412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Анатолий Тюрюканов » О чем говорят и молчат почвы » Текст книги (страница 6)
О чем говорят и молчат почвы
  • Текст добавлен: 2 июля 2025, 05:48

Текст книги "О чем говорят и молчат почвы"


Автор книги: Анатолий Тюрюканов


Жанры:

   

Сад и Огород

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

В зависимости от природных условий могут сосуществовать несколько разных процессов почвообразования. Например, так возникают дерново–луговые, дерново–подзолистые, лугово–черноземные, красноземно–подзолистые почвы и т. д.

Выделить почвы, которые можно считать эталонами, очень трудно, ибо на площади всегда доминируют различные переходные разновидности. Так, в лесной области средней и южной тайги доминируют различные подтипы дерново–подзолистых почв, а собственно подзолы или дерновые почвы встречаются редко. Отсутствие резких переходов между разными почвами всегда затрудняло выделение почвенных контуров на карте, однако опытные почвоведы с этой задачей справляются успешно.

Среди веществ, которые достигают в почвах значительных концентраций, встречаются соединения железа, выпадающие из растворов в виде буро–охристой гидроокиси железа, карбонат кальция (известь), а также легкорастворимые натриевые соли. Наличие этих соединений в растворе или в виде выпавших из раствора осадков влияет не только на свойства почв, но и на их окраску. По солевому составу почвенных растворов и их динамике в течение вегетационного периода можно судить о плодородии почв, равно как по их механическому составу и содержанию гумуса. Высокое содержание солей в растворах приводит к возникновению засоленных почв.

По цветовой гамме почвы исключительно разнообразны. Практически встречаются все цвета, за исключением, пожалуй, зеленого. Обычно наблюдаемый нами желтоватый цвет песков связан с охристо–желтой пленкой гидроокиси железа на поверхности песчинок. Если же надавить на такую песчинку, то тонкая скорлупка желтой гидроокиси отлетает, обнажая прозрачное, как сахар, кварцевое “нутро”. Вообще гидроокись железа придает почвам и породам красновато–желтоватые тона. Осветляющие оттенки объясняются присутствием карбоната кальция. Но основной красящей способностью обладает органическое вещество почвы – почвенный гумус, чья гуминовая кислота обладает максимальной красящей способностью. Именно она окрашивает почвы в черный цвет. Один грамм такой кислоты может окрасить несколько сотен литров воды в интенсивно–черный цвет. Комбинации этих основных красителей и дают почвам разную окраску. Так, темные тона черноземов, некоторых видов торфов и луговых почв объясняются наличием гумуса, бурые тона у иллювиальных горизонтов подзолов солонцов, красноватые красноземы и латериты обязаны своим цветом окисленным формам железа, светлые тона у сероземов и полупустынных и пустынных почв – солям кальция и натрия. В целом же почвы, прошедшие в своем развитии луговую стадию, имеют темную окраску. К ним можно отнести и наши черноземы, которые на ранних стадиях теплого послеледниковья тоже прошли луговой этап почвообразования. Иногда в болотных почвах встречаются голубые или синеватые горизонты, обязанные своей окраской синему минералу керчениту, возникающему при слабом окислении белого минерала вивианита.

Как уже говорилось, в процессе почвообразования в почве возникает много новых свойств и признаков, например появление поглотительной способности почв в разных формах. Почвам присущи также два уникальных планетарных процесса – гумусообразование и глинообразование. Глина и гумус – вещества, богатые химической энергией. Их структура по сложности не уступает структуре белков. Причем гумусовые макромолекулы построены на углеродной основе, как и все живое вещество, а глины – на кремниевой или алюмокремниевой основе. Синтез этих двух веществ в почве – одна из загадок функционирования живого вещества на планете. Здесь огромное поле для раздумий об энергетике биосферы. Добатайги доминируют различные подтипы дерново–подзолистых почв, а собственно подзолы или дерновые почвы встречаются редко. Отсутствие резких переходов между разными почвами всегда затрудняло выделение почвенных контуров на карте, однако опытные почвоведы с этой задачей справляются успешно.

Среди веществ, которые достигают в почвах значительных концентраций, встречаются соединения железа, выпадающие из растворов в виде буро–охристой гидроокиси железа, карбонат кальция (известь), а также легкорастворимые натриевые соли. Наличие этих соединений в растворе или в виде выпавших из раствора осадков влияет не только на свойства почв, но и на их окраску. По солевому составу почвенных растворов и их динамике в течение вегетационного периода можно судить о плодородии почв, равно как по их механическому составу и содержанию гумуса. Высокое содержание солей в растворах приводит к возникновению засоленных почв.

По цветовой гамме почвы исключительно разнообразны. Практически встречаются все цвета, за исключением, пожалуй, зеленого. Обычно наблюдаемый нами желтоватый цвет песков связан с охристо–желтой пленкой гидроокиси железа на поверхности песчинок. Если же надавить на такую песчинку, то тонкая скорлупка желтой гидроокиси отлетает, обнажая прозрачное, как сахар, кварцевое “нутро”. Вообще гидроокись железа придает почвам и породам красновато–желтоватые тона. Осветляющие оттенки объясняются присутствием карбоната кальция. Но основной красящей способностью обладает органическое вещество почвы – почвенный гумус, чья гуминовая кислота обладает максимальной красящей способностью. Именно она окрашивает почвы в черный цвет. Один грамм такой кислоты может окрасить несколько сотен литров воды в интенсивно–черный цвет. Комбинации этих основных красителей и дают почвам разную окраску. Так, темные тона черноземов, некоторых видов торфов и луговых почв объясняются наличием гумуса, бурые тона у иллювиальных горизонтов подзолов солонцов, красноватые красноземы и латериты обязаны своим цветом окисленным формам железа, светлые тона у сероземов и полупустынных и пустынных почв – солям кальция и натрия. В целом же почвы, прошедшие в своем развитии луговую стадию, имеют темную окраску. К ним можно отнести и наши черноземы, которые на ранних стадиях теплого послеледниковья тоже прошли луговой этап почвообразования. Иногда в болотных почвах встречаются голубые или синеватые горизонты, обязанные своей окраской синему минералу керчениту, возникающему при слабом окислении белого минерала вивианита.

Как уже говорилось, в процессе почвообразования в почве возникает много новых свойств и признаков, например появление поглотительной способности почв в разных формах. Почвам присущи также два уникальных планетарных процесса – гумусообразование и глинообразование. Глина и гумус – вещества, богатые химической энергией. Их структура по сложности не уступает структуре белков. Причем гумусовые макромолекулы построены на углеродной основе, как и все живое вещество, а глины – на кремниевой или алюмокремниевой основе. Синтез этих двух веществ в почве – одна из загадок функционирования живого вещества на планете. Здесь огромное поле для раздумий об энергетике биосферы. Добавим только, что глино– и гумусообразование происходят в почвах и илах не стерильно, а обязательно при участии микроорганизмов и других форм жизни.

Мы уже привыкли смотреть на почву, как на некий необходимый субстрат для получения урожая, забывая о ее биогеохимической роли в биосфере, складывающейся миллионы лет в течение всей эволюции самой биосферы. Ведь в некотором смысле можно сказать, что почва породила человека. “Почва – наш самый драгоценный капитал. Жизнь и благополучие всего комплекса наземных биоценозов, естественных и искусственных, зависят в конечном итоге от тонкого слоя, образующего самый верхний покров Земли”, – таково мнение одного из ведущих экологов мира – бельгийца Ж. Дорста.

Почва не только дает жизнь растениям. Почва – это и удобный дом для огромного количества микроорганизмов и почвенных животных, обеспечивающих ее развитие. Включаясь в цепи питания, они включаются в круговорот химических элементов в биогеоценозе, совершая огромную работу по преобразованию и перемещению минерального, органического и биоорганического вещества. Участвуя в биологическом круговороте в системе “почва–растение–почва”, микроорганизмы и животные прямо и косвенно воздействуют на почву, преобразуют ее, придают ей новые химические и физические свойства. Одни микроорганизмы, живя в почве, из простых минеральных веществ создают сложные химические соединения, на базе которых выстраивается целая цепочка пищевых (трофических) связей, другие замыкают эти пищевые цепи, питаясь трупами и растительным спадом, минерализуют органические вещества.

Такие организмы называются сапрофагами. В основном это бактерии и грибы, но к числу сапрофагов относится и множество почвенных животных.

Минерализация органического вещества, так же как и его синтез, входит составной частью в почвообразовательный процесс. Подчеркивая роль почвы в жизни биосферы, хочется обратиться к прогнозам В. Р. Вильямса, который полагал, что если 75 процентов общего количества ежегодно синтезируемого растениями органического вещества не будет минерализовано гетеротрофами, то через 3—4 года жизнь на Земле должна прекратиться. Сколько же почвенных животных в килограммах приходится на 1 гектар почвы? Данные по нашей стране следующие: в тундре – 90, в северной тайге – 100—150, в южной тайге – 160—350, в смешанных лесах – 800—1000, в широколиственных лесах – 1000—1500, в лесостепи – 500– 900, в степи – 200, в пустыне – 20. При этом большая часть биомассы приходится на долю дождевых червей (50—90 процентов), которые в сообществах умеренного пояса занимают центральное место.

По данным наших ученых, почвенные млекопитающие, роя норы и строя гнезда, способны перемещать огромные количества почвы. Например, обыкновенные кроты перерывают от 3,9 до 55 тонн на гектар, а их выбросы в лесах занимают до 37 процентов территории. Мелкие грызуны – от 13 до 36 тонн на гектар. При этом вместе с почвой перераспределяются и химические элементы. Если выразить эту биогеохимическую работу в килограммах на гектар, то получим внушительные цифры. Так, в дерново–подзолистых почвах кроты перемещают углерода 76 килограммов на гектар, азота – 4,8, кремния – 2942, железа – 238, алюминия – 481 килограмм на гектар, что значительно больше, чем в ежегодном растительном опаде.

В перерытом слепышами верхнем слое чернозема содержание кальция возрастает: они перемещают почву из нижнего черноземного карбонатного горизонта, находящегося на глубине около 1 метра, к верхнему. Из–за временного затопления пустот, нор грунтовыми водами в них могут выпадать малорастворимые соли, а легкорастворимые, наоборот, вымываться. Почва гнезд обогащается выделениями животных, органическими остатками, что также сказывается на химических и физических свойствах почв.

Особо хочется сказать о великих тружениках – дождевых червях, которых, к сожалению, на наших полях становится все меньше и меньше. В 1881 году великий Чарлз Дарвин впервые указал на их роль в формировании плодородия почв. Дождевые черви находятся в постоянном движении. Они мигрируют глубже других почвенных животных, проникая в глубины до 1,5—2 метров.

Экологии дождевых червей и изучению их влияния на плодородие почвы посвящена большая монографическая работа литовской исследовательницы О. П. Атлавините, рассказывающая о влиянии на дождевых червей различных природных условий и о влиянии самих дождевых червей на урожай различных культур.

Передвигаясь в толще почвы, дождевые черви пронизывают ее сетью ходов диаметром от 3 до 7 миллиметров. Эти ходы способствуют лучшей аэрации почвы, проникновению в нее влаги и корней. Питаясь, дождевые черви вместе с разлагающимися органическими веществами пропускают сквозь свой кишечник большое количество почвенной массы, выделяя ее в виде капролитов. Масса таких капролитов составляет несколько сот тонн на 1 гектар. Капролиты – наиболее благоприятная среда для размножения почвенных микроорганизмов: их численность увеличивается в несколько раз. Таким образом, дождевые черви ускоряют разложение органических веществ и влияют на урожайность растений.

Продолжительность жизни дождевых червей 3—5 лет, хотя некоторые виды живут до 10 лет. Черви обладают удивительной регенерационной способностью – они могут достраивать утраченные части тела. Дождевые черви чутко реагируют на изменения климато–метеорологических условий.

Вертикальная миграция дождевых червей по почвенному профилю часто обусловлена температурой и влажностью почвы, а также ее механическим составом. Численность дождевых червей на 1 квадратном метре может колебаться от нескольких экземпляров до десятков и сотен.

Оценивая выдающуюся роль червей, следует сказать, что грядущие системы земледелия обязательно будут учитывать “червивый” вопрос. Немецкие луговоды утверждают, что на гектаре хорошего пастбища количество скота по массе должно равняться массе дождевых червей в почве.

У А. К. Толстого в одном из стихотворений есть строка: “…вслед за пахарем прилежным ходят жирные грачи”. Ох, уж это воронье! Обедняют они наши почвы, а виноваты мы сами, плугом выворачиваем для них червей и подаем “на блюдечке”, лишая почву плодородия, а себя – хороших урожаев. А вот бесплужная система не дает этим прихлебателям возможности пировать за наш счет. Нет оборота пласта почвы, не выворачивает его плоскорез на поверхность – и живы черви. Вот так–то. Будь внимательнее, человек!

Докучаевское почвоведение началось с русского чернозема и “Русского чернозема”. В. В. Докучаев говорил, что чернозем стал для почвоведения тем же, чем стала лягушка для физиологии и кальцит для минералогии. Именно Докучаеву принадлежит выражение – царь почв. Поначалу многие темные почвы называли черноземом, потом же, с развитием почвоведения, стали выделать варианты черноземов: северные оподзоленные, обыкновенные, выщелоченные, мощные, тучные, южные, предкавказские и другие. На самом деле разнообразие черноземных почв много больше. Слишком не похожи они друг на друга в разных регионах и ландшафтах. Здесь следует напомнить, что еще задолго до формулировки зональной концепции Докучаев увидел ландшафтные различия черноземов. Он выделил чернозем горовой (водораздельный), чернозем склоновый и чернозем долинный. Сейчас, спустя столетие, такой триадный подход – водораздел, склон, долина – положен в основу почвенно–геоморфологических, ландшафтно–геохимических, геоботанических и землеустроительных работ. Единство этой триады обусловлено поверхностным и внутрипочвенным стоком веществ. Теперь докучаевско–полыновскую триаду называют заграничным словом “катена”. Кстати сказать, сейчас в русское почвоведение проникло такое количество иностранных слов, что, читая некоторые работы, никогда не подумаешь, что почвоведение – русская наука. Годы застоя нанесли немалый урон изучению наших почв. Ведь мы и сегодня не имеем монографических исследований почв Тульской, Калужской, Брянской, Владимирской, Рязанской и других областей Нечерноземного Центра. И это в регионе, где находятся ведущие почвенные учреждения страны – почвенные институты в Москве и в Пущине, Московский университет с факультетом почвоведения, Тимирязевская академия, Институт земельных ресурсов, несколько областных сельскохозяйственных станций, кафедр и других учреждений республиканского и союзного значения.

Продолжая разговор о черноземах, следует сказать, что его плодородие – это наследство, доставшееся нам с далеких, доисторических времен. Разные исследователи определяют возраст чернозема по–разному – в 5, 10, 20 тысяч лет. Для нас же с вами важно, что не при жизни человека и не его трудами создан чернозем. Уже до Докучаева существовало несколько гипотез происхождения чернозема – водная, болотная, морская, сухопутная и разные их варианты. Докучаев по итогам своих многолетних экспедиций увидел в черноземе сухопутно–наземное образование, возникшее в результате взаимодействия факторов почвообразования степной полосы России. Чтобы прийти к этому выводу, Докучаев совершал тысячекилометровые экспедиции по просторам России. Делал он это по заданию Вольного экономического общества, которое было очень обеспокоено участившимися засухами в черноземной полосе России и снижением производительных сил этого края. Еще в середине XVIII века М. В. Ломоносов утверждал, что чернозем произошел “от согнития растительных и животных тел со временем”. К сожалению, Докучаев узнал об этом слишком поздно, иначе, как он говорил, ему не пришлось бы совершать столько экспедиций, чтобы прийти к такому же выводу.

Итак, в чем богатство чернозема? В чем сила его плодородия? Прежде всего в высоком содержании и благоприятном составе почвенного гумуса. Исходный карбонатный состав лессовидных пород обусловливает нейтральную реакцию почвы – рН 6,8—7,4 и оптимальное содержание различных химических элементов. К этому следует добавить, что гумусовый горизонт имеет значительную мощность – в отдельных случаях до метра и более. Поскольку чернозем возник под травянистой растительностью, то возделывание человеком злаковых культур окупилось здесь сторицей. Не случайно Черноземье – основная зерновая житница страны.

Почти половину территории нашей страны занимают почвы, развившиеся под различными древесными породами: широколиственными (дуб, граб, бук, ясень, клен, липа), мелколиственными (береза, осина, рябина) и хвойными (ель, сосна, пихта, кедр, лиственница). Каждая группа пород отличается своим ритмом развития, характером и количеством опада листьев и хвои, характером распределения корневых систем, требованиями к условиям местообитания (влажность, механический состав почв, кислотность).

Немалое значение имеет способность растений приспосабливаться к высоким и низким температурам воздуха и почвы, длине светового дня и ко многому другому. В природе, где нет больших площадей, покрытых одним видом растений, всегда сосуществуют (как мы уже знаем) сообщества разных видов высших и низших растений, грибов, микроорганизмов и животных – биоценозы. Кроме больших деревьев, в сообщество входят травяной и моховой покровы. Продуктивность лесных биоценозов изменяется в очень широких пределах. Наиболее низкая продуктивность и медленный рост растений характерны для мерзлотных местообитаний, а наиболее высокая продуктивность и быстрый рост – для южных широт, особенно для тропиков. Насыщенность тропических биоценозов различными видами растений настолько высока, что в одном лесу трудно найти несколько деревьев одного вида, тогда как в наших широтах часто встречается резкое преобладание одного вида деревьев (березовые рощи, дубравы, сосновые боры и т. д.).

Но вернемся к почвам. Под хвойными лесами чаще всего формируются дерново–подзолистые и подзолистые почвы. А под широколиственными – серые лесные почвы.

Подзолистые и дерново–подзолистые почвы имеют хорошо выраженный почвенный профиль, состоящий из нескольких контрастных горизонтов. Сверху, под покровом лесной подстилки в 1—3 сантиметра, располагается небольшой (3—7 сантиметров) дерновый горизонт со сравнительно густой сетью корневых систем растений, преимущественно травянистых, развивающихся под покровом древесных крон. Речь идет о начальных этапах формирования леса, когда кроны не сомкнулись, и солнечные лучи проникают под полог леса. Содержание перегноя в дерновом горизонте дерново–подзолистых почв составляет 1—3 процента с преобладанием не гуминовых кислот, как в черноземе, а легкорастворимых фульвокислот. Ниже серовато–бурого дернового горизонта располагается осветленный белесоватый подзолистый горизонт различной мощности. Нижняя граница подзолистого горизонта неровная, языками и карманами переходящая в следующий красновато–бурый плотный горизонт. Дерновому горизонту (перегнойно–аккумулятивному) придается индекс Ар Подзолистый горизонт (элювиальный с индексом Ag) получил свое название не только из–за цвета (под золу), но и потому, что из него вынесено много веществ в нижний горизонт (индекс В), который приобрел за счет вмывания веществ сверху (в основном железистых соединений) красновато–бурый цвет и высокую плотность. Этот горизонт, называемый иллювиальным, или горизонтом вмывания, постепенно переходит в исходную материнскую породу.

В подзолистых почвах в отличие от дерново–подзолистых отсутствует дерновый горизонт, а подзолистый горизонт начинается сразу под лесной подстилкой. Следует добавить, что в нижней части подзолистого горизонта на границе с горизонтом В встречаются мелкие (2—3 миллиметра) железо–марганцевые конкреции (ортштейны), также возникающие при осаждении железистых и марганцовистых веществ из почвенного раствора.

Наиболее хорошо развитые профили подзолистых и дерново–подзолистых почв сформировались на широких просторах средней и южно–таежной подзон таежно–лесной зоны, то есть на большой территории нашего Нечерноземья. Еще раз напомним, что эти почвы формируются под хвойными и хвойно–лиственными лесами на различных моренных отложениях или покровных суглинках.

Подзолистые почвы встречаются не только в северных широтах, но и на юге. Так, вдоль Черноморского побережья от Сочи до Батуми широко распространены желтоземно–подзолистые и красноземно–подзолистые почвы, основные массивы которых используются для выращивания краснодарского и грузинского чая.

Исследованием подзолистых почв и процессов подзолообразования занималось много наших и зарубежных исследователей. Особенно много этот вопрос изучали советские ученые А. А. Роде и В. В. Пономарева.

Как же возникают подзолистые почвы? В общей форме подзолообразование сводится к воздействию на исходную породу кислых продуктов разложения лесной подстилки. Преимущественно хвойный лесной опад разлагается многообразной микрофлорой, среди которой преобладают низшие грибы, выделяющие в процессе жизнедеятельности кислые органические продукты. Эти продукты взаимодействуют с исходным веществом материнской породы, давая целый спектр сложных биоорганических веществ. В основном это железо–органические соединения. Будучи легко растворимыми, эти вещества постепенно выносят из верхнего горизонта вниз сначала кальциевые, затем и железистые вещества, которые придавали породе желтоватый или красноватый оттенки. В результате промытый от железистых соединений горизонт приобретает белесоватую окраску, а в его составе начинает преобладать нерастворимый кремнезем как в кристаллической (кварц), так и в аморфной формах. На некоторой глубине вынесенные вещества нейтрализуются и выпадают в осадок. Поэтому горизонт вмывания (иллювиальный горизонт В) приобретает красноватые оттенки и более тяжелый механический состав. Такая схема подзолообразования была дополнена В. М. Фридландом, обосновавшим существование еще одного частного механизма подзолообразования – иллимеризации, то есть процесса переноса вещества сверху вниз не только в виде растворов, но и в виде тонких коллоидных и илистых частиц.

Огромное разнообразие природных условий, количественное и качественное разнообразие взаимодействий факторов почвообразования приводит к формированию большого спектра почв подзолистого типа. Сюда можно отнести варианты почв с разной мощностью дернового или подзолистого горизонтов, с разной степенью выраженности процессов оглеения, различных вариаций почв по механическому составу и т. д. Но суть подзолообразовательного процесса остается, по мнению ученых, прежней – вынос почвенных веществ сверху вниз в результате воздействия кислых биоорганических растворов фульвокислотного ряда.

Дерново–подзолистые почвы доминируют среди почв подзолистого типа. Собственно подзолы занимают небольшие площади в зрелых (80 и более лет) чистых хвойных лесах, где из–за плотной сомкнутости крон уже нет травянистой растительности и дерновый процесс прекратился. Таких плотносомкнутых насаждений сейчас осталось мало. Первичные хвойные леса были вырублены, а на их месте поселились мелколиственные породы (в основном береза и осина). Подзолообразование под этими породами идет слабее, и потому наблюдаемые на пашнях и в лесу хорошо выраженные подзолистые горизонты следует рассматривать как реликтовые. Попутно обратим внимание еще на один момент в подзолообразовании. По мере формирования уплотненный иллювиальный горизонт становится водоупором. Вода или почвенные растворы сквозь него уже не фильтруются, а застаиваются на нем, что обусловливает начало в нижней части подзолистого горизонта анаэробно–глеевых процессов. В основе глеевого процесса лежит перевод буроокрашенных окисленных железистых соединений в восстановленную форму, что также приводит к обесцвечиванию, точнее, отбеливанию почвенной массы. Таким образом, при формировании подзолистых горизонтов почв начинает и прогрессирует со временем другой, встречный процесс контактного оглеения, в результате чего подзолистый горизонт принимает еще более светлую окраску. Это говорит о сложной природе дерново–подзолистых и подзолистых почв. И все же в почвоведении укрепился взгляд на подзолообразование как на процесс выноса веществ с фильтрующимися растворами.

Предложим читателю еще один взгляд на процесс подзолообразования. Основной подзолообразователь в таежной зоне – ель – имеет поверхностную корневую систему, в основном сосредоточенную в верхнем полуметре почвы, а чаще всего в верхних 30 сантиметрах. Другая, не менее широко распространенная древесная порода – дуб имеет корневую систему, уходящую в почву до двух и более метров. Кстати, из–за этого при ветровале ель чаще вываливается, чем дуб, своими корнями закрепленный за большую толщу почвы и породы. Одинокая ель – не жилец на голом месте. Но сейчас речь не только об этом. Ученые провели большие исследования биомассы и зольного состава ряда древесных пород, включая корни, стволы, разные по размеру ветви, хвою и листья. Особенностью работы было исследование этих показателей по возрастному ряду, то есть у одних и тех же деревьев разного возраста. Оказалось, что в древесной массе спелых насаждений содержание различных элементов в весовом отношении соизмеримо с их содержанием в исходной материнской породе. Это наводит на мысль, что подзолистые горизонты почв возникают не только и не столько за счет промывки их растворами, сколько за счет отсасывания их корневой и надземной биомассой растения. Поскольку корневая система ели поверхностна и охватывает небольшой слой почвы, то это приводит к возникновению с годами более яркого подзолистого горизонта.

Дуб еще больше отсасывает веществ из почвы, и, казалось бы, выраженность подзолистых горизонтов в дубравах должна быть еще четче. Но поскольку его корневая система охватывает большую по объему толщу почв и породы, то эффект биогенного подзолообразования не приводит к формированию яркого подзолистого горизонта. Однако основной показатель подзолообразования – наличие белесой аморфной кремнекислоты в виде “кремнеземистой присыпки” характерен для всей корнеобитаемой толщи под дубом, причем с явной приуроченностью к живым или отмершим корням дуба.

Таким образом, исходное почвенное богатство зольных элементов оказывается со временем не в земле, а над головой. В природе рано или поздно все это возвращается в почву и вливается в общий поток эволюционного развития почв и биоценозов. Такой процесс изменения состава и строения почв ведет к естественной смене растительных сообществ, к так называемому сукцессионному процессу.

Когда же человек вырубил первичные леса и под видом деловой или дровяной древесины вывез из леса огромные массы зольных элементов, он не только прервал природный процесс почвообразования, но и оставил свои пашни с бедными белесыми подзолами, что, конечно же, не могло не иметь и огромного биосферного значения.

Взгляд на подзолообразование как на биосферно–антропогенный процесс позволяет по–новому осмыслить причины низкого плодородия почв Нечерноземной зоны. Как видите, наши недавние предки оставили нам в наследство малоплодородные, а местами бесплодные просторы, на которых мы сейчас разворачиваем грандиозную программу уже не лесного, а сельскохозяйственного освоения. Такова новейшая история почвообразования в лесной зоне.

Есть еще один ракурс рассмотрения этого явления. Принято считать, что почвенная карта – документ вечный, так как почвы развиваются медленно. Оказалось, что это не так. По мере роста деревьев почва испытывает сильные изменения в своем составе, и потому почвы под разновозрастными насаждениями однотипного состава будут разными, а следовательно, почвенные карты необходимо составлять через определенные промежутки времени по единой методике, чтобы понять направление и темпы изменения почв.

Изучение зольного состава древесных пород проводилось давно, но особенный импульс этим работам дали исследования профессора Московского университета Н. П. Ремезова, который в 40‑х – 50‑х годах со своими сотрудниками провел монографическое изучение баланса зольных элементов и азота в системе “почва – растение”. Не очень точно он называл это биологическим круговоротом веществ. Работы профессора Н. П. Ремезова и его школы – замечательный вклад университетского почвоведения в познание биогеохимии элементов в почвах и биосфере.


    Ваша оценка произведения:

Популярные книги за неделю