Текст книги "Электромеханика в космосе"
Автор книги: Андраник Иосифьян
сообщить о нарушении
Текущая страница: 1 (всего у книги 5 страниц)
А. Г. Иосифьян,
академик АН Армянской ССР
ЭЛЕКТРОМЕХАНИКА В КОСМОСЕ
ВВЕДЕНИЕ
Электромеханика – наука о движении и взаимодействии вещественных инерциальных макроскопических и микроскопических тел, связанных с электрическими и магнитными полями. Движение различных транспортных средств: автомобилей, теплоэлектровозов, самолетов на современном этапе развития в очень большой степени определяется законами и принципами электромеханики.
Ракеты-носители, используемые для вывода полезного груза на орбиту вокруг Земли и имеющие бортовые системы электромеханики, автоматики, электроснабжения, по своим законам движения не существенно отличаются от мощных авиационных сверхскоростных самолетов. Поэтому электротехническое оборудование таких ракет-носителей, в том числе средства электромеханики (электрические машины, аппараты, приборы), по своим весогабаритным, энергетическим характеристикам и техническим требованиям очень близки к авиационному оборудованию (в том числе по продолжительности непрерывной работы), с той лишь разницей, что перегрузки при ускорениях и вибрационные характеристики авиационных электромеханических систем при применении в ракетах-носителях имеют более широкий диапазон.
В отличие от этих систем работоспособность бортового электротехнического оборудования и систем космических аппаратов, выводимых на орбиту, может исчисляться многими месяцами и годами. Поэтому с точки зрения общего технического оснащения электрифицированных механизмов соответствующими электромеханическими устройствами (особенно в длительно действующих обитаемых космических кораблях) они больше подходят и гармонируют с техническими эксплуатационными требованиями морских судов, в том числе глубинных аппаратов. В то же время, совпадая по эксплуатационным характеристикам и общей структуре технического оснащения с объектами морского судостроения, космические объекты требуют значительно более жестких ограничений на вес и габариты всех электротехнических, электромеханических, радиоэлектронных и других электрифицированных бортовых систем.
Следует отметить следующие особенности электромеханических устройств космических аппаратов. Во-первых, в условиях орбитального полета возникновение любого движения каждого бортового рабочего механизма (большого или малого) воздействует в целом на космический объект в соответствии с законами сохранения центра масс и момента количества движения. Таким образом, при использовании электрической энергии для обеспечения движения любой массы в заданном направлении (поступательном или вращательном) реакция этого движения на корпус космического аппарата должна быть каким-то образом скомпенсирована. Это создает особые условия работы электромеханических систем, устанавливаемых на космические аппараты. Причем для каждого частного случая специфические особенности реакции на корпус имеют свою особую форму.
Во-вторых, любое электромеханическое устройство, выполняя полезную работу, несет соответствующие (в зависимости от величины КПД) тепловые потери. При работе механизмов в условиях глубокого вакуума отвод тепла в космическое пространство не может происходить с помощью каких-либо охлаждающих агентов и поэтому осуществляется лишь за счет излучения лучистой энергии в пространство, что вызывает необходимость при конструировании космических аппаратов использовать соответствующие поверхности (площади) для отвода тепла.
И наконец, в-третьих, так как космический аппарат должен находиться в космосе и функционировать долгие годы, то при эксплуатации электромеханических систем такого объекта требуется, чтобы они имели очень длительный срок службы и безотказно и непрерывно работали в динамическом режиме в течение десятков тысяч часов.
ЭЛЕКТРОМЕХАНИКА И КОСМОНАВТИКА
Космонавтика как наука о полетах летательных аппаратов в космическом пространстве тесно связана с астрономией и физикой, особенно с такими разделами последней, как механика, теплотехника, электротехника. Одновременно космонавтика, являясь и отраслью техники, изучающей вопросы конструирования космических летательных аппаратов (как пилотируемых космических кораблей, так и автоматических), тесно связана с такими отраслями электротехники, как электромеханика, радиотехника, электроника, светотехника, техника высоких напряжений, электроэнергетика с электрохимическими, плазменными, химическими и другими типами источников электрической энергии. Все эти разделы электротехники так или иначе связаны с космонавтикой, но один из них – электромеханика – более глубоко и неразрывно, чем остальные.
Не случайно основоположник теоретической космонавтики К. Э. Циолковский еще в 1898 г. предложил для дирижабля применить электроавтопилот. Последний можно считать прообразом всех электромеханических систем управления в таких современных летательных аппаратах, как самолеты, вертолеты, ракеты-носители. Автопилот К. Э. Циолковского (рис. 1) состоял из электрического генератора постоянного тока и маятникового автомата, который в зависимости от наклонения продольной оси гондолы осуществлял управление полетом с помощью переключателя в двигателе постоянного тока, связанном через механическую передачу с рулем высоты. В этой системе была предусмотрена и механическая обратная связь: наблюдая через окно, пилот мог регистрировать положение руля.
Рис. 1. Автопилот К. Э. Циолковского:
1 – окно; 2 – контакты; 3 – генератор; 4 – маятник; 5 – жидкостный демпфер; 6 – двигатель; 7 – руль высоты
По мере развития летательных аппаратов и установления принципиальных особенностей динамики их движения электромеханические системы усовершенствовались. Они стали включать в себя механические приборы, исполнительные механизмы с электродвигателями, электронную, автоматическую аппаратуру, обеспечивающие задачи точной ориентации в пространстве, точной навигации и соответствующей стабилизации. В то же время конструктивно развивались сами системы управления летательных аппаратов, в которых все большее отражение находили принципы организации движения, имеющиеся в органическом мире. Известно, что все виды пернатых используют при своем движении сигналы. от световых источников – звезд, Солнца, планет – магнитного и электрического полей Земли. С помощью этих сигналов пернатые в условиях земной атмосферы могут пролететь десятки тысяч километров, используя внутренние чувствительные элементы своих органов, связанных с ориентацией и стабилизацией тела в пространстве, с точной навигацией в любых метеорологических условиях (не только при движении в заданном направлении, но и для приземления в заданном участке земного шара). Между тем современная теория и техника использования электричества и магнетизма для точной ориентации и навигации еще далеки от того совершенства управления движением в пространстве, которое имеет место в органической природе. Ведь пернатые, используя лишь ничтожную энергию и обладая очень малой мощностью, осуществляют сверхдальние перелеты, совершая при этом сложные виды движения в пространстве.
Для управления движением современных автоматизированных летательных аппаратов как близ земной поверхности, так и в космическом пространстве требуются наличие чувствительных элементов для регистрации положения аппарата в пространстве, выработка электрических сигналов и параметров, соответствующих этому положению, разработка логики управления на основе полученных многочисленных сигналов и, наконец, передача электрических сигналов на силовые управляющие исполнительные органы. В качестве исполнительных органов могут быть использованы электрические двигатели, электромагнитные механизмы, электрогидравлические приводы.
Особенности электромеханических систем, обеспечивающих вывод космического летательного аппарата на орбиту вокруг Земли и его движение по орбите, весьма наглядно проявляются при анализе движения самолетов (на различных этапах их развития). На первых летательных аппаратах пилот самолета совершал взлет, ориентируясь по взлетной дорожке. По наблюдению за горизонтом он осуществлял подъем или спуск, наклоняя или поднимая носовую часть аппарата вокруг его поперечной оси («управлял углом тангажа»). Используя различные виды ориентиров, наклонял самолет вправо или влево вокруг продольной оси аппарата («управлял углом крена»). И наконец, наблюдая за магнитной стрелкой или прибором курса, поворачивал самолет вокруг вертикальной оси («управлял углом рыскания»).
Таким образом, с помощью трех рулевых механизмов, действующих относительно трех взаимно перпендикулярных осей с точкой пересечения, расположенной в центре масс самолета, называемых обычно «строительными осями самолета» (продольной – по крену, поперечной – по тангажу, вертикальной – по рысканию), пилот мог ориентировать самолет в любом направлении. Исполнительными органами служили рулевые механизмы и рули. На первых самолетах пилот осуществлял управление рулевыми механизмами с помощью своей мускульной силы. Ориентируясь по показаниям приборов и собственным наблюдениям и используя исполнительные органы – рули, пилот организовывал, как говорят, «следящую систему», или «следящий привод». Эта «природная» система следила за отклонениями аппарата от нормального курса движения и при необходимости воздействовала на исполнительные органы, чтобы свести эти отклонения к минимальным значениям, обеспечивая движение самолета по заданному курсу. Вследствие инерциальности движения летательного аппарата управление им должно носить колебательный характер относительно заданного точного курса. Такой же колебательный характер движения от «курса» совершает автомобиль, управляемый водителем, который при движении даже по прямолинейной дороге все время воздействует на рулевую систему автомашины, направляя машину вправо или влево для сохранения основного направления движения.
Простейшие автопилоты с исполнительными органами по типу, предложенному К. Э. Циолковским для дирижабля, стали использовать только в 30-е годы нашего века. На следующем этапе – создания скоростных и сверхскоростных самолетов – разрабатываются автопилоты, которые обеспечивают не только автоматическое движение по заданной траектории, но и автоматический взлет, и так называемую «слепую» посадку. Электромеханические системы этих аппаратов уже имеют чувствительные приборы (датчики), которые регистрируют и передают в систему автоматического управления (с автопилотом) все основные данные, характеризующие реальное движение летательного аппарата.
На борту современных летательных аппаратов имеется группа датчиков, измеряющих ускорение, скорости в направлении всех трех собственных строительных осей аппарата. Эти датчики представляют собой электромеханические приборы – ньютонометры (акселерометры). Другую группу электромеханических датчиков составляют астродатчики, т. е. приборы, определяющие положение аппарата относительно звезд. Среди информационных чувствительных элементов (датчиков) имеются также приборы, измеряющие угловые ускорения движения по углам тангажа, рыскания и крена. Эти приборы основаны на принципе электромеханических гироскопов, о которых речь пойдет дальше. И наконец, на борту современных летательных аппаратов устанавливается электронная вычислительная машина (ЭВМ), которая, получая информацию от всех датчиков, вычисляет фактическую траекторию аппарата и сравнивает ее с идеальной траекторией, записанной в памяти ЭВМ. Определяя отклонения фактической траектории от расчетной, ЭВМ в результате логических операций вырабатывает соответствующие сигналы, которые подаются в исполнительные органы аппарата – рулевые механизмы, электрические реле и автоматы, регулирующие работу авиадвигателей и обеспечивающие тем самым минимальное отклонение параметров реальной траектории от идеальной.
В ракете-носителе автоматизированы взлет, выход на орбиту по заданной траектории, отделение спутника. Автоматизированы также процессы ориентации и стабилизации при движении космического летательного аппарата по заданной траектории и, наконец, посадка на планету и взлет с нее. Можно сказать, что ракета-носитель, как и любой космический летательный аппарат, является своеобразным мощным «силовым роботом». И не случайно в 1974 г. на VI симпозиуме Международной федерации по автоматическому управлению в космическом пространстве, кроме докладов, посвященных ракетам-носителям, спутникам, телескопам для внеатмосферной астрономии, было представлено большое количество докладов по роботам и манипуляторам.
Анализ систем управления роботами и манипуляторами как объектами, произвольно двигающимися в пространстве, показал, что эти системы имеют много общего с аналогичными системами космических летательных аппаратов. Особенно это касается приборов и систем наблюдения и информации, электрических схем управления ориентацией и стабилизацией, следящих исполнительных механизмов. Для того чтобы ракета-носитель двигалась автоматически по определенной трассе, а в момент отделения от нее искусственного спутника Земли имела заданную по величине и направлению скорость, на ней устанавливается прибор, в котором заложена программа движения. Прибор, сохраняя свое положение в пространстве, определяет фактическое положение ракеты-носителя, регистрирует любое отклонение ее движения от заданного с помощью электрических сигналов, по которым осуществляется рулевое управление космического летательного аппарата. Такой сложный прибор называется электромеханической стабилизированной платформой (или инерциальной платформой). На рис. 2 представлена схема такой (платформы. На ней установлены: ньютонометры для измерения ускорений (по трем осям координат); приборы, определяющие скорости, приобретенные с момента взлета, а также траекторию, определенную по этим скоростям (при наличии точных часов); и, наконец, приборы, которые сравнивают эту фактическую траекторию с программной, заложенной в памяти автомата. Автомат может быть электромеханическим и в виде управляющей ЭВМ. Сигналы отклонения привадят в действие соответствующие автоматы стабилизации и ориентации, которые воздействуют как на ракетные основные, так и на рулевые двигатели таким образом, чтобы как можно быстрее ликвидировать эти отклонения.
Рис. 2. Схема стабилизированной платформы:
1 – корпус; ABC – датчики с моментными электродвигателями; XYZ – приборы-датчики стабилизации по трем осям
Рулевые органы ракеты-носителя снабжены электромеханическими и электрогидравлическими приводами и соответствующими электромагнитными механизмами, обеспечивающими передачу электрических сигналов от датчиков.
Перейдем теперь к основным динамическим процессам, сопровождающим отделение космического летательного аппарата[1]1
Здесь и далее мы под космическим летательным аппаратом будем понимать полезный груз ракеты-носителя.
[Закрыть] от ракеты-носителя, а именно – к ориентации и стабилизации и дальнейшему функционированию аппарата как в свободном полете, так и при корректировании траектории орбиты, необходимом для дальнейшего движения в соответствии с программой полета.
После вывода на орбиту космического летательного аппарата и отключения двигателей последней ступени ракеты-носителя программное устройство (электромеханический часовой механизм или ЭВМ), находящееся в этой ступени, подает сигнал в электропиротехническое устройство, которое отталкивает космический аппарат от ракеты-носителя.
Следовательно, после отделения от последней ступени ракеты-носителя космический летательный аппарат представляет собой тело, центр масс которого движется вдоль круговой, эллиптической или другой траектории. Космический аппарат в целом может вращаться с определенной угловой скоростью относительно мгновенной оси, проходящей через его центр масс. Происходит это потому, что механические силы, отделяющие космический летательный аппарат от ракеты-носителя, в момент отделения не являются одинаковыми. Вследствие этого возникают вращательные моменты относительно центра масс, и под действием этих вращательных импульсных моментов аппарат приобретает мгновенную угловую скорость относительно некоторой оси.
Возможность аппарата занимать любое положение в пространстве при движении его центра масс по некоторой космической траектории и определяет законы управления автономными электромеханическими системами в зависимости от назначения космического аппарата.
Пусть, например, космический летательный аппарат предназначен для фотографирования поверхности облачного и ледового покровов Земли. Эта задача выполняется космической метеорологической системой, функциональная схема которой представлена на рис. 3. Всю фотоинформацию система должна закодировать в форме электрических сигналов, запомнить их и затем передать на Землю, где эту телефотоинформацию должна принять наземная радиостанция. Для расшифровки, а главное, для обеспечения географической привязки I получаемой информации к местности при дальнейшей обработке необходимы ориентация и стабилизация фотоаппаратуры относительно некоторой оси, проходящей все время через центр масс той или иной планеты (в частности, Земли). Это направление будет перпендикулярно к поверхности планеты и тем самым по периоду вращения можно будет привязать полученную фотографию изображения к местности.
Рис. 3. Функциональная схема космической метеорологической системы:
1 – пункт управления; 2 – наземная аппаратура командной радиолинии; 3 – пункт автоматической обработки телеметрической информации; 4 – командная радиолиния; 5 – телеметрическая информация; 6 – радиолиния метеорологической информации; 7– аппаратура преобразования метеорологической информации; 8 – пункты приема метеорологической информации; 9 – обработка телевизионной информации; 10 – обработка актинометрической информации; 11 – обработка инфракрасной информации; 12 – Гидрометеоцентр СССР. Выпуск прогнозов: 13 – для авиации; 14 – для сельского хозяйства; 15 – для кораблей морского флота; 16 – для населения об опасных явлениях погоды; 17 – о состоянии ледяного покрова
Из этого примера следует, что функции систем управления любого космического аппарата сводятся к тому, чтобы, во-первых, обеспечить начальное «успокоение» аппарата после его отделения от ракеты-носителя (т. е. чтобы свести к минимуму угловую скорость вращения, полученную им в момент отделения), и, во-вторых, обеспечить соответствующие программные повороты вокруг трех взаимно ортогональных строительных осей, жестко связанных с центром масс космического летательного аппарата. Система управления должна, кроме того, иметь возможность осуществлять поиск специальных ориентиров (Земли, Луны, Солнца, планет Солнечной системы, звезд) и обеспечивать стабилизацию космического аппарата относительно этих ориентиров с точностью, необходимой для работы бортовых аппаратов и научных приборов. В функцию системы управления также входит стабилизация космического летательного аппарата по заданному курсу и автоматическое управление реактивными двигателями для изменения траектории центра масс и маневрирования кораблем.
ЭЛЕКТРОМЕХАНИЧЕСКАЯ СТРУКТУРА КОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
Большинство искусственных спутников Земли, а также космические аппараты, предназначенные для полетов на Луну, Марс, Венеру и другие планеты, являются длительно действующими летательными аппаратами. К ним относятся, в частности, спутники связи, спутники исследования природных ресурсов Земли, метеорологические, такие, как советские «Молния», «Радуга», «Метеор», американские «Нимбус», НОАА. Все они имеют электромеханические системы для выполнения тех или иных физических операций при орбитальном полете. Общие принципы этих устройств носят типовой характер, отличаясь лишь различными конструктивными модификациями.
Рис. 4. Электромеханические устройства на типовом космическом аппарате:
1 – электропривод ориентации солнечной батареи; 2 – оптико-электромеханический астродатчик; 3 – электропневмоклапаны газореактивной системы; 4 – электромеханические коммутаторы телесигнализации; 5 – электромеханические лентопротяжные устройства памяти; 6 – электромагниты для сброса кинетических моментов; 7 – релейно-контакторная аппаратура; 8 – электромашинный преобразователь; 9– датчики угловых скоростей; 10 – устройство записи воспроизведения; 11 – шаговые электродвигатели; 12 – сканирующий оптико-электромеханический блок инфракрасной аппаратуры; 13 – электромеханический построитель местной вертикали; 14 – сканирующая телевизионная аппаратура; 15 – электропривод системы терморегулирования; 16 – электродвигатели-вентиляторы; 17 – электромеханическая спектрометрическая аппаратура; 18 – гироскопический датчик курса; 19 – электродвигатели-маховики; 20 – электрореактивный двигатель системы коррекции
На рис. 4 представлен комплекс электромеханических устройств на таком типовом космическом аппарате, которые обеспечивают выполнение различных функциональных программ в условиях космического полета. Для электроэнергетического снабжения комплекс имеет солнечную батарею, буферную химическую батарею, автоматы, обеспечивающие подзарядку и разрядку аккумуляторов, или батарею с изотопным источником энергии. Для ориентации и стабилизации в комплексе применяются оптико-механические астродатчики, электромеханические построители местной вертикали, электромеханические датчики угловых скоростей, силовые управляющие исполнительные органы (газореактивные системы или электрореактивные двигатели с автоматикой управления, электродвигатели-маховики, электромагниты для внешнего управления угловыми поворотами космических летательных аппаратов. Кроме того, в комплекс входят различного рода электрические двигатели, в частности сканирующие (в научной аппаратуре), и специальные электродвигатели в аппаратуре терморегулирования, а также автомат (или ЭВМ) управления объектом в целом (по заданной программе эксплуатации) со всеми необходимыми внешними устройствами, обеспечивающими выполнение программы полета. Таким образом, электромеханические системы, будучи достаточно обширными, определяют структуру и принципы динамики движения космического аппарата в зависимости от его назначения.
Принцип действия (см. рис. 4) электромеханических систем типового космического аппарата заключается в следующем. После отделения от последней ступени ракеты-носителя аппарат получает некоторую угловую скорость вращения. Датчики угловых скоростей по строительным осям 9 регистрируют эти скорости и с помощью автоматики и электроклапанов газореактивной системы 3 ориентирует и стабилизируют объект. Последующая его ориентация и стабилизация обеспечиваются электромеханическим построителем местной вертикали 13 и гироскопическим датчиком курса 18, которые вырабатывают сигналы, поступающие на автоматическую систему, газореактивные двигатели и электромагниты для сброса кинетических моментов 6 или электродвигатели-маховики 19. Оптико-электромеханический астродатчик 2 затем корректирует ориентацию космического аппарата в пространстве с помощью электрореактивных двигателей системы коррекции 20. При этом постоянно ориентированные солнечные батареи 1 с соответствующей аккумуляторной батареей обеспечивают электроэнергией космический аппарат в целом, в том числе инфракрасную аппаратуру 12, электропривод системы терморегулирования 15 и электродвигатели-вентиляторы 16.
Развитие многочисленных функциональных областей применения электромеханических систем для космических летательных аппаратов с первых дней освоения космического пространства сопровождалось интенсивными научно-исследовательскими и опытно-конструкторскими работами как в условиях наземных испытаний отдельных электрических машин, приборов и различных систем для космических аппаратов, так и особенно их отработки в космических условиях орбитального полета. При этом элементы электромеханических систем во время орбитального полета снабжались соответствующими датчиками, характеризующими их работоспособность на орбите (показатели датчиков регистрировались с помощью телеметрии).
На рис. 5 представлена структурно-функциональная схема спутников «Космос-14» и «Космос-23», а на рис. 6 – внешний вид спутников с указанием пространственного положения отдельных приборов и аппаратов. «Космос-14» имел очень широкую возможность ориентации и стабилизации в пространстве. На нем была установлена трехосная система ориентации и стабилизации, которая позволяла ориентировать данный космический летательный аппарат и с помощью теплового пеленгатора (построителя местной вертикали) и одновременно на Солнце при применении соответствующих датчиков. В полете был исследован режим «закрутки» всего спутника вместе с раскрытыми солнечными батареями вокруг оси, ориентированной на Солнце с помощью электродвигателей-маховиков. При этом солнечные батареи были жестко закреплены относительно корпуса спутника.
Рис. 5. Структурно-функциональная схема спутников «Космос-14» и «Космос-23»:
СО – система ориентации; ДНС – датчик направления на Солнце; ДНЗ – датчик направления на Землю; ДУС – датчик угловой скорости; БУ – блок управления; К – переключатель; ДМ – двигатели-маховики; МРД – микрореактивные двигатели; СЭ – система энергопитания; СБ – солнечные батареи; БА – блок автоматики; хБ – химическая батарея; СТУ – система телеуправления; СИО – система измерения орбиты; РТС – радиотелеметрическая система; СТР – система терморегулирования; КА – коммутационный автомат
На «Космосе-23» проверялись оптимальные законы управления, исследовались динамические характеристики, т. е. регистрировались и передавались на Землю по телеметрии параметры угловых поворотов в функции времени.
Исследование этих экспериментальных закономерностей в орбитальном полете дало возможность оценить отдельные компоненты сопротивления окружающей среды при движении спутника. Было установлено, что из всех внешних возмущающих сил: аэродинамических, гравитационных, светового давления, воздействия метеорной пыли, магнитных и плазменных воздействий наибольшее значение имеют силы аэродинамические и гравитационные. Кроме того, оказалось, что электрические машины с относительно большой массой ротора в условиях невесомости работают более надежно, чем на Земле. Это подтвердилось на последующих спутниках, снабженных электрическими двигателями довольно больших размеров, а именно на спутниках «Молния» и «Метеор».
Рис. 6. Общий вид искусственных спутников Земли «Космос-14» и «Космос-23»
При исследовании характеристик солнечных батарей на «Космосе-23» были (получены очень важные данные о «старении» фотоэлементов, которые на первых спутниках при длительной работе изменяли свои характеристики и в особенности при многократных резких изменениях температуры (тепловых ударах), возникающих, когда спутник и поверхности его солнечных батарей переходят от освещенной Солнцем части в тень Земли.
Этот переход, сопровождаемый резкими колебаниями температуры, отрицательно сказывался на механической прочности пластинок кремниевых фотоэлементов, а также прочности их механического крепления к панелям солнечных батарей.
Проведенные в последующие годы фундаментальные исследования по созданию надежно работающих в космосе солнечных батарей показали, что новые типы фотоэлементов и новые типы солнечных панелей могут функционировать на орбите непрерывно и безотказно не только в течение нескольких месяцев, но и в течение нескольких лет.
Система электропитания на спутниках создается с помощью аккумуляторной батареи, подключенной через релейно-контакторный аппарат и соответствующую кабельную систему к солнечной батарее. Так как поступление энергии от солнечной батареи не является непрерывным и по мере захода космического аппарата в тень Земли и выхода из нее процесс подзарядки то возникает, то исчезает, в системе электропитания установлен специальный автомат, исключающий возможность перезарядки батареи и тем самым вывода ее из строя или недозарядки, при которой можно лишиться необходимого количества энергии. Рассмотренная система электропитания в известной мере напоминает систему электроэнергетического снабжения автомобиля, в котором буферная аккумуляторная батарея подключена к заряжающему ее генератору через соответствующий аппарат, выполняющий аналогичную функцию. Однако для космического аппарата система автомата зарядки и разрядки является гораздо более сложной, так как рассчитана на движение спутника по орбите с периодическим чередованием теневых и солнечных участков.
При рассмотрении конструкции и динамики движения типового спутника мы упомянули проведенные эксперименты по «закрутке» космического летательного аппарата «Космос-14» вокруг своей оси, по превращению его в своего рода силовой гироскоп, ориентированный на Солнце. Используя этот принцип для создания спутника связи «Молния», советские конструкторы для обеспечения солнечной батареи энергией Солнца установили на спутнике «Молния-1», электродвигатель-маховик с большим моментом инерции ротора, соизмеримым с моментом инерции аппарата в целом. При ориентации спутника по двум осям на Солнце с помощью солнечных датчиков и газореактивной системы так, чтобы ось двигателя-маховика проходила через центр масс Солнца, можно было путем включения электродвигателя создать «силовой гироскоп» с осью вращения ротора, направленной на Солнце.
На рис. 7 представлена схема управления спутником за один цикл эллиптического движения его вокруг Земли. Из него видно, что над освещенным Солнцем полушарием Земли спутник с помощью электромеханического силового гироскопа сохраняет свое направление в пространстве. Для того чтобы обеспечить работу аппаратуры радиосвязи, на спутнике «Молния» установлены следящие системы, которые направляют антенны на заданный район и тем самым обеспечивают прием и передачу информации. При этом силовой электромеханический двигатель-гироскоп используется также для программного поворота системы путем изменения угловой скорости ротора двигателя, т. е. как двигатель-маховик, о чем подробнее будет сказано дальше.
Рис. 7. Схема управления спутником «Молния-1» (стрелками слева вверху указано направление солнечных лучей):
I–V – положение спутника на орбите; X – поперечная ось аппарата; Z – продольная ось аппарата, ось вращения электромеханического силового гироскопа
Космические летательные аппараты «Венера», «Марс», «Луна», предназначенные для выхода на орбиту планет Солнечной системы и для спуска на их поверхности, по существу, обладают и свойствами ракеты-носителя. Таким образом, эти аппараты должны иметь всю типовую электромеханическую структуру (см. рис. 4) и все основные приборы и двигатели, свойственные ракете-носителю. Особое место в этих аппаратах занимают системы радиосвязи, обеспечивающие точное определение пространственных координат движения, управление объектом и поддержание непрерывной связи с аппаратом на всем этапе его движения и посадки или возвращения на Землю.