355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Первушин » Битва за звезды-2. Космическое противостояние (часть II) » Текст книги (страница 16)
Битва за звезды-2. Космическое противостояние (часть II)
  • Текст добавлен: 26 сентября 2016, 20:58

Текст книги "Битва за звезды-2. Космическое противостояние (часть II)"


Автор книги: Антон Первушин



сообщить о нарушении

Текущая страница: 16 (всего у книги 24 страниц)

Перспективы «Высотной исследовательской программы» («HARP»)

30 июня 1967 года, в результате резкого «похолодания» в отношениях между США и Канадой, вызванного войной во Вьетнаме, канадский Департамент исследований в области вооружений официально объявил о закрытии «Высотной исследовательской программы».

Проект был свернут в тот самый момент, когда группа под руководством доктора Бюлля работала над созданием самого миниатюрного космического аппарата в истории человечества – реактивного снаряда «Martlet 2G-1» с твердотопливной ступенью. Вес полезной нагрузки, выводимой этим снарядом на орбиту, не превышал 2 килограммов – оптимум для «нано-спутников», разрабатываемых сегодня в НАСА. Сам снаряд при этом был 4,3 метра в длину и 30 сантиметров в диаметре. Общий вес снаряда с выстрелом составлял 500 килограммов.

Среди других, весьма перспективных, направлений программы «HARP» можно назвать работы над сериями реактивных снарядов «Martlet 3» и «Martlet 4». Эти снаряды, имеющие твердотопливных ступени, фактически уже являлись компактными ракетами, начальную часть траектории которых задавала пушка. Наибольший интерес для нас представляет серия «Martlet 4». Поговорим о ней подробнее.

Первоначально программа «HARP» не предусматривала создание орбитальных средств доставки, ориентируясь лишь на задачу изучения верхних слоев атмосферы. Только в 1964 году, когда дополнительное соглашение между канадским Департаментом исследований и правительством США обеспечило гарантированное финансирование программы еще на три года, в группе доктора Бюлля всерьез заговорили об орбитальных запусках. Однако руководство Департамента прохладно отнеслось к этой затее, и до самого закрытия программы энтузиастам орбитальных запусков не удалось «протолкнуть» серию «Martlet 4».

Согласно оставшемуся на бумаге проекту реактивные многоступенчатые снаряды «Martlet 4» можно было использовать для вывода на околоземную орбиту полезных грузов весом от 12 до 24 килограммов. В первой версии проекта снаряды имели две (или три) твердотопливные ступени, в более поздних – ступени с жидким топливом.

Первая ступень типовой модификации снаряда «Martlet 4», содержащая 735 килограммов твердого топлива, имела шесть стабилизаторов. При прохождении через ствол пушки стабилизаторы должны были находиться в сложенном положении, а при выходе – выпрямиться, придавая снаряду движение вращения вокруг продольной оси со скоростью 4,5–5,5 оборотов в секунду – таким образом обеспечивалась гироскопическая устойчивость снаряда на протяжении начального участка полета, заданного выстрелом пушки. Поскольку движение снаряда на этом участке подчинялось законам элементарной баллистики (то есть зависело только от мощности заряда, угла наклона орудия и аэродинамики снаряда), отпадала необходимость в сложной системе управления и контроля. Первая ступень должна была запуститься на высоте 27 километров и выгореть в течении 30 секунд, давая тягу в 6900 килограммов.

Вторая и третья ступени «Martlet 4» также были твердотопливными (181,5 и 72,6 килограмма топлива соответственно) и обеспечивали полет снаряда в стратосфере и мезосфере, выводя полезный груз на высоту до 425 километров.

Между второй и третьей ступенями конструкторы разместили блок управления и ориентации. Он должен был включиться сразу после отделения первой ступени, поддерживая заданные программой углы крена и тангажа. Заметим, что в 60-е годы еще не существовало интегральных схем, а традиционные механические гироскопы не могли быть применены в блоке управления и ориентации, поскольку не выдержали бы чудовищных перегрузок. Для решения этой проблемы к разработке были привлечены специалисты из Университета Макгила и Лаборатории баллистики армии США. В результате была спроектирована совершенно новая система ориентации. Она состояла из аналогового модуля, получающего информацию от нескольких датчиков, закрепленных на корпусе снаряда, и сравнивающего поступающие данные с эталоном. Скорость вращения вокруг продольной оси определялась с помощью акселерометра, угол тангажа – двумя инфракрасными датчиками. Дополнительная информация поступала также от двух светочувствительных элементов, ориентированных по солнцу.

Отдельные компоненты системы управления и ориентации прошли «обкатку» на устойчивость к перегрузкам на испытательном полигоне в Квебеке для их запуска использовалась малая 155-миллиметровая пушка, способная придать контейнеру с элементами системы ускорение более 10 000 g.


Важнейшим преимуществом реактивных снарядов «Martlet 4» перед ракетными транспортными средствами был малый период предполетной подготовки. Конструкторы полагали, что такая подготовка займет всего лишь несколько часов против нескольких недель или даже месяцев для многоступенчатой ракеты-носителя. При необходимости можно было запускать от четырех до шести снарядов «Martlet 4» в день, невзирая на погодные условия.

Малые суборбитальные пушки

Работы Джеральда Бюлля в Канаде привлекли внимание ученых военно-промышленного комплекса США. Как мы уже неоднократно отмечали ранее, американским конструкторам, работавшим над созданием перспективных летательных аппаратов, не хватало данных о физических свойствах и химическом составе верхних слоев атмосферы. Часть вопросов была снята в рамках совместных работ по программе «HARP». Однако для решения частных задач американцы использовали малые пушки, позволявшие выводить небольшие зонды на высоты до 70 километров.

В начале марта 1960 года генерал-лейтенант Артур Традье, руководитель исследовательских программ армии США, поручил подчиненной ему Лаборатории баллистики оценить возможность использования артиллерии для запуска метеорологических зондов. К июлю ученые Лаборатории на опыте доказали, что соответствующим образом сконструированный зонд выдержит воздействие перегрузок, возникающих при выстреле, и работа закипела.

В качестве исходного орудия для суборбитальных запусков использовалась армейская пушка калибром 120 миллиметров и длиной ствола 8,9 метра. Пушки этого класса были очень удобны в применении и обладали необходимой мобильностью – их можно было доставлять к огневой позиции на железнодорожной платформе или в кузове специального грузовика.

Стартовые комплексы на основе 120-миллиметровых пушек были построены на испытательных полигонах острова Барбадос, Квебека, в штатах Аляска, Вирджиния, Нью-Мексико, Аризона С их помощью на суборбитальные высоты запускались небольшие зонды различного назначения (серия суборбитальных снарядов «BRL»): дипольный отражатель, траектория которого отслеживалась радаром, дрейфующий метеозонд с парашютом, возвращаемые контейнеры и тому подобное. Стоимость одного запуска колебалась в пределах от 300 до 500 долларов США.

Эксплуатация малых «суборбитальных» пушек продемонстрировала высокую эффективность такого рода запусков при изучении атмосферы, и вскоре на смену 120-миллиметровым пушкам пришли новые – с калибром 175 миллиметров и длиной ствола 16,8 метра. Эти пушки позволяли запускать в три раза более тяжелые грузы на высоту свыше 100 километров.

Соответственно, расширился и список используемых зондов. Помимо традиционного набора дипольных отражателей новые снаряды несли в себе капсулы с нитратом цезия для создания искусственных облаков и метеолаборатории «Langmuir» с телеметрическим управлением.

Стартовый комплекс на основе 175-миллиметровой пушки оказался, впрочем, менее надежной системой, чем его предшественники. Снаряды часто не достигали расчетной высоты, и тогда группа доктора Бюлля, используя накопленный опыт, предложила проект твердотопливного снаряда «Martlet 3E», который мог служить разгонной ступенью для грузов, запускаемых с помощью 175-миллиметровой пушки.

При этом расчетный потолок поднимался до 250 километров.

Снаряды «Martlet 3E» могли заменить собой всю серию «Martlet 3», освободив главное 406-миллиметровое орудие для орбитальных запусков. Но, к сожалению, и этому проекту было суждено остаться на бумаге.

Проект «Вавилон»

Несмотря на закрытие программы «HARP», доктор Джеральд Бюлль не утратил интереса к теме «космических» пушек. Более того, в 1968 году он получил премию Маккарди – самую престижную канадскую награду за исследования, связанные с космосом. В поисках новых инвесторов Бюлль основал собственную «Корпорацию по исследованию космоса». Используя свои связи в Пентагоне, он заключил сделку с Израилем. В 1973 году бюллевская «Корпорация» поставила туда около 50 тысяч артиллерийских снарядов. Тогда же конструктор познакомился с будущим командующим израильской артиллерии генералом Абрахамсом Давидом. Бюлль с восторгом говорил, что генерал – «единственный человек, который аккумулирует все возможности, чтобы построить суперпушку». Наверное, именно потому, что генерал Давид был «единственным» заинтересованным лицом, реализовать свой проект в Израиле Бюллю не удалось.

В середине 70-х доктор Бюлль вступил в контакт с южноафриканским правительством. Его фирма, при негласном попустительстве ЦРУ, поставила Претории 55 тысяч снарядов вместе с документацией по их изготовлению. ЮАР, изолированная ООН от рынков оружия, щедро платила за смертоносный товар. Дела шли неплохо, и конструктор решил расширить свой бизнес. С его помощью в ЮАР стали создаваться самые современные 155-миллиметровые орудия. Но вскоре подробности этой сделки стали достоянием гласности, и в 1980 году Бюлль попал за решетку по обвинению в незаконной продаже военных технологий в страны «третьего мира». «Корпорация по исследованию космоса» была ликвидирована.

После освобождения доктор Бюлль перебрался в Бельгию, где продолжил свою деятельность в качестве эксперта по артиллерии. В марте 1988 года он заключил контракт с правительством Ирака на строительство трех сверхдальнобойных пушек: одного 350-миллиметрового орудия-прототипа (проект «Малый Вавилон») и двух полноразмерных 1000-миллиметровых орудий (проект «Вавилон»).

Если верить расчетам доктора Бюлля, то главные орудия при весе выстрела в 9 тонн могли отправить 600-килограммовый груз на расстояние свыше 1000 километров, а реактивный снаряд весом в 2 тонны с полезной нагрузкой в 200 килограммов – на околоземную орбиту. При этом стоимость вывода на орбиту килограмма полезного груза не должна была превысить 600 долларов.

Проекту присвоили обозначение РС-2, и в официальных бумагах он проходил как проект новейшего нефтехимического комплекса. Сооружением стартовой площадки занималась британская строительная корпорация под руководством Кристофера Коулея.

Длина орудия проекта «Вавилон» достигала 156 метров при весе 1510 тонн. Ствол орудия был сборным и состоял из 26 фрагментов. Сила отдачи при выстреле должна была составить 27000 тонн, что эквивалентно взрыву небольшого ядерного устройства и могло вызвать сейсмическое возмущение во всем мире.

В кругах военных специалистов хорошо известно, что отношение длины ствола к калибру орудия должно находиться в пределах от 40 до 70, у гаубиц – от 20 до 40. Эти значения вытекают из принципа действия орудийного ствола. Первичное ускорение снаряд получает под воздействием ударной волны, образующейся при воспламенении метательного вещества (разгоняющего заряда), а далее на снаряд в стволе давят газы – продукты горения этого вещества. К выходному отверстию их давление постепенно снижается. Поэтому ствол не может быть как угодно длинным – в какой-то момент трение между снарядом и стенками канала станет больше, чем воздействие газов. Существуют также пределы, касающиеся дальности стрельбы и зависимости от мощности разгоняющего заряда. Они связаны с тем, что скорость воспламенения современных метательных веществ значительно ниже скорости распространения ударной волны. Поэтому с увеличением массы заряда, еще до его полного сгорания, снаряд может вылететь из ствола.

С этой точки зрения, пушка «Вавилон» – абсурд и фантазия безумного инженера. Но Джеральд Бюлль нашел решение проблемы в документации на проект сверхдальнобойной пушки «Фау-3»: можно увеличить скорость снаряда в стволе за счет дополнительных, последовательно воспламеняемых зарядов.

Проект «Фау-3» потерпел крах из-за невозможности воспламенять размещенные в канале ствола промежуточные заряды точно в нужный момент. Технических средств, обеспечивающих требуемые миллисекунды, тогда не нашлось. Заряд срабатывал то слишком рано и тормозил снаряд, грозивший разорваться внутри ствола, то с опозданием, не выполняя свои ускоряющие функции. Бюлль решил проблему синхронизации с помощью прецизионных конденсаторов.

Их, кстати, в апреле 1990 года конфисковали в лондонском аэропорту Хитроу и поначалу думали, что они будут применяться в качестве взрывателей для атомных бомб. На самом же деле эти конденсаторы должны были обеспечить точность последовательных воспламенений дополнительных зарядов с погрешностью в пикосекунды! Воспламеняющие устройства срабатывали бы по команде пневматических дат чиков, реагирующих на изменение давления в канале ствола.

В 156-метровом стволе «Большого Вавилона» предполагалось разместить 15 промежуточных зарядов. Они обеспечили бы снаряду, вылетающему из пушки, начальную скорость примерно 2400 м/с. Естественно, дополнительное ускорение тоже имеет свои пределы – Бюлль, похоже, приблизился к ним вплотную. В его конструкции снаряд разгоняется все быстрее и быстрее и в конце концов достигает скорости распространения давления горящей газопороховой смеси промежуточного заряда.

Пушка-прототип «Малый Вавилон» весом 102 тонны была построена к маю 1989 года. Ее огневая позиция размещалась в 145 километрах севернее Багдада, и в ходе испытаний планировалось отправить снаряд на расстояние 750 километров.

Иракский дезертир показал позднее, что пушку собирались использовать для доставки боеголовок с химической или бактериологической начинкой на территорию противника, а также для уничтожения вражеских разведывательных спутников.

Первоначально израильская разведка, работающая в Ираке, не обращала внимания на проект «Вавилон», считая его авантюрой, но когда иракское правительство подключило доктора Булла к разработкам в области создания межконтинентальной многоступенчатой ракеты на основе советских ракет «Скад», конструктору было сделано предупреждение.

Однако Бюлль отказался разорвать контракт с Ираком и 22 марта 1990 года был убит при загадочных обстоятельствах.

Пушки проекта «Вавилон» так и не достроили. Согласно решению Совета Безопасности ООН, принятому после окончания операции «Буря в пустыне», они были уничтожены под контролем международных наблюдателей.

«Сверхвысотная исследовательская программа» («SHARP»)

Несколько по-другому к проблеме создания «космической» пушки подошел американский конструктор Джон Хантер из Национальной Лаборатории Лоренса в Ливерморе (Калифорния). Его разработки нашли отражение в «Сверхвысотной исследовательской программе» («SHARP», «Super High Altitude Research Project»).

Изучая в 1985 году материалы проекта электромагнитной пушки, создаваемой в рамках программы «СОИ», Джон Хантер пришел к выводу, что более эффективным оружием для решения задачи уничтожения баллистических ракет противника на значительных высотах может оказаться «газовая» пушка.

Есть еще одно правило для артиллериста-конструктора – скорость снаряда не может превышать скорость газов в стволе. Для того чтобы увеличить эту скорость (а следовательно, и высоту, и дальность полета снаряда), Хантер предложил заменить обычные продукты сгорания водородом, который имеет гораздо меньшую молекулярную массу и большую скорость. Исследуя архивы, американский конструктор установил, что в 1966 году инженеры НАСА уже испытывали маленькую водородную пушку, выстреливавшую снаряды со скоростью 2,5 км/с. На основе этой разработки Джон Хантер построил компьютерную модель двухкамерной газовой пушки, дульная скорость которой могла бы достигнуть 8 км/с. Проектом Хантера заинтересовались, и Лаборатория Лоренса получила деньги на строительство полноразмерной газовой пушки, предназначенной для запуска снарядов с космической скоростью; разработка получила название «Сверхвысотной исследовательской программы».

Двухмодульная газовая пушка Хантера состояла из Г-образного ствола длиной 82 метра и так называемого «блока накачки», представлявшего собой герметичную трубу диаметром 36 сантиметров и длиной 47 метров. В стальную трубу накачки подается газообразный метан и поджигается.

Расширяясь, газ толкает поршень весом в тонну по трубе накачки, сжимая и нагревая водород, находящийся с другой стороны поршня. Когда давление водорода достигает 4000 атмосфер, приводится в движение снаряд, находящийся у начала ствола, в прямом угле Г-образной конструкции.

Ствол, разумеется, был герметизирован, и в момент вылета снаряд должен был выбивать пластмассовую крышку. Сила отдачи снималась тремя водяными компенсаторами: одним 10-тонным и двумя 100-тонными.

Экспериментальная газовая пушка была построена на испытательном полигоне взрывчатых веществ Лаборатории Лоренса в 1992 году. Первые испытания состоялись в декабре, при этом 5-килограммовый снаряд, выпущенный из пушки, смог развить скорость 3 км/с. Чтобы еще увеличить скорость, Хантер предлагал сделать снаряд ракетным и двухступенчатым, причем полезная нагрузка должна была составить 66 % от общего веса снаряда.

Однако 1 миллиард долларов, необходимый специалистам Лаборатории для продолжения экспериментов с запуском меньших снарядов на космическую орбиту, так и не был выделен. В результате все работы по программе «SHARP» оказались свернуты.

В 1996 году пушка Хантера была использована для изучения характера обтекания моделей прямоточного воздушно-реактивного двигателя при скоростях около 9 Махов.

«Пусковая компания имени Жюля Верна»

В 1996 году, после отказа правительства США финансировать дальнейшие этапы программы «SHARP», Джон Хантер основал фирму под претенциозным названием «Пусковая компания Жюля Верна» («Jules Verne Launcher Company»).

Первоначально компания планировала построить прототип пусковой установки, подобной газовой пушке Лаборатории Лоренса. На прототипе, размер снарядов которого не должен был превышать 1,3 миллиметра, Хантер со товарищи собирались обкатать новые идеи и отработать технологии, связанные с созданием пушки-гиганта. Сама же пушка-гигант, согласно их планам, должна быть построена в горе на Аляске, что позволило бы выводить полезные грузы на орбиты с высоким наклонением. Согласно расчетам Хантера, с помощью этой пушки можно было бы достигнуть дульной скорости 7 км/с, отправляя снаряды весом 3300 килограммов (габариты: диаметр – 1,7 метра, длина – 9 метров) на низкую околоземную орбиту высотой 185 километров.

В перспективе же полезную нагрузку можно было бы увеличить до 5000 килограммов.

По своей конструкции космическая пушка «Пусковой компании имени Жюля Верна» представляет собой комбинацию из газовой пушки Лаборатории Лоренса и «лунной» пушки Гвидо фон Пирке. Здесь имеется камера сгорания, где поджигается подаваемый из резервуара-хранилища метан, блок накачки с водородом, а также боковые наклонные камеры, внутри которых размещаются заряды, при подрыве придающие снаряду дополнительные импульс и ускорение.

«Пусковая компания имени Жюля Верна» планирует получить заказы на запуски более 1500 тонн полезных грузов в год. При этом предполагается, что стоимость запуска килограмма груза на орбиту будет в 20 раз меньше, чем стоимость такого же запуска при использовании ракетной техники.

Весь стартовый комплекс должен окупиться и начать приносить дивиденды после 50-го запуска.

Проблема только в том, что Джон Хантер до сих пор не нашел инвестора, готового финансировать этот амбициозный проект стоимостью в несколько миллиардов долларов.

Лазерная пушка

Тем временем в Национальной Лаборатории Лоренса в Ливерморе проходит предварительную «обкатку» еще более фантастический проект. На этот раз речь идет об использовании мощного лазера, луч которого должен вытолкнуть снаряд на околоземную орбиту.

Лазерный стартовый комплекс был предложен специалистами Лаборатории Лоренса в рамках «Программы перспективных технологий» («Advanced Technology Program», «ATP»), направленной на разработку теоретических основ альтернативных концепций космических кораблей.

Принцип действия этого комплекса довольно необычен.

Лазерный луч, направляемый с земли, нагревает специальное вещество, которым покрыта нижняя часть снаряда, имеющая форму параболоида. Испаряясь, это вещество создает реактивную тягу, толкающую снаряд вверх. При выходе в безвоздушное пространство параболическая чашка отбрасывается и в действие вступает обычный твердотопливный двигатель, зажигаемый опять же лазерным лучом.

Снаряд, запускаемый лазерным стартовым комплексом, имеет следующие параметры: диаметр – 2 метра, начальная масса – 1000 килограммов, полезная нагрузка, выводимая на высоту до 1000 километров, – 150 килограммов. Потребляемая лазером мощность не должна превышать 100 МВт, время действия импульса – 800 секунд.

Разумеется, подобный комплекс пока остается лишь красивой фантазией, весьма далекой от воплощения. Тем не менее опыты, проведенные на моделях в Лаборатории Лоренса, доказали возможность создания подобной схемы старта.


    Ваша оценка произведения:

Популярные книги за неделю