412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Андрей Курпатов » Машина мышления. Заставь себя думать » Текст книги (страница 4)
Машина мышления. Заставь себя думать
  • Текст добавлен: 1 июля 2025, 16:55

Текст книги "Машина мышления. Заставь себя думать"


Автор книги: Андрей Курпатов



сообщить о нарушении

Текущая страница: 4 (всего у книги 29 страниц) [доступный отрывок для чтения: 7 страниц]

То есть это всё – тоже «часть» моей «жизни»?

Всё это весьма непростые вопросы, на которые нет однозначного ответа. Неслучайно над ними ломали и до сих пор ломают голову выдающиеся мыслители – Умберто Матурана и Франциско Варела, Бруно Латур и Ричард Докинз, Стюарт Кауфман и Дэвид Чалмерс.

Но мы не пойдём тут в сторону, а остановимся и зафиксируем, что «жизнь» – это, образно говоря, не «кто», а «что», система отношений между элементами системы.

И, как вы, наверное, догадываетесь, этот принцип работает на любом уровне организации «живого». И мозг не исключение: он не «кто», он «что» – система отношений между элементами системы.

Мозг из муравьёв


Наши эксперименты показывают, что «язык» муравьёв достаточно пластичен и отнюдь не примитивен.

Муравьи могут складывать и вычитать небольшие числа. Жанна Ильинична Резникова

Нет, наверное, ничего более тривиального, чем рассказывать о работе мозга, используя метафору муравейника. Но что поделать – это и впрямь самая удачная метафора.

Где ещё вы отыщете такой сложный организм (читай – муравейник), состоящий из такого количества самостоятельных, отдельных клеток (читай – муравьёв)?[5]

И в самом деле, интеллект даже самого выдающегося муравья не может быть примечательным. Хотя бы потому, что его нервная система состоит всего лишь из полумиллиона нейронов. По сравнению с нашими миллиардами – просто смешно!

Однако то, на что способны муравьи, действуя сообща, действительно потрясает.

Прежде всего это, конечно, их жилища, которые имеют сложнейшую архитектуру. Но при этом ни у одного муравья в голове нет ни общего замысла сооружения, ни представления о своей роли в команде строителей. Они как-то сами собой понимают, что им делать и как.

Муравьи успешно занимаются «животноводством» – разводят тлей. И это не метафора: они свою тлю защищают от вредителей и других насекомых, переносят её на подходящие участки, строят для тли навесы, защищающие её от солнца, на зиму прячут тлей-самок в муравейник.

И всё это ради медвяной пади, богатой углеводами, которую выделяет тля во время «дойки».

Ещё они умеют делать «заготовки на зиму»: собирают и хранят в сухих хранилищах семена трав, а если случается потоп по время дождя – выносят их на свежий воздух, сушат и убирают обратно.

Перед едой они измельчают семена в муку, а смешанная со слюной муравьёв-кормильцев, она используется для питания личинок.

Об этих чудесах сложного муравьиного поведения можно говорить ещё долго. Но вот, наверное, последний пример, который лично меня почему-то трогает до глубины души.

С наступлением весны очухавшиеся от спячки муравьи вылезают на солнце, нагреваются под его лучами, а затем забираются внутрь муравейника и согревают его своими телами.

Как это трогательно, с одной стороны, и какая, с другой стороны, читается в этом невероятная интеллектуальная мощь природы!

Целенаправленная, системная, невероятно организованная работа миллионов маленьких существ, притом что абсолютно очевидно, что каждое из них – лишь бессмысленный винтик этой огромной машины.

И невольно задаёшься вопросом – как же она может ехать без водителя? Где руководитель? Где тот, кто думает за всех этих малышей?!

Не менее поразителен, впрочем, и жизненный путь муравейника…

Он начинается с того, что в каком-то другом муравейнике из яиц вылупляются самки и самцы, готовые к продолжению рода. Они имеют крылья и разлетаются в разные стороны для спаривания.

После оплодотворения самцы-папы умирают, а самки, получившие за раз сперматозоиды на 20 лет непрерывного деторождения, отыскивают место для новой колонии.

Найдя его, самка отгрызает себе крылья (на собственный прокорм) и начинает откладывать яйца.

Для неё наступают голодные времена, но как только из личинок появятся первые муравьи, они тут же примутся ухаживать и за самкой, и за новыми личинками.

Появившиеся на свет муравьи специализируются, распределяются, так сказать, по командам. Кто-то становится воином-захватчиком, кто-то строителем, кто-то санитаром, добытчиком, разведчиком, охранником, нянькой-сиделкой, пастухами или доильщиками, транспортировщиками, хранителями нектара…

Рис. 7.  Внешние различия между муравьями в зависимости от их роли и функции.

Идут годы, пока наконец королева-мать не исчерпает свой ресурс деторождения, после чего и завершится история данного конкретного муравейника. Смерть.

Всё это, как нетрудно заметить, напоминает жизнь нашего с вами мозга. Он появляется из стволовой клетки, которая продолжает делиться, пока не будет сформировано необходимое мозгу количество нейронов.

Каждый из них, по сути, муравей – специализированный, выполняющий определённую функцию элемент целостной системы.

Нейрон – сам по себе ничтожный и бессмысленный, – во взаимосвязи с другими нейронами создаёт невероятной сложности систему, не перестающую восхищать умы учёных (рис. 8).

Рис. 8.  Муравьи и нейрон как единичные элементы (А) и создаваемая ими структура (Б).

Устройство муравейника и проводящих путей центральной нервной системы.

СПЕЦИАЛИЗАЦИЯ НЕЙРОНОВ

Все нейроны, как и все муравьи, внешне очень похожи друг на друга. Они обладают телом (сомой), от которого отходят отростки – аксон и множество дендритов, а те, в свою очередь, коммуницируют с другими нейронами через синапсы.

В общем и целом процесс нервной передачи выглядит следующим образом: дендриты собирают информацию от других нейронов, в теле нейрона возникает некий ответ, который отправляется по аксону другим нейронам (или мышцам и железам).

Впрочем, тут всё не так просто. По морфологии нейроны бывают разные (рис. 9):

униполярные, у которых есть только одно удлинение сомы, которое выполняет как функцию ввода, так и функцию вывода информации,

биполярные и псевдоуниполярные нейроны имеют соответственно два цитоплазматических расширения – один отросток действует как дендрит (на вход), а другой – как аксон (на выход),

• и многополярные нейроны, которые имеют большое количество входных дендритов и один аксон (таких нейронов в головном мозге подавляющее большинство).

Рис. 9.  Различное морфологическое строение нейронов.

Тут, надо сказать, происходит первое разделение, потому что кроме нейронов в нашей голове живут ещё и клетки глии (или глиальные клетки). Причём их в разы больше, чем нейронов.

Раньше функцией глии пренебрегали. Сейчас же стало понятно, что она принимает достаточно активное участие в работе мозга.

Глия способна регулировать активность тех или иных нейронных ансамблей, выделяя в соответствующий момент нейроактивные химические вещества.

Глия также участвует в формировании долгосрочной памяти. Клетки микроглии, например, выполняют в мозге иммунную функцию. А ещё есть эпендимальные клетки глии, олигодендроциты, астроциты и т. д. Но на них мы останавливаться не будем.

У нас есть специализированные сенсорные нейроны, которые обеспечивают мозгу получение информации из внешней среды. Есть моторные нейроны, которые отдают команды мышцам, включая не только скелетную мускулатуру, но и гладкие мышцы внутренних органов.

Интернейронами называют нейроны, которые взаимодействуют только с другими нейронами, но не с сенсорными рецепторами и не с мышечными волокнами.

Другой важный признак нейрона – его возбуждающая или ингибирующая функция. Возбуждающие нейроны подталкивают другой нейрон к возникновению потенциала действия. Ингибирующий нейрон, напротив, тормозит возбуждение соседа.

Сюда же примыкают так называемые модулирующие нейроны, которые не оказывают возбуждающего или тормозного воздействия на другой нейрон. У них вообще нет передающего сигнала, они лишь модулируют реакцию другой клетки на основной нейромедиатор.

По самим нейромедиаторам нейроны тоже отличаются. Есть серотонинергические нейроны, < дофаминергические, ГАМКергические, глутаматергические, холинергические…

На этом, пожалуй, можно было бы остановиться, хотя это, прямо скажем, не конец.

Нейробиологи и анатомы выделяют множество подтипов нейронов – по месту их локализации, по специфической функции, по гистологическим особенностям, которые, конечно, тоже не случайны и говорят о специализации нейронов (например, рис. 10).

Рис. 10.  Различные формы мулътиполярных нейронов коры головного мозга.

Уверен, что о многих таких «специальных» нейронах вы уже где-то слышали:

зеркальные нейроны – клетки моторной коры, которые возбуждаются и при выполнении какого-то действия, и при наблюдении за тем, как аналогичное действие выполняет другое животное,

пирамидальные нейроны, которые и в самом деле похожи на пирамидки, из них самые большие – клетки Беца – находятся в V слое коры, откуда идут длинным аксоном прямо к спинному мозгу,

веретенообразные нейроны – крупные клетки, находящиеся в строго определённых зонах мозга и способствующие, судя по всему, быстрой передаче сигнала по мозгу больших размеров – поэтому обнаруживаются у человека и гоминид, а также у горбатых китов, кашалотов, дельфинов, белух и слонов,

зернистые, или гранулярные, нейроны – наоборот, клетки очень маленьких размеров (есть мозжечковые, а есть, например, в VI слое коры, где они отвечают за связь с таламусом),

клетки Пуркинье, которые находятся в мозжечке и в отличие от других нейронов созревают достаточно долго, из-за чего маленькие дети выглядят зачастую такими неуклюжими,

клетки ретикулярной формации, характеризующиеся спонтанной электрической активностью, выполняющие функцию внутренней динамо-машины нашего мозга.

Список можно и продолжить, но для того, чтобы увидеть схожесть между специализацией клеток в мозге и муравьёв в муравейнике, этого вполне достаточно: нейроны разных групп так же выполняют в мозге разные функции, как и муравьи разных муравьиных каст в своём огромном семействе.

Это важно понимать, потому что, когда мы говорим о машине мышления, нам придётся упрощать логику работы мозга до ограниченного числа принципов.

В конце концов, каждый нейрон – это просто нейрон, как и каждый муравей в муравейнике – просто муравей, мало чем, по сути, отличающийся от других.

Но не надо забывать, что в действительности мозг как биологический объект намного-намного сложнее, чем просто 87 миллиардов сцепленных друг с другом нервных клеток.

Может быть, самое в этом сопоставлении муравейника с мозгом трогательное и даже забавное – химическая связь, которая используется в коммуникации как между нейронами, так и между муравьями.

В случае человеческого мозга химическими веществами, обеспечивающими контакт между клетками, являются нейромедиаторы: ГАМК, глутамат, глицин, норадреналин, ацетилхолин, дофамин, серотонин и десятки других.

У каждого из них свои функции и свои, так скажем, психологические эффекты.

Муравьи общаются между собой с помощью специфических феромонов: какие-то служат для сородичей сигналом тревоги, другие заставляют их чистить муравейник или побуждают к каким-то ещё действиям, причём самым разным – где-то собраться, подключиться к ухаживанию за королевой и её потомством и т. д.

Наблюдая за слаженными коллективными действиями муравьёв, и правда трудно отделаться от мысли, что они умеют друг с другом разговаривать.

Это и в самом деле происходит, причём есть в этом какое-то удивительное сродство с «общением» наших нейронов друг с другом (рис. 11).

Рис. 11.  Химическая передача в синапсе и при взаимодействии между муравьями.

Рассмотрим хотя бы один пример. Обнаружив что-то съедобное, муравей-разведчик устремляется к дому, оставляя за собой химический след из выделений специальных желёз.

Теперь ему не надо показывать собратьям дорогу к пище, они найдут её сами – по запаху с помощью своих антенн-усиков.

Впрочем, выделяемое сигнальное вещество достаточно быстро улетучивается, чтобы следы не путались друг с другом, что важно.

И вот первое математическое обстоятельство: количество выделяемого муравьём экстракта железы напрямую коррелирует с размером добычи (если она большая, то выделений больше, если нет – меньше).

Таким образом, количество муравьёв, привлечённых соответствующим запахом, тоже разнится: к большой добыче отправится большая команда, а к маленькой – только единицы.

Прибавьте сюда ещё и привлечённых запахом муравьёв: они будут оставлять химические следы, которые дадут знать другим муравьям – кончилось лакомство или ещё можно успеть поучаствовать в охоте.

Однако в коммуникации важна не только химия, но и частота взаимодействия между муравьями. Согласитесь, трудно понять, как эти бестолковые, в сущности, существа умудряются не растеряться в лесу… Учитывая соотношение масштабов, мы бы с вами мгновенно заблудились!

Тут уже начинается и вовсе высшая математика…

Чем ближе к муравейнику, тем, понятное дело, чаще муравьи одного семейства наталкиваются друг на друга. С другой стороны, чем дальше муравей удаляется от муравейника, тем – чисто математически – количество его контактов с соплеменниками уменьшается.

Соответственно, учитывая эту математическую вероятность, конкретный муравей всегда знает, насколько далеко он от своей основной группы, от муравейника.

Как только он замечает, что его случайных контактов с соплеменниками стало непозволительно мало, он может успеть вернуться к группе по своему же собственному химическому следу.

Конечно, нейроны в нашем мозге взаимодействуют чуть иначе, но принципы очень похожи:

• количество нейромедиаторов является для нейрона критерием активности, которую он произведёт, и кроме того, выделение большого количества соответствующих нейромедиаторов способствует вовлечению в решение данной задачи ещё большего количества нейронов;

• синхронный ритм разрядов групп нейронов, создающий специфические ЭЭГ-волны (альфа, бета, тета, дельта, гамма), является эффективным инструментом коллективной работы нейронов, по сути – они таким образом подзаводят друг друга и настраиваются на одну, так сказать, волну.

Но всё-таки самое главное в «муравьиной метафоре» мозга – это пример удивительной биологической самоорганизации системы, не имеющей единого центра управления. Системы, кажущейся разумной, но без демиурга, которому бы этот разум принадлежал. Просто умная система…

Время разума


Для эффективного поведения необходимо получать информацию посредством какого-нибудь процесса обратной связи, сообщающего о достижении цели. Пётр Кузьмич Анохин

В 2014 году профессор теоретической физики, знаменитый популяризатор науки Митио Каку опубликовал книгу с амбициозным названием «Будущее разума. Научный способ понять, улучшить и расширить возможности разума».

В ней он сформулировал «пространственно-временную теорию сознания», суть которой заключается в том, что сознание представляет собой процесс создания моделей мира с использованием множества обратных связей по разным параметрам.

Что такое обратная связь? Митио Каку приводит простую и достаточно изящную, на мой вкус, аналогию – кондиционер с термостатом.

Он работает, пока не достигнута определённая температура, и останавливается, получив обратную связь, что это произошло. Ну и конечно, включается вновь, когда получает обратную связь о том, что температура перестала отвечать заданной.

Впрочем, обратная связь – это механизм существования всех «живых» систем, причём самого разного уровня.

Эволюционная теория Чарльза Дарвина стоит на этом фундаменте «обратной связи»: если мутация способствует выживанию вида, то она сохраняется, если нет – выбраковывается вместе с носителем.

Любая экосистема – например, количество бактерий разного типа в вашем кишечнике – определяется обратными связями между их колониями. Наконец, жизнь любого организма – это бездна обратных связей.

Муравейник – это пример и своего рода организма, и экосистемы.

Он не живёт, как когда-то Советский Союз, в «плановой экономике», где производство тех или иных товаров определялось решениями коммунистической партии и специальным органом управления – Госпланом СССР.

Нет, его деятельность подчиняется, как говорили реформаторы 90-х, «невидимой руке рынка». Каждый муравей лишь реагирует на конкретные сигналы, значительная часть которых – это обратные связи, отклик окружающей среды на действия самого муравья.

Системе под названием «муравейник» не нужен план, не нужен ему и талантливый управленец. Ему достаточно обратной связи, сообщающей ему: он «жив» и «жить будет».

Если же обратные связи сообщают муравьям, что что-то пошло не так, они экстренно предпринимают меры, призванные вернуть ситуацию в то состояние, когда их муравейник «жив» и «жив будет».

Объясняя свою теорию, Митио Каку сформулировал положение о разных «уровнях сознания». Согласно этому принципу, от того, какие обратные связи создаёт организм, зависит и то, на каком «уровне сознания» он находится.

Так, например, рептилии способны отслеживать своё текущее положение в пространстве – это «первый уровень сознания» по Митио Каку.

Млекопитающие способны принимать во внимание и реагировать на поведение сородичей, что, как считает Митио Каку, свидетельствует о том, что у них уже «второй уровень сознания».

Наконец, человек, «который, – как пишет Каку, – единственный в царстве животных понимает концепцию "завтра”», то есть моделирует окружающий его мир не только в пространстве и социальных связях, но и во времени, – это уже «третий уровень сознания», наивысший (пока его, конечно, не превзойдёт искусственный интеллект).

«Пространственно-временная теория» физика Митио Каку, безусловно, достаточно интересна. Однако же странным образом маэстро не учитывает того факта, что функция «обратной связи» сама по себе является временной.

Человек, потерявший вследствие черепномозговой травмы или болезни способность представлять своё «завтра», не лишается сознания. По крайней мере, того сознания, каким мы все его себе представляем.

Мыслит такой пациент, конечно, не лучшим образом, но это не вопрос «сознания» как такового.

Так что если время и имеет значение для «уровня сознания», то именно в рамках петли обратной связи: любое действие живого существа (или системы как таковой) приводит к изменениям во внешней среде, информация о которых, если организм может её считать, моделирует его последующие действия.

Циклы обратной связи способны определять саму логику существования организма: для кондиционера с термостатом необходимо лишь электричество на «входе» и окружающая среда на «выходе», а всё остальное сделает обратная связь.

«Генетически» заданная температура – это цель, к которой перманентно стремится система термостата. Но системе можно задать и другие изначальные цели, стремление к которым в условиях меняющей среды неизбежно приведёт систему в движение.

И в этом смысле Митио Каку, конечно, прав – чем больше и разнообразнее будут петли обратной связи конкретной системы, тем более разумной и осмысленной мы будем её считать.

То есть принцип, в сущности, прост, как всё гениальное, он, можно сказать, почти механический. Но в случае живых систем он, конечно, существенно модернизируется дополнительными, так скажем, опциями.

В своё время, значительно раньше Митио Каку и даже опережая в чём-то основателя кибернетики Норберта Винера, наш выдающийся соотечественник Пётр Кузьмич Анохин показал, насколько сложной может быть эта система…

ЖИВОЙ ТЕРМОСТАТ

В книге «Красная таблетка – 2», в главе «Как захотеть?», я уже рассказывал о том, что такое «акцептор результата действия» Петра Кузьмича Анохина, и даже описывал принцип его действия18.

Поэтому здесь я лишь очень кратко коснусь этого вопроса, чтобы показать, насколько может усложняться принцип обратной связи в живых системах (оставаясь, впрочем, всё той же обратной связью).

Посмотрите на рис. 12, где изображена схема «функциональной системы», разработанная Петром Кузьмичом.

Рис. 12.  Функциональная система по П. К. Анохину.

Если посмотреть только на правую половину схемы, то мы видим классическую петлю обратной связи:

• цель, которой нужно достичь (акцептор результата действия);

• действие для достижения этой цели (программа действий);

• результат действия;

• оценка результата действия (насколько параметры поставленной цели достигнуты);

• следующее, модифицированное действие, если искомая цель не достигнута.

То есть с этой частью всё просто – как с тем самым кондиционером. Ситуацию усложняет левая сторона схемы.

По идее, цель может быть запрограммирована генетически – например, системы нашего организма настроены таким образом, чтобы температура тела равнялась 36,6 градуса по Цельсию.

В этом случае всё понятно – множество факторов, множество петель обратной связи и как результат – стабильная температура тела.

Однако нам эта система не кажется «умной» (что, конечно, несправедливость вышей пробы!). И лишь потому, что 36,6 °C – это не мы выдумали, а природа.

Умной мы считаем систему, которая, как нам кажется, ставит перед собой цели самостоятельно. Но давайте внимательнее присмотримся к той самой левой стороне схемы «функциональной системы». <

Здесь вроде бы речь идёт о процессе формирования «цели» (или «акцептора результата действия», или, как говорил сам Пётр Кузьмич, – «потребного будущего»):

• состояние среды (обстановочная афферентация и пусковой стимул);

• восприятие среды организмом;

• оценка ситуации в среде с точки зрения «памяти» (прошлого опыта) и актуальных потребностей (мотивация);

• принятие решения о необходимости действовать (мышление);

• формирование цели (план и программа действий).

Всё, как кажется, предельно логично: состояние среды, оценка ситуации, формирование цели и план, как действовать, чтобы её достичь.

Но сам ли организм ставит себе цели? Возникает стойкое ощущение, что да. Более того, конкретные цели он и в самом деле ставит себе сам.

Но вот одна загвоздка: не будь в этой системе потребностей, заложенных как раз «генетически» (или потребностей, сформированных на их основе), эта машина не сдвинулась бы с места.

Более того, она бы даже была не способна оценить состояние среды.

Иными словами, схема Петра Кузьмича Анохина, описывающая сложные организмы (функциональные системы), на самом деле ничем не отличается от общей формулы петли обратной связи.

То, что некая система кажется нам «разумной», «сложной» или «живой», ещё не значит, что она обогатилась каким-то чудесным элементом, вдохнувшим в неё «жизнь», «дух», «сознание» или ещё что-то в этом роде.

Нет, то, что у нас возникает такое ощущение, свидетельствует ни о чём другом, как о нашей ограниченности, интеллектуальной бедности – система так сложна, что мы не в силах её понять.

И естественно, не понимая её, мы начинаем приписывать этой системе мистические свойства, как когда-то наши предки приписывали их своим тотемам, шаманским фетишам и природным стихиям.

Если бы мы могли увидеть все петли обратной связи, усложнённые многоуровневой иерархией системы, мы, можете быть уверены, не обнаружили бы ни в жизни, ни в сознании ничего из ряда вон выходящего.

В просто организованной системе обратные связи работают в одном времени со средой: ситуация – оценка – решение – действие. И они нам понятны, поскольку наша обыденная жизнь протекает именно в таком – линейном – времени.

А в таких сложных системах, как биологический организм или, например, наш мозг, время имеет множество дополнительных измерений.

Как так? Откуда там берётся такое дополнительное… «нелинейное» время?

Можно попытаться объяснить это таким образом… Чем сложнее система, тем больше в ней подпроцессов, каждый из которых и сам в определённом смысле является полноценным процессом. И для каких-то процессов «ситуация» – это уже «решение» или «действие», а «оценка» – «ситуация» или «действие» и т. д.

Вот и получается, что одновременно происходит множество накладывающихся друг на друга процессов, создающих специфическую плотность нелинейного времени. И разумеется, это очень сложно понять мозгам, которые созданы для существования в мире линейного времени.

Впрочем, об одной существенной инновации, которую подарило нам это усложнение систем, нельзя не сказать отдельно. Возвращаясь к левой части анохинской схемы, мы видим здесь такую опцию, как «память».

Да, разумеется, память не самостийна, не имеет ни своей воли, ни права выбора. То, что сохраняется, удерживается в ней, определяется теми потребностями, которые двигают, направляют систему в целом.

Однако после того, как память сформировалась, она сама по себе может стать своего рода новой плоскостью соприкосновения со средой. И этот факт стал предметом самого глубокого изучения в современной нейробиологии.

В своё время и Пётр Кузьмич писал об «опережающем отражении» – то есть о способности мозга предсказывать будущее. Но сейчас этот феномен приобрёл ещё больший вес и статус в академической науке, получив новое название «предиктивное кодирование».

Одними из первых за пределами нашей страны с этим эффектом столкнулись когнитивные психологи-Джеймс Макклелланд, который работал тогда в Гарвардском университете, и Дэвид Рамелхарт из Калифорнийского университета в Сан-Диего.

Они показывали своим испытуемым существующие и несуществующие слова и следили за тем, сколько им потребуется времени на то, чтобы опознать в них конкретные буквы19.

Выяснилось, что, глядя на существующее слово (например, «взбудоражить»), мы быстрее находим нужную букву, нежели в несуществующем (например, «идскутнрудал»).

То есть наш мозг заранее предсказывает, есть нужная буква в ряду других или нет, если мы знаем это слово.

Или вот ещё один пример предиктивного кодирования на уровне знаков. Попробуйте прочитать вот этот текст:

94НН03 С006Щ3НN3 П0К4ЗЫ8437, К4КN3 У9N8N73ЛЬНЫ3 83ЩN М0Ж37 93Л47Ь Н4Ш Р4ЗУМ! 8П3Ч47ЛЯЮЩN3 83ЩN! СН4Ч4Л4 Э70 6ЫЛ0 7РУ9Н0, Н0 С3ЙЧ4С, Н4 Э70Й С7Р0К3, 84Ш Р4ЗУМ ЧN7437 Э70 4870М47NЧ3СКN, Н3 З49УМЫ84ЯСЬ 06 Э70М. Г0Р9NСЬ. ЛNШЬ 0ПР393Л3ННЫ3 ЛЮ9N М0ГУ7 ПР0ЧN747Ь Э70[6].

На первый взгляд выглядит как абсолютная абракадабра, но мозг достаточно быстро адаптируется к задаче и начинает считывать не те знаки, которые фактически набраны на странице, а те, которые должны были бы, по идее, там быть, чтобы текст получился осмысленным.

Конечно, 9 не очень похоже на букву Д, 4 – на А, 3 – на Е, 6 – на Б, а 7 – на Т.

Но что-то общее в них, согласитесь, есть. И если вы знаете, что перед вами текст, а не математическая формула, мозг быстро перестраивается и начинает видеть то, что должно быть написано согласно его ожиданиям, а не то, что он и в самом деле видит.

Теперь давайте представим себе ситуации, в которых, полагаю, каждый из вас когда-то оказывался. Они позволят нам убедиться в том, как механизм предиктивного кодирования может в буквальном смысле менять восприятие нами реальности.

Допустим, вы находитесь на улице или где-то в большом здании и замечаете на значительном удалении от себя знакомого вам человека. Вы испытываете какие-то чувства – приятные, если рады его увидеть, или, например, тревогу, если не хотите с ним пересекаться.

Но вдруг вам начинает казаться, что это не тот человек. Вы снова приглядываетесь – нет, тот! Или всё-таки показалось, не тот?

При этом сам человек, на которого мы смотрим, в эти моменты словно бы меняет свой облик в вашем восприятии – он то похож на вашего знакомого, то нет.

Вот предиктивное кодирование: мозг помнит, как должен выглядеть ваш знакомый, и он как бы подсказывает вам нужную визуализацию.

Если же перед вами незнакомец, то ваш мозг его не помнит и вынужден ориентироваться только на внешние данные, что тут же делает человека непохожим на вашего знакомого.

Другой пример – из моего личного опыта, пережитого только что. Впрочем, не сомневаюсь, что вы сталкиваетесь с чем-то подобным по нескольку раз на дню, но даже не замечаете этого.

В задумчивости я ходил по квартире и в какой-то момент обнаружил себя на кухне. Там, практически на автомате, я заглянул в холодильник, размышляя, видимо, над тем, стоит ли мне перекусить или нет.

Подвигал содержимое, ничто меня не заинтересовало, я захлопнул дверцу и направился к дверному проёму.

Но там меня вдруг словно что-то остановило. Можно даже сказать – одёрнуло. Что произошло?..

И тут меня начинает догонять произошедшее: дверца холодильника закрылась уже секунду назад, но только сейчас я понял/услышал, что не прозвучало того характерного тихого хлопка, который обычно сопровождает его нормальное закрытие.

Жду ли я этого звука, закрывая холодильник?

Нет, конечно. Я даже не вспомнил бы, что такой есть, если бы меня о нём спросили. Однако мой мозг это помнит, это для него часть динамического стереотипа моего взаимодействия с холодильником.

То есть мозг предиктивно кодирует – ожидает, что дверца закроется со специфическим звуковым сопровождением.

В этот раз я был в задумчивости, быстро отвернулся от холодильника и, честно говоря, думать о нём толком не думал. Для меня холодильник закрыт. По крайней мере, необходимое движение рукой я для этого сделал.

Но мой мозг имел предиктивное ожидание характерного звука, и для него холодильник остался незакрытым. Именно это и остановило меня в проходе.

Непрозвучавший звук догнал меня через эту паузу: я услышал, что не услышал его. Динамический стереотип не закрылся, мозг поднял тревогу и вернул меня к дверце, чтобы я привёл содержимое холодильника в порядок и дверца могла закрыться как надо.

То есть, по сути, тот же фокус: я нахожусь в уверенности, что закрыл холодильник, но предиктивное кодирование вносит поправки в моё представление о реальности, корректируя его.

Нечто подобное может случаться, конечно, не только с холодильником, но и с дверным замком, который вы, как вам показалось, закрыли, а потом вдруг с чувством недоумения и дискомфорта обнаруживаете, что осталась ещё пара пропущенных вами поворотов ключа.

Или с краном горячей воды, когда из него вдруг льётся холодная: мозг предиктивно кодировал одно, реальность оказалась другой, и ошибка результата возвращает вас на один, а то и два хода назад.

Вы отдёргиваете руку, проверяете, какой кран открыт, осознаёте, что что-то произошло с водоснабжением вашей квартиры.

Очевидно, впрочем, что мы замечаем только те случаи предиктивного кодирования, когда мы допускаем какую-то ошибку или сталкиваемся с каким-то исключением, чрезвычайной ситуацией.

Но процесс предиктивного кодирования всего и вся производится нашим мозгом постоянно, неустанно. Просто мы осознаём его лишь в случаях, когда что-то, как говорится, идёт не так.

Или вот такая ситуация: вы находитесь на работе, допустим, в офисе своей компании, и вдруг видите в коридоре своего товарища, с которым вы связаны, например, соседством – он ваш сосед по даче, а к вашей работе он не имеет никакого отношения.


    Ваша оценка произведения:

Популярные книги за неделю