска инопланетных сигналов. Так появился проект «SETI на дому» («SETI at Home»).

В качестве сборщика данных используется крупнейший радиотелескоп мира в Аресибо (Пуэрто-Рико). Его создание обошлось сравнительно недорого благодаря удобному природному рельефу. Тарелка телескопа, 305 метров в поперечнике, намертво встроена в углубление в карстовых породах. Тарелка отражает и концентрирует слабые небесные сигналы на принимающие антенны, подвешенные в 137 метрах над нею. Так как тарелка зафиксирована и не может наклоняться, принимающие антенны собраны на изогнутом держателе, позволяющем им «рассматривать» объекты, находящиеся на удалении до 20 градусов от зенита (прямо над головой). Сам этот держатель установлен на рельсах, благодаря чему антенны могут следовать за объектом во время его движения по небу, обусловленного вращением Земли. Две степени свободы дают телескопу возможность обозревать изрядную область неба.

Полученные радиотелескопом данные разбиваются на блоки, любой из которых вы можете получить, установив на свой компьютер программу «SETI at Home». Ее можно найти, например, по адресу http://setiathome.berkeley.edu. С этого момента вы становитесь участником проекта. Программа незаметно, не перегружая ресурсы вашего компьютера, обсчитает блок, отправит результат в Интернет и скачает новые данные.

Каждому участнику проекта «SETI на дому» полагается сертификат. А в качестве главного приза – сигнал от инопланетной цивилизации. Попробуйте! Кто знает, может быть, повезет именно вам!


    Ваша оценка произведения:

Популярные книги за неделю