355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Мир электричества » Текст книги (страница 15)
Мир электричества
  • Текст добавлен: 17 октября 2016, 00:25

Текст книги "Мир электричества"


Автор книги: Анатолий Томилин



сообщить о нарушении

Текущая страница: 15 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

Тайна «Р. М.»

Возвратившись 26 июля 1832 года после выходных в Лондон, Фарадей нашел в почтовом ящике письмо. Открыв конверт, ученый посмотрел на подпись. Там стояли лишь две буквы: «Р. М.». Ну что же, он не раз получал послания от незнакомых людей. И Фарадей углубился в чтение.

«Сэр! – писал неизвестный. – Прочитав в отчетах института Ваш интересный доклад о магнетизме, я сделал попытку провести эксперимент, который удался мне сверх моих ожиданий, и я думаю, что если его провести в более широком масштабе, то он дал бы много интересного.» Дальше анонимный экспериментатор описывал техническую модель магнитоэлектрической машины переменного тока, с помощью которой ему удалось получать искры и разложить воду на кислород и водород.

Фарадей был поражен. Основные принципы машины были абсолютно правильны, а ее конструкция настолько продуманной, что становилось ясно: автор письма, видимо, не только знающий человек, но и недюжинный конструктор. Уже на следующий день ученый отправил полученное письмо в редакцию журнала, сопроводив его собственной припиской:

«Джентльмены! – писал Фарадей. – Вчера по возвращении в город я нашел закрытое письмо. Оно анонимное, и я не имею возможности назвать его автора. Осмелюсь думать, что лицо, написавшее письмо, ничего не имеет против его опубликования; со своей стороны я не хотел бы быть исключительным обладателем этого анонимного научного сообщения из опасения, чтобы в свое время, в будущем, из этого не возникло недоразумения касательно даты сообщения. Однако, если вы опубликуете письмо, то соблаговолите передать от меня благодарность его автору.

Примите и пр., М. Фарадей Королевский институт 27 июля 1832 г.».

Оба письма были опубликованы вместе. И вскоре уже в издательство пришло письмо, подписанное все теми же инициалами «Р. М.». В нем выражалась благодарность Фарадею и содержались предложения по совершенствованию первоначальной модели.

Судя по рисунку и описанию «Р. М.» все его мысли имели удивительно правильное направление. Но кто же был конструктором и таинственным автором писем?..

Всякая тайна привлекает к себе внимание людей. И загадка имени «Р. М.» отчасти также послужила тому, что проблемой создания магнитоэлектрической машины заинтересовалось большее количество изобретателей и ученых.


Модель усовершенствованного генератора «Р. М.»


Магнитоэлектрическая машина Пикси

В том же 1832 году в Падуе профессор физики и механики местного университета построил магнитоэлектрическую машину переменного тока, основанную на принципе возвратно-поступательного движения. Он предполагал, что подобное устройство «может сделаться подходящим взрывным аппаратом», поскольку ему «удавалось извлекать из него изрядные электрические искры». Были предложены и другие, схожие конструкции, однако возвратно-поступательный принцип поршня паровой машины распространения не получил. Первенство осталось за вращающимся якорем.

Общим «недостатком» предложенных генераторов считалось то, что они дают переменный ток, тогда как для современного практического применения, как-то телеграфии, электрохимии и первых двигателей, ток нужен был постоянный. Поэтому когда два французских изобретателя, братья Пикси, в том же 1832 году применили так называемое «коромысло Ампера» для превращения переменного тока в пульсирующий, но постоянного направления, их предложение удостоилось двух заседаний Парижской академии наук.

Машина Пикси поражала современников своими размерами – один только подковообразный магнит ее весил около ста килограммов. Имела она и приспособление для выпрямления тока.

Некоторые историки считают, что, несмотря на свою кажущуюся примитивность, конструкция Пикси является прообразом вообще всех будущих динамо-машин, то есть устройств, которые служат для превращения механической энергии (энергии движения) в энергию электрическую.


Схема устройства первых генераторов

Похожую в принципе машину сконструировал в Лондоне профессор Уильям Риччи. И вообще с этого момента началась работа многих изобретателей над созданием магнитоэлектрических генераторов, в которых генерация тока происходила либо за счет движения катушек в поле постоянных магнитов, либо, наоборот, – перемещения магнитов относительно неподвижно установленных катушек.

Все первые машины были уникальными конструкциями. Каждый изобретатель старался внести в них что-то свое, что-то новое. Да и возможностей для этого поначалу было предостаточно. Однако со временем сумма технических знаний, необходимых для постройки телеграфа, гальванотехнических устройств, электрогенераторов и первых ламп дугового освещения, начала складываться в особую отрасль – электротехнику. Она быстро обрастала новыми открытиями и законами, превращаясь в техническую науку.

Постепенно изобретатели перешли от вращения тяжелых магнитов к неподвижному их закреплению, а вращать стали более легкие катушки. Но все это до начала сороковых годов были лишь лабораторные модели. Первый магнитоэлектрический генератор, пригодный для практического использования, предложил в 1842 году Борис Семенович Якоби. Он назвал его «магнитоэлектрической батареей» и предполагал использовать для дистанционного воспламенения минных запалов. Есть сведения, что такими «машинками» были оснащены несколько «гальванических команд» русской армии.


Магнитоэлектрическая батарея Б. С. Якоби

Изобретатели, естественно, искали те направления, где магнитоэлектрические генераторы могли бы быть использованы на практике. Но любая техника требовала повышения мощности, получаемой от машины. Наиболее простым способом для этого являлось наращивание количества постоянных магнитов. И вот в Париже организовалась «Компания Альянс», которая специализировалась на выпуске магнитоэлектрических генераторов для питания дуговых ламп на маяках. На массивной чугунной станине в несколько рядов неподвижно укреплялись подковообразные магниты, между которыми на вращающихся дисках были укреплены катушки-якоря. Для привода каждого такого генератора требовалась паровая машина мощностью до десяти лошадиных сил. Опыт эксплуатации французских машин показал те недостатки, которые были присущи магнитоэлектрическим машинам вообще. Тут и сильный нагрев катушек, из-за которого нарушалась изоляция провода, и то, что машины были громоздкими, тяжелыми и дорогими, а постоянные магниты быстро размагничивались.

Майкл Фарадей. Закат жизни

Конечно, Фарадей занимался не только опытами. Он много работал, но умел со вкусом и отдыхать, время от времени отправляясь с женой по традиции в Бат или Брайтон на модные курорты.

«Он не любил светского общества, но театр привлекал его и приводил в лихорадочное опьянение, – пишет французский физик Дюма. – Закат солнца в деревне, буря на морском берегу, альпийские туманы возбуждали в нем живейшие ощущения; он понимал их, как художник, бывал взволнован, как поэт, или анализировал их, как ученый. Взгляд, слово, жест – все выдавало в таких случаях тесную связь его души с душой природы».


Машина французской компании «Альянс»

Фарадей был чужд зависти и самомнения, нередко встречавшихся в среде ученых. Не получив систематического образования, он всю жизнь стремился к самосовершенствованию. И «его совершенство, – как говорил тот же Дюма, – которое, как я думал, было у него врожденным, было плодом постоянного самонаблюдения и непреклонной душевной твердости». Когда его назначили директором лаборатории в Королевском институте и ему, как профессору, предстояло читать лекции, Фарадей целый год учился ораторскому искусству, учился четко и ясно излагать свои мысли. Он просил друзей указывать ему на неточности и ошибки, которые допускал на лекции. А его ассистент обязан был не только следить за ходом его изложения, но и время от времени класть на кафедру перед ним картонки с надписью «Помедленнее», если он начинал торопиться, или «Заканчивайте», когда он увлекался. «Зачем столько подготовки к тому, чего лучше вас не знает никто из слушателей?» – спрашивали его. «Мало самому знать, – кротко отвечал Фарадей, – нужно уметь передать свои знания другим».

Фарадей любил читать лекции. Для детей он вел рождественский цикл, рассказывал о химии, физике, об электричестве и о теплоте. Его книжка «История свечи» – непревзойденный шедевр научно-популярной литературы. Именно при Фарадее рождественские лекции для детей в Королевском институте стали традицией. Ученый рассказывал о простых вещах: о свече и лампе, о печной трубе и о золе. Может быть, в этом и заключался их успех? Ведь это так важно: определить, что именно должно быть интересно человеку в его возрасте, сегодня, и что будет ему впору понять и усвоить завтра.

В последние годы жизни память Фарадея стала ослабевать, острый ум притуплялся. Он сам обнаружил у себя признаки подступившей старости и постепенно отказался от всех занимаемых должностей. Он отклонил предложение королевского двора о возведении его в рыцарское достоинство и дважды отказывался от высокой чести стать президентом Королевского общества.

В пятницу 20 июня 1862 года Фарадей на середине прервал свою лекцию в Королевском институте. Он внимательно вгляделся в зал и неожиданно поделился со слушателями мыслью о том, что, пожалуй, слишком долго находится здесь… Присутствовавшие поднялись и долго аплодировали старому ученому. Больше Фарадей не читал, не входил в лекционный зал и не поднимался на кафедру. Дома в дневнике он так объяснил причину своего ухода: «Здесь я провел счастливые годы, но настало время уйти из-за потери памяти и усталости мозга. Причины: 1) колебания и неопределенность в доказательствах, на которых лектор должен настаивать; 2) неспособность извлечь из памяти ранее накопленные сокровища знаний; 3) тускнеют и забываются прежние представления о своих правах, чувстве собственного достоинства и самоуважения; 4) сильная потребность поступать справедливо по отношению к другим и неспособность сделать это. Удалиться».

Какую силу духа и стойкость надо было иметь для такого вывода и поступка! Фарадею было в то время семьдесят лет.

«Ученый должен быть человеком, который выслушивает любое предположение, но определяет его справедливость сам. Внешние признаки явлений не должны связывать суждений ученого, у него не должно быть излюбленной гипотезы, он обязан быть вне школ и не иметь авторитетов. Относиться почтительно он должен не к личностям, а к предметам. Истина должна быть главной целью его исследований. Если к этим качествам еще добавится трудолюбие, то он может надеяться приподнять завесу в храме природы», – писал Майкл Фарадей.

Он «изменил весь аксиоматический базис науки»

Эти слова Альберта Эйнштейна относятся к Джеймсу Клерку Максвеллу, гениальному ученому, создавшему теорию электродинамики.

В середине XIX столетия наука об электромагнетизме пребывала в довольно путаном состоянии. По-прежнему в представлениях о природе электричества и магнетизма существовали предположения о двух видах неких невесомых жидкостей, подчиняющихся, подобно силам тяготения в ньютоновой философии, принципу дальнодействия. Если каждая масса оказывала мгновенное действие через пустое пространство на другую массу, то как же надо смотреть на электрические и магнитные тела? Ведь закон Кулона по своему виду – аналогия закона Ньютона…

Ампер построил свою математическую теорию электродинамики, приняв ньютоновскую концепцию. И все было хорошо. Правда, кое у кого временами возникали некоторые недоумения, ну хотя бы по такому поводу: известно, что электрический ток может идти только по замкнутому пути. Между тем математические выражения для взаимодействующих токов в теории Ампера выводились для изолированных и незамкнутых элементов токов.

Или наивный вопрос Фарадея: почему железные опилки выстраиваются между полюсами магнитов по неким линиям сил?

Согласно принципу дальнодействия, сила притяжения магнита – это просто свойство материи. Притяжение магнита, как и всемирное тяготение, должно было мгновенно преодолевать любое расстояние. Но почему же тогда образуются силовые линии между магнитными полюсами? Ведь они явно показывают, что пространство между полюсами не есть пустота, через которую мгновенно распространяется сила притяжения… Поневоле напрашивалось сомнение: может быть, для магнита неверен сам принцип дальнодействия?.. Если согласиться с этим, все становится на свои места. Невесомая магнитная жидкость действует в пространстве между полюсами, выстраивая железные опилки от одной к другой по пути, заданному средой. Сторонники дальнодействия возражали: какая среда может быть в пустоте? Силовые линии – это просто направления равнодействующих магнитных сил в пространстве.

Ученых, несогласных с новой постановкой вопроса, было много. И среди них – очень авторитетные исследователи. Силовые линии Фарадея, не владеющего математическим языком, были, конечно, наглядны. Но их грубый качественный материализм отталкивал сторонников сложной, но тонкой и изящной математики Ампера.

Спор становился сложнее, когда возникал другой вопрос: почему одни и те же пластины, разделенные диэлектриком (сегодня мы назвали бы их конденсатором), заряжаемые от одной и той же электрической машины, накапливают разный заряд при разных диэлектриках?.. Разве это не означает, что в промежутке между пластинами, в диэлектрике, в том числе и в вакууме, происходит некое смещение?

«О каком токе смещения в пустоте может идти речь?» – возражали оппоненты. Теоретики писали новые уравнения, громоздили сложные формулы друг на друга… Но в результате, когда речь заходила о промежуточной среде, оказывались в тупике. Получалось, что для объяснения накапливающихся противоречий нужен был новый физический подход к наблюдаемым явлениям, возможно, – новая модель среды или пространства, в котором действуют магнитные силы.


Джеймс Клерк Максвелл (1831–1879)

Молодой профессор Маришаль-колледжа в шотландском городе Абердине, Джеймс Клерк Максвелл, тоже не мог принять грубые железные опилки Фарадея за материальные аналогии линий сил, заполнявших пространство. Ему больше импонировала гипотеза о том, что они лишь указывают направление, по которому среда испытывает определенное напряжение.

Напряжение же это создается, как позже предположил Максвелл, токами смещения. Ведь уже Ампер, говоря о том, что каждый ток в проводе порождает вокруг себя магнитные силы, фактически уходил от понятия пустого «ничто» и от принципа дальнодействия, хотя и не признавал этого…

И Максвелл решительно порывает с дальнодействием. Он задумывает так описать математически линии магнитных сил, чтобы это не противоречило основным электромагнитным идеям. В 1857 году в «Трудах Кембриджского философского общества» появляется его статья «О фарадеевских линиях сил» – 56 страниц математики. Максвелл разослал свою статью по списку всем британским физикам, занимающимся вопросами электродинамики. Однако надо признать, что эта работа, по сути, – программа его исследований в области электричества на всю жизнь, особого внимания не привлекла. Разве что друг семьи и старший коллега Максвелла профессор Уильям Томсон (будущий лорд Кельвин) поздравил его с успехом. Большинство же коллег, признавая за автором виртуозное владение математическими методами, недоумевали. «Почему бы профессору Максвеллу, – говорили они, – не применить свои математические способности для уточнения и совершенствования уже существующей теории? Чего ради он бьется над измышлениями бывшего переплетчика, не владеющего языком науки?» (Так, несмотря на признание, кое-кто из снобов от науки называл Фарадея.) Но Максвелл и не надеялся особенно на отзывы. И тем больше была его радость, когда почтальон принес ему письмо от самого Фарадея. Старый ученый благодарил молодого коллегу за его работу, добавив в конце послания: «Я поначалу испугался, увидев, какая мощная сила математики приложена к предмету, а затем удивился тому, насколько хорошо предмет ее выдержал.» Фарадей прислал Максвеллу и свою статью, из которой тот понял, что мэтр сам не полностью уверен в идее близкодействия. Его силовые линии не подходили для описания природы тяготения. Неясной была и скорость распространения «электротонического состояния», как называл Фарадей магнитное поле.

В ответном письме Максвелл писал:

«Дорогой сэр. Сейчас, насколько мне известно, Вы являетесь первым человеком, у которого возникла идея о том, что тела действуют друг на друга на расстоянии посредством обращения окружающей среды в состоянии напряжения, идея, в которую действительно следует поверить. У нас были когда-то потоки крючочков, летающих вокруг магнитов, и даже картинки, на которых изображены окруженные ими магниты; но нет ничего более ясного, чем Ваше описание всех источников силы, поддерживающих состояние энергии во всем, что их окружает, состояние, усилением или ослаблением которого можно измерить проделанную в системе работу. Мне кажется, что Вы ясно видите, как силовые линии огибают препятствия, гонят всплески напряжения в проводниках, сворачивают вдоль определенных направлений в кристаллах и несут с собой везде все то же самое количество способности к притяжению, распределенной более разреженно или густо, в зависимости от того, расширяются эти линии или сжимаются. Но когда мы встречаемся лицом к лицу с вопросом о гравитации. имеет ли она какое-нибудь отношение к электричеству? Или она покоится в самых глубинных фундаментах материи, массы или инерции? – тогда мы ощущаем необходимость экспериментов.

Я только попытался сейчас показать Вам, почему я не считаю гравитацию опасным объектом в смысле применения Ваших методов. Вполне возможно и на нее пролить свет, воплощая те же идеи, которые математически выражаются функциями Лапласа и сэра В. Р. Гамильтона в планетарной теории.

Искренне Ваш Джеймс Клерк Максвелл».

Фарадей был благодарен молодому математику за его слова, поскольку мало кто из окружающих понимал и принимал его идеи. Он тут же ответил: «Профессор Фарадей – проф. Максвеллу. Альбермарл-стрит, Лондон, 13 ноября 1857.

…Ваше письмо для меня – это первый обмен мнениями о проблеме с человеком Вашего образа мышления. Оно очень полезно для меня, и я буду снова и снова перечитывать его и размышлять над ним.

Есть одна вещь, о которой я хотел бы Вас спросить. Когда математик, занятый исследованием физических действий и их результатов, приходит к своим заключениям, не могут ли они быть выражены общепонятным языком так же полно, ясно и определенно, как и посредством математических формул?

Я думаю, что это так и должно быть, потому что я всегда обнаруживал, что Вы могли донести до меня абсолютно ясную идею Ваших выводов, которые даже без понимания шагов Вашего математического процесса дают мне результаты не выше и не ниже правды, причем настолько ясные в своей основе, что я могу над ними думать и с ними работать».

Максвелл понимал, что для пояснения его математических описаний он должен придумать некую наглядную модель окружающей среды, которая способна приходить в «электротоническое состояние» и передавать свое воздействие на расстояние по линиям сил. Он пишет еще несколько статей и в конце концов приходит к созданию модели. Среда, в которой распространялись магнитные силовые линии, представлялась ему как совокупность множества крохотных вихревых токов, непрерывно вращающихся в одном направлении. Они и создавали магнитное поле.

Механический аналог среды состоял из вращающихся шестеренок, аналогичных вихревым молекулярным токам, с промежуточными сателлитами.

Вихревые токи Максвелла довольно долго не находили сторонников. Даже Фарадей сомневался в их правомерности.

Но условная «грубая» модель Максвелла демонстрировала электрическое притяжение и отталкивание, убедительно показывала, что магнитное поле должно действовать перпендикулярно движению тока. Более того, она требовала, с изменением электрических сил, появления магнитного поля, то есть явления, симметричного индукции, открытой Фарадеем.

Разумеется, Максвелл не считал свою модель реальным отражением действительности. В одной из статей он писал, что модель ему была нужна только для того, чтобы «вывести математические соотношения между электротоническим состоянием, магнетизмом, электрическими токами и электродвижущей силой, используя механические иллюстрации для того, чтобы помочь воображению, но не в качестве объяснения явлений».

Механическая модель Максвелла для объяснения электромагнитных явлений

К этому времени постепенно к Максвеллу приходит признание. В 1860 году он из провинциального Абердина по конкурсу переходит в Кингс-колледж Лондонского университета на кафедру натуральной философии (сегодня мы сказали бы – на кафедру физики). Он занимается не только электродинамикой. Максвелл исследует свет, пишет прекрасную работу «Теория трех основных цветов» и в 1861 году демонстрирует в Королевском институте результаты своих опытов. За эти работы ему присуждают почетную медаль Румфорда.

В том же году, за неделю до своего тридцатилетия, Джеймс Клерк Максвелл не без волнения надевает мантию члена Лондонского королевского общества.

В то же время его математическая теория среды, пронизанной электрическими и магнитными силами (не будем забывать, что Максвелл был физиком-теоретиком и блестящим математиком), открывала ему все новые свои стороны. Так получалось, что попеременное возникновение электрического и магнитного поля в среде должно описываться волновыми уравнениями. А это очень близко соприкасалось с его исследованиями световых явлений.

В октябре 1861 года он писал Фарадею, что если свет действительно является волновым процессом, то многие его свойства и оптические явления можно и объяснить по-новому. А это могло бы значительно облегчить расчеты и создание оптических приборов…

В 1864 году Максвелл выпускает в свет последнюю из трех основных статей по электромагнетизму – «Динамическая теория электромагнитного поля». В ней он уже уверенно пишет, что изменение электрического поля вызывает в окружающей среде токи смещения, которые, в свою очередь, порождают магнитное поле. Таким образом, он вводит в научный обиход термин «электрическое и магнитное поле».

В 1866–1870 годах Максвелл завершает свои основные теоретические исследования по теории электромагнитного поля. Его уравнения легли в основу электромагнитной теории света – величайшего открытия в физике. Фактически Максвеллу удалось объединить две разнородные области науки – электричество и свет – в одну и подарить человечеству, кроме известного с древнейших времен вещества, новый вид материи – электромагнитное поле.

В марте 1871 года его назначили профессором кафедры экспериментальной физики в Кембридже, а через два года из печати вышел главный труд Максвелла «Трактат об электричестве и магнетизме». Автор вложил в него все, что знал, что передумал и к чему пришел за годы работы над электромагнитной теорией.

Правда, многие были разочарованы. Работа Максвелла оказалась чрезвычайно трудной для восприятия. Стиль его изложения был сложным, а уравнения, ради которых все было задумано, тонули в промежуточных выкладках и дополнительном материале.

Позже Генрих Герц и Оливер Хэвисайд «очистили» их и из двенадцати уравнений оставили только четыре.

Однако и по сей день в электродинамике нет ни одного явления, которое бы противоречило или не укладывалось в эту систему из четырех равенств. Вряд ли имеет смысл писать их математические выражения. Читатель легко найдет их в любом учебнике по электродинамике. А вот физический смысл, возможно, стоит напомнить. Наиболее просто и лаконично он описан в книге В. П. Карцева «Максвелл» (М.: Мол. гвардия, 1974).

«Первое уравнение означает, что электрическое поле образуется зарядами, и силовые линии этого поля начинаются и кончаются на зарядах.

Второе уравнение постулирует замкнутость магнитных силовых линий, отсутствие свободных магнитных зарядов. Магнитные силовые линии нигде не начинаются, нигде не кончаются – они замкнуты.

Третье уравнение говорит о том, что магнитное поле создается током, включающим в себя открытый Максвеллом ток смещения. Это обобщение и дополнение всей электродинамики Ампера.

Четвертое уравнение отражает закон электромагнитной индукции Фарадея – возникновение электрического поля за счет изменения индукции магнитного поля. Любые изменения магнитного поля

Время законов приводят в соответствии с этим уравнением к возникновению в пространстве особого вихревого электрического поля.

Два последних уравнения привели Максвелла к представлению существования электромагнитных волн. Вокруг магнитных силовых линий возникают тут же электрические силовые линии, вокруг которых, в свою очередь, создаются магнитные, – и за счет этого в пространстве от точки к точке передается электрическое возбуждение».

Джеймс Клерк Максвелл прожил всего сорок восемь лет. 5 ноября 1879 года в Кембридже, в доме на Скруп-Террас, его не стало. Но сколько бы ни прошло лет, имя великого ученого всегда будут произносить с благоговением.


    Ваша оценка произведения:

Популярные книги за неделю