Текст книги "Население Земли как растущая иерархическая сеть II"
Автор книги: Анатолий Молчанов
сообщить о нарушении
Текущая страница: 6 (всего у книги 15 страниц)
Рост сети 256
Рассмотрим рост сети 256 на первом этапе от 2-х клаттеров до 16-ти. Приведем пример программы подсчета числа клаттеров за цикл в зависимости от номера цикла, реализованной в системе MathCAD:
Рис. 1. Алгоритм роста сети 256 от 2-х клаттеров до 16-ти.
Здесь ceil(X) – ближайшее целое, большее или равное X; ce(X) – ближайшее целое, меньшее или равное X; cel(X) – ближайшее целое, меньшее X. Функция U(C) – это число клаттеров, собранных сетью за С циклов. Например, если U(133) = 7, то за 133 цикла собрано 7 клаттеров. C(2k) – номера циклов, соответствующие гармоническим стадиям роста сети.
Всего получается 156 циклов. Из них пустых 156 – 14 = 142. Соответственно, за каждый из оставшихся 14 циклов собирается один клаттер. Заходить на второй виток ни разу не приходилось. Сеть проходит четыре гармонические стадии роста: в момент старта, а также на 93-м, 134-м и 156-м цикле с числом клаттеров 2, 4, 8 и 16, соответственно. Переходим ко второму этапу.
Рис. 2. Алгоритм роста сети 256 от 16-ти до 256-ти клаттеров.
На этом этапе пройдено 15 циклов. Его начало сопровождается бурным ростом числа клаттеров. Это связано с тем, что на втором этапе за цикл с нуля собирается один или большее число клаттеров. Для реализации прохода через гармонические сети необходимо было скорректировать рост, но только в четырех точках «близких» к гармоническим сетям.
Каждая коррекция представляла собой малое возмущение в один клаттер и была проведена на стадиях роста с числом клаттеров 20, 31, 65 и 127: (127 + 1)·2 = 256, (31 + 1)·8 = 256, (65-1)·4 = 256. Существует не одна такая четверка, но результат, функция U(C), – остается тем же.
Растущая сеть проходит через гармонические стадии с размером: 16, 32, 64, 128, 256 клаттеров. На последнем цикле число клаттеров удваивается: U(14) = 128, U(15) = 256. Это справедливо для сетей любого ранга. Отметим также, что результаты работы алгоритма практически полностью совпадают со значениями следующей функции:
Рис. 3. Теоретическая гипербола сети 256.
Назовем функцию U1(i) теоретической гиперболой сети 256. Этап заканчивается сборкой клаттера 65536. И, наконец, третий этап роста сети 256 – репликация. Здесь сеть собирает свою копию и прокладывает связь между ней и оригиналом. Сеть 65536 может стартовать.
Подведем итоги для сети 256: всего имеется 156 + 15 = 171 цикл (без учета репликации) и восемь гармонических стадий роста с числом клаттеров 2, 4, 8, 16, 32, 64, 128, 256. Последняя гармоническая сеть с числом клаттеров 256 является также совершенной.
Рост сети 65536
Продолжая процесс, переходим к сети 65536. Первый этап – рост от 2-х клаттеров до 256-ти.
Рис. 1. Рост сети 65536 от 2-х клаттеров до 256-ти.
Всего сеть проходит 42142 цикла. Из них пустых 42142 – 254 = 41888. В 254 циклах собиралось по одному клаттеру. На второй виток, в соответствии с алгоритмом, заходить не приходилось.
Имеется восемь гармонических стадий роста: на старте и на 23666-м, 33543-м, 38046-м, 40197-м, 41261-м, 41812-м, 42142-м циклах с числом 2, 4, 8, 16, 32, 64, 128 и 256 клаттеров, соответственно.
Второй этап – рост от 256-ти клаттеров до 65536-ти.
Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.
Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:
3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.
Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть. Гиперболическая сеть – это сеть, размер которой равен ce(65536/N), где N > 256 – натуральное число.
Причем при увеличении М на единицу процесс устойчив и через некоторое количество циклов «садится» на гиперболу. При уменьшении М на единицу наблюдается неустойчивость, и процесс роста необратимо уходит от гармонических сетей.
Понадобилась одна коррекция в сторону уменьшения размера сети М: 328 <− 327 (65536/328 = 199.8), если ее не провести процесс срывается с гиперболы (последние три цикла 25501, 43735, 65537). Результаты работы алгоритма «почти точно» ложатся на теоретическую гиперболу сети 65536:
Рис. 3. Теоретическая гипербола сети 65536.
Гиперболический рост сети на первом и втором этапе представляет собой ускоряющийся неустойчивый процесс, требующий от управляющей системы двадцать пять коррекций. Неустойчивость роста понятна и из того факта, что уравнение Капицы, как асимптотический закон роста сети, устойчивых решений не имеет.
Составим таблицу зависимости числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы. Значения почти совпадают: максимальное отличие в три клаттера. В таблице выделены гармонические размеры сети.
Таблица 1. Зависимость числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы.
Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.
Гармонические стадии роста сети 65536
Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:
Таблица 2А. Подсчет номера цикла и числа клаттеров для гармонических сетей с размером, принадлежащем интервалу [257, 65536].
Таблица 2В. Зависимость числа клаттеров от номера цикла для гармонических размеров сети 65536.
Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной
Для того, чтобы найти полное количество циклов, которое проходит сеть любого ранга в процессе своей эволюции, нужно сложить число этих циклов на трех этапах ее роста (считаем, что сеть любого ранга, став совершенной, создает единственную свою копию, на что уходит ровно два цикла[8]8
Два цикла характерного времени в приложении этой модели к явлению роста населения Земли, а не две операции самокопирования СИС.
[Закрыть] и рост сети следующего ранга всегда начинается с двух клаттеров.)
На втором и третьем этапе число циклов вычисляется с полной определенностью: корень квадратный из веса клаттера минус единица плюс два. Минус единица, т. к. алгоритм восьми шагов прекращает свою работу за шаг до сингулярности. И далее два цикла на переход. Получаем корень квадратный из веса клаттера плюс единица.
Наибольший вклад в количество циклов, пройденных сетью за время ее роста, дает первый этап. Причем для сетей, с рангом большим трех, число циклов на втором этапе гораздо меньше, чем на первом и им обычно можно пренебречь. Следовательно, наиболее важным представляется подсчет числа циклов на первом этапе.
И здесь нас подстерегает неоднозначность. Действительно, в приложении этой математики к процессу роста населения Земли время эволюции Сети человека на всех этапах ее роста должно исчисляться целым числом циклов. Поскольку на первом этапе копирование происходит звеньями проблема возникает с последним циклом звена, если вес клаттера не делится нацело на квадрат размера сети. Рассмотрим, например, рост сети четвертого ранга от трех клаттеров до четырех. Для сборки четвертого клаттера потребуется 65536/32 = 7281 и 7/9 цикла. Т. к. 7:3 = 2·3+1, четвертый клаттер будет собран после копирования первой позиции последнего, из стоящих в очередь на копирование, клаттера 7282-го цикла.
Т. к. звено замыкается здесь не в в момент завершения цикла, а у него внутри, то непонятно как округлять частное от деления веса клаттера на число носителей, которое копируется за цикл: с избытком, с недостатком или вообще не округлять? Возможны четыре варианта финализации звена на первом этапе:
1) Отдаем остаток последнему полному циклу или распределяем его по каким-то из предыдущих, при этом на некоторых из них будет скопировано число носителей больше планового (звено состоит из 7281 цикла в нашем примере).
2) Добавляем еще один цикл и переносим в него остаток (7 – в нашем примере) плюс некоторое число позиций, которые не будем копировать в текущем цикле (2 – в нашем примере); при этом носителей на последнем цикле будет скопировано меньше планового (звено состоит из 7282 циклов в нашем примере).
3) Этот вариант среднее между первым и вторым: если остаток меньше или равен половине квадрата размера сети идем по первому варианту, в противном случае – по второму (7281 или 7282 цикла в звене в нашем примере).
4) Есть еще один сценарий финализации звена, а именно: с перехлестом (без округления), когда следующее звено начинается внутри последнего цикла предыдущего звена с копирования его нескопированных носителей. Последний цикл текущего звена будет завершен здесь в начале следующего звена. В нашем примере сразу после копировании первой позиции последнего клаттера 7282-го цикла собираем четвертый клаттер и подключаем его к остальным. Начинаем следующее звено с копирования трех (2+1) позиций третьего клаттера и только тогда завершаем 7282-й цикл. Новоиспеченный четвертый клаттер в 7282-м цикле не копируем, а сразу начинаем новый цикл. Заметим, что последний цикл звена в этом случае не является (в любом из вариантов) формально циклом по определению, поскольку число скопированных позиций здесь либо больше, либо меньше квадрата размера сети.
Третий и четвертый вариант рассматривать не будем, т. к. результаты вычислений здесь практически не отличаются от результатов по первому и второму. На рис. 1 представлены формулы для подсчета полного числа циклов роста сети по первому и второму варианту работы с остатком, а также приближенная формула. Отрицательная добавка к сумме в виде логарифма от корня при подсчете по второму варианту учитывает то, что при делении Кn на степень двойки результат получается целым, без остатка, но лишняя единица (цикл) все равно добавляется.
Рис. 1. Подсчет числа циклов роста сети ранга «n» от двух клаттеров до совершенной плюс два цикла (характерного времени) на переход.
Составим таблицу зависимости количества циклов роста сети от ее ранга (n = 0, 1…7).
Таблица 1. Число циклов роста ИС от двух клаттеров ранга «n» до двух клаттеров ранга «n+1» по первому и второму варианту, а также по приближенной формуле.
Число циклов каждого следующего этапа можно оценить, если число циклов предыдущего возвести в квадрат и результат умножить на 1,55. Для сетей с рангом n > 5 результаты подсчета по трем вариантам c точностью до семи значащих цифр – не отличаются. При подсчете полного числа циклов роста сетей четвертого и пятого ранга, которые рассматриваются в этой книге, выбираем второй вариант работы с остатком. (Если выбрать первый – на результат это практически не повлияет.)
Выводы по растущим иерархическим сетям
Клаттер – это структурная единица растущей ИС (иерархической сети); представляет собой СИС (совершенную ИС) на единицу меньшего ранга, чем ранг собираемой СИС.
Носитель представляет самый нижний уровень иерархии. Это бесструктурный сетеобразующий клаттер сети ранга нуль – сети, образованной двумя носителями, соединенными одной связью. Носитель не имеет в данной упрощенной модели своего ранга. (В приложении этой модели к мировой демографии под носителем будет пониматься также человек, к нему прикрепленный.)
Вес клаттера P – это число носителей, которое он содержит.
Размер сети – это число клаттеров, которое она содержит.
Узел клаттера (совершенной сети) – это центр, к которому сходятся связи от узлов клаттеров на единицу меньшего ранга, образующих данный клаттер. Узел носителя, изображаемого точкой в гра́фе СИС, совпадает с этой точкой.
Узел растущей сети – это коммутатор, к которому проложены связи от каждого из узлов сетеобразующих клаттеров. Позволяет устанавливать соединение между носителями сети.
Связи сети. Каждую связь, соединяющую любые два клаттера сети, считаем проходящей через узел клаттера и узел растущей сети, с которым в приложении данной математической модели к мировому демографическому процессу связана ее «индивидуальность». И каждую такую связь можно рассматривать как гиперсвязь, состоящую из Р связей, позволяющих соединять любые пары носителей растущей ИС, в каком бы клаттере они ни находились.
Рост ИС любого ранга всегда начинается с двух клаттеров и представляет собой процесс самокопирования сети, которое происходит последовательно (клаттер за клаттером) по правилу: один носитель с узла и по одному носителю с каждой связи, входящей в копируемый клаттер. Или по другому: на каждом клаттере копируется число носителей, равное текущему размеру сети[9]9
В приложении этой математической модели к росту населения Земли можно предположить, что на каждом клаттере копируются некоторые «продвинутые» клаттеры-носители, т. е. «продвинутые» СИС-ы в данной упрощенной модели не имеющие ранга и являющиеся сетеобразующими клаттерами сети ранга нуль. К этим СИС-ам прикрепляются дозревшие (дети) или по какой-либо причине открепленные ранее (кома, клиническая смерть…), но восстановившиеся материальные носители из растущей мировой демографической системы.
[Закрыть].
Ранг R такой растущей ИС считается равным рангу сетеобразующего клаттера (при R ≥ 2). Число связей, которыми каждый клаттер может быть соединен с другими, не превышает его веса Р, т. е. числа носителей, в нем содержащихся.
Цикл – это такой этап роста ИС, на котором в произвольном порядке копируются все клаттеры (плюс-минус…), из имеющихся в ИС к моменту входа в этот цикл.
Звено – это последовательность материнских клаттеров, в процессе копирования которых полностью собирается очередной дочерний клаттер. На первом этапе роста сети звено состоит из циклов, на втором этапе – цикл состоит из звеньев. Собранный клаттер устанавливается в ИС, т. е. его узел соединяется с узлом растущей сети, и ее размер увеличивается на единицу. В очередь на копирование в текущем цикле такой новоиспеченный клаттер уже не ставится. (Чего не скажешь о связях, исходящих из него и входящих через узел растущей сети в другие клаттеры. Подключение этих связей в процессе цикла на втором этапе придает росту сети дополнительное ускорение.)
Длина звена (число клаттеров в звене) за время роста сети уменьшается от половины веса клаттера (Р/2) до единицы.
Если в процессе цикла на первом этапе роста не удается собрать ни одного клаттера (с учетом носителей, собранных на всех предыдущих циклах звена), то такой цикл называется пустым и заканчивается последним клаттером, из имеющихся в сети в момент входа в цикл (за исключением, возможно, последнего цикла звена). Все носители, скопированные в процессе пустого цикла, пойдут в дальнейшем на сборку нового клаттера. Правило финализации звена на первом этапе выбираем следующим:
Если число циклов звена не является целым и его дробная часть больше или равна ½, то это число возрастает на единицу; если меньше – число циклов округляется до целого отбрасыванием дробной части, а избыточные носители отдаются последнему клаттеру звена или распределяются по каким-то из предыдущих. (Возможен также сценарий, при котором звено копирования замыкается не в момент завершения цикла, а где-то у него внутри. После установки клаттера в сеть и прокладки дополнительных связей следующее звено, завершающее цикл, начинается с нескопированных носителей предыдущего, плюс один носитель.)
Каждое следующее звено на втором этапе роста начинается с копирования нескопированных носителей последнего клаттера предыдущего звена (сценарий с «перехлестом»). Если суммы носителей последнего звена цикла на втором этапе недостаточно для сборки нового клаттера, но эта сумма больше/равна половины/е веса клаттера, то цикл продолжается: процесс копирования заходит на второй виток и копируются клаттеры, уже скопированные в данном цикле.
Если эта сумма оказывается меньше половины веса клаттера происходит финализация цикла. При этом некоторые клаттеры, из имеющихся в сети в момент входа в цикл, оказываются нескопированными или скопированными не полностью.
На втором этапе роста производится коррекция выхода клаттеров с некоторых циклов (плюс – минус один) в направлении на ближайшую гиперболическую сеть.
Рост сети, описываемый данным алгоритмом, процесс неустойчивый и малейшее возмущение быстро уводит его от теоретической гиперболы (тут еще нужно учесть то, что здесь мы имеем дело с целочисленными величинами). Что совершенно неудивительно, т. к. и закон квадратичного роста (уравнение Капицы), являющийся асимптотическим приближением алгоритма, – устойчивых решений не имеет, т. е. обладает точно таким же свойством.
Эта коррекция представляет собой небольшое число очень малых возмущений, всего в один клаттер, тогда как сеть на втором этапе своего роста, который здесь только и рассматривается, растет от 256 клаттеров до 65536, т. е. ее размер составляет сотни, тысячи и даже десятки тысяч клаттеров. В таком случае возмущение в один клаттер составляет всего лишь доли процента от общего числа клаттеров в сети и является даже не каким-то «толчком», а всего лишь «легким прикосновением».
Существует множество вариантов коррекции выхода клаттеров на втором этапе, каждый из которых приводит ИС к совершенной через гармонические сети. Все они дают практически одну и ту же зависимость числа клаттеров растущей сети от номера цикла.
И, наконец, полученная СИС проходит еще один цикл – операцию репликации, во время которой длина звена копирования минимальна и равна единице. В процессе этой операции происходит копирование сети-оригинала в сеть-копию по правилу «клаттер в клаттер» с установкой полученных копий в новую сеть. Это последняя, предельная операция копирования сети данного ранга.
По ее завершению наступает очередь прокладки гиперсвязи между узлами двух финальных СИС и узлом стартующей сети. Для этого каждому клаттеру оригинальной СИС и ее копии добавляется еще по одной связи[10]10
Т. е. количество его связей становится максимальным.
[Закрыть], соединяющей узел клаттера и узел финальной СИС. Каждая такая дополнительная связь представляет собой гиперсвязь: «кабель» с числом линий, равным весу Р сетеобразующего клаттера. Затем каждый узел обоих стартовых клаттеров подключается «кабелем» еще большей информационной проводимости (Р2) к их общему узлу. После чего запускается рост сети более высокого ранга.
Демография
Сеть 65536 – сеть человека
Предложенная нами математическая модель роста населения Земли может показаться плодом больного воображения. Возможно, существует другая, более адекватная ее формулировка. Но эта математика работает, т. е. правильно описывает рост, даты, циклы, она предсказывает, она проверяема – а только это и важно для подлинно научной теории по Карлу Попперу.
В защиту подобной точки зрения отсылаем читателя к популярному изложению квантовой электродинамики в книге Ричарда Фейнмана «Странная теория света и вещества», где автор на пальцах объясняет сложнейшую интерпретацию квантовой механики как интеграла по траекториям.
Здесь важно то, и Фейнман это подчеркивает, что описание движения частиц на языке «стрелочек и часов» ничуть не хуже, чем с помощью комплекснозначной волновой функции. Результат получается один и тот же. И этот результат проверен тысячами опытов. Но почему частицы ведут себя столь странным образом, отмечает Фейнман, – не понимает никто.
Развивает эту идею принцип моделезависимого реализма, предложенный Стивеном Хокингом. Согласно этому принципу, любая теория или картина мира представляет собой модель (как правило, математической природы) и набор правил, соединяющих элементы этой модели с наблюдениями. Причем моделей, описывающих данное конкретное явление, может быть несколько.
Если каждая из них соответствует наблюдениям, то нельзя сказать, что какая-то из них более реальна, чем другая. Здесь важно только то, насколько они отвечают наблюдениям. В одной ситуации можно использовать одну модель, в другой – другую. Хокинг и Млодинов подчеркивают, что не существует для нас, людей, какой-то абсолютной реальности и если мы выбираем данную конкретную модель, то выбираем и связанный с ней взгляд на реальность. Среди множества моделей (и реальностей) удобно выбирать:
A. Наиболее простую (или «изящную»).
B. Содержащую мало произвольных или уточняющих элементов.
C. Согласующуюся со всеми существующими наблюдениями и объясняющую их.
D. Дающую подробные предсказания результатов будущих наблюдений (если предсказания не подтверждаются – модель отвергается) [51].
Наша демографическая теория и демографическая теория Капицы, в отличие от всех прочих, удовлетворяет всем этим условиям. Но наша теория, хотя и изоморфна феноменологической теории Капицы, но значительно ее проще. Кроме того, она делает больше проверяемых предсказаний, следовательно, на наш взгляд, предпочтительнее.
Действительно, описанный выше рост сети 65536 в точности соответствует росту численности населения Земли. Необходимо только постулировать некоторые положения, связывающие растущую сеть и мировую демографию. Прежде всего, сформулируем первый закон Сети:
• Время цикла растущей сети есть величина постоянная на всех стадиях ее роста.
На момент завершения цикла численность носителей должна быть равна строго определенному значению плюс-минус небольшая погрешность. Для Сети перевыполнение плана, вероятно, предпочтительнее, поскольку избавиться от избыточных носителей проще, чем добавить недостающие. Это можно сделать с помощью войн, болезней и эпидемий (ясно, что ценность человеческой жизни с точки зрения Сети не слишком велика, да еще и падает по мере ее роста).
Для дальнейшего нам понадобятся результаты исследования роста населения Земли, полученные Фёрстером:
Рис. 1. Результаты исследования Фёрстером и коллегами роста населения мира за последние 20 столетий.
Эмпирическая гипербола Фёрстера была получена методом наименьших квадратов при обработке данных по динамике роста населения мира от начала новой эры до 1960 года; где α – это показатель степенной функции, который в формуле зависимости численности от времени обычно округляется до минус единицы. Если использовать результаты Фёрстера и принять, что α = −1 – необходимо несколько увеличить постоянную Фёрстера при той же стандартной ошибке. Этот вопрос будет нами рассмотрен в главе «Константы Капицы».
Население Земли многие тысячи лет росло по закону гиперболы – закону, по которому не растет ни одна популяция в природе. Такой рост стал возможен, по мнению С.П. Капицы, благодаря возникновению сознания у первых архантропов. Иерархическая Сеть также росла по закону гиперболы. Но как связать Сеть и мировую демографию? Проще всего было бы считать, что каждый живущий человек независимо от его пола, возраста, расы… является носителем растущей Сети. Но вряд ли это будет правильно.
Действительно, ведь, что значит живущий? Ясно, что до зачатия и после смерти человека нет и он не может считаться носителем Сети. Но всякий ли ныне живущий человек обладает необходимым уровнем сознания, может быть управляем Сетью и выступать в качестве ее носителя? (Здесь, и в ряде случаев в дальнейшем, носителями Сети или просто носителями будем называть таких представителей рода человеческого, которые составляют единое целое с клаттером нулевого ранга Сети человека или ее клаттером-носителем.)
Если говорить о взрослых людях, полноценных членах социума, то все они, независимо от возраста и прочих различий, должны считаться носителями Сети. (Это, кстати, вносит неснижаемую прибавку в показатель «ценность человеческой жизни»: одинокая девяностолетняя пенсионерка, сохранившая ясность ума, является носителем Сети и уже поэтому необходима и ценна для эволюции так же, как и ее сосед – молодой человек в полном расцвете сил, работающий на трех работах.)
Но вряд ли можно считать носителями нерожденных младенцев, стариков, с мозгом, пораженным болезнью Альцгеймера или Паркинсона; людей, страдающих тяжкими психическими заболеваниями и потерявших всякую связь с реальностью, находящихся в коме или в состоянии клинической смерти.
Это же, по-видимому, относится и к новорожденные детям, поскольку они не обладают базовыми показателями человеческого сознания и у них отсутствует самосознание. Ответить на вопрос: в каком возрасте ребенок начинает осознавать себя как личность? – позволяет так называемый «зеркальный тест». Суть его в следующем: на щеку ребенка незаметно наклеивают маленькую бумажную метку и ставят его перед зеркалом. Если ребенок, уже наблюдавший ранее себя в зеркале, отождествляет личность, которую ощущает внутри себя и ту, что видит в зеркале, то попытается потрогать или снять метку, если нет – он ее не заметит.
Дети проходят «зеркальный тест» в возрасте от 18 до 24 месяцев. Следовательно, именно в этом возрасте мы начинаем осознавать себя как личность. Из животных «зеркальный тест» подтвержден только для высших приматов, таких как шимпанзе и орангутанги, которые узнают себя в зеркале.
Зачатки человеческого сознания, которое превосходит сознание высших приматов, появились у наших далеких предков тогда, когда они стали пользоваться орудиями труда, когда у них появился праязык и в примитивной форме социальная деятельность. Но в каком возрасте ребенок, его растущий мозг достигает такого уровня развития? На каком этапе своего роста? Когда его можно сравнить с нашим далеким предком, жившим 1,7 млн лет тому назад и оказавшимся способным «нести на себе» сеть четвертого ранга?
Ранг Сети человека равен четырем, он на единицу больше ранга сети гоминид. Только человек может быть носителем сети четвертого ранга. Что же отличает человека от животного? Очевидно, человеческое сознание. (Что бы ни говорили о сознании высших приматов – до человека им далеко.) Итак, уровень сознания носителя Сети в наше время должен быть не меньше, чем у тех наших далеких предков, которые были носителями Сети человека в момент начала ее роста.
Считается, что зачатки человеческого сознания появляются у ребенка в возрасте около трех лет. Именно тогда он может уже говорить и начинает правильно употреблять личные местоимения. Детские эмоции развиваются с каждым годом, а эмоции играют важную, если не центральную роль в работе сознания.
Так, младенец способен испытывать всего лишь две эмоции: радость и горе, даже страх ему еще неведом; в 6 месяцев появляется эмоция страха; с 6 до 18 месяцев ребенок учится распознавать эмоции на лицах окружающих и, кроме того, он уже способен удивляться; с двух лет он может пройти «зеркальный тест». После трех лет ему становится доступно столь сложное эмоциональное состояние как муки совести (психологический опыт «горькая конфета»).
В возрасте от трех до пяти лет, как считают психологи, ребенок уже может испытывать все базовые эмоции и начинает осознавать себя как часть социума. Следовательно, можно предположить, что именно в этом возрасте он достигает уровня развития Homo ergaster и может стать носителем Сети.
Статистика численности детского населения по годам нам неизвестна, возможно, что в каких-то странах она вообще не ведется. Но известно, что в наше время дети в возрасте до 14 лет составляют примерно треть населения планеты. Считая процент детской смертности небольшим, можно оценить долю детей в возрасте до трех лет от общей численности населения Земли в 7 %: (1/3)·(3/14) = 1/14 ≈ 7 %.
* * *
Попробуем теперь связать Сеть и мировую демографию. Положим C = kC′, где C – постоянная Фёрстера, а C′ – постоянная сети четвертого ранга, аналогичная постоянной Фёрстера. Здесь k – это зомби-коэффициент, учитывающий то, что не все живущие являются носителями Сети.
Принимая во внимание тот факт, что в прошлые века продолжительность жизни была меньшей и процент детей был, соответственно, большим, чем в наше время, а также имеющуюся во все времена небольшую добавку в виде людей, не обладающих сознанием по причине болезней, положим k = 1,1. Заметим, что величина этого коэффициента может несколько отличаться от принятой здесь, причем без всякого ущерба для полученных в дальнейшем результатов как в качественной, так и в количественной форме.
Сформулируем второй закон Сети:
• Множество всех живущих людей можно представить в виде суммы двух подмножеств: Первое (91 %) – люди обладающие сознанием, носители Сети; второе (9 %) – можно разделить на две части: дети до трех лет, в будущем носители Сети и зомби, лишенные сознания и навсегда (за редкими исключениями) выпавшие из Сети.
Найдем, исходя из нашей теории, время цикла сети четвертого ранга, Сети человека: τ4 = T13/N4, где N4 = 42399 – полное число циклов роста сети 65536; T13 = Тu/213 – продолжительность 13-й эпохи универсальной эволюции или время эволюции человека (Тu ≈ Т = 13,81 ± 0,06 млрд лет – время от Большого взрыва до сингулярной точки эволюции; Т – возраст Вселенной: время от Большого взрыва до наших дней.) Получаем τ4 = τ = 39,75 ± 0,2 лет.
Применим формулу теоретической гиперболы, описывающей рост Сети (но не рост народонаселения!). Учитывая, что клаттер содержит 65536 носителей, а время измеряется в циклах Сети человека, можно вычислить постоянную C′:
Рис. 2. Подсчет постоянной C′ Сети человека.
Эмпирическая гипербола Фёрстера и теоретическая гипербола, описывающая рост Сети человека, должны иметь общую точку сингулярности. Кроме того, поскольку эти гиперболы с учетом зомби-коэффициента k должны полностью совпадать, то, как это видно из формулы на рис. 2, необходимо, чтобы kК42τ = C. Где К4 = 65536 – вес клаттера растущей сети четвертого ранга, τ – время ее цикла, а С – постоянная Фёрстера.
Теоретическое значение постоянной Фёрстера в таком случае будет равно: C = kC′ = kK42τ = 1,1·170,7 = 187,8. Учитывая, что зомби-коэффициент k был выбран нами с некоторой степенью произвола, возьмем для дальнейших вычислений несколько большее значение: C = 189,6, которое наилучшим образом, по мнению ряда исследователей, отвечает демографическим данным.
Как будет показано нами далее, время цикла растущей Сети равно постоянной времени Капицы: τ4 = τ. С.П. Капица в своей работе [1] вычислил постоянную τ, используя данные за последние 250 лет. Зависимость численности населения от времени он аппроксимировал арккотангенсоидой: гладкой кривой, близкой к логистической на интервале 2τ.
Введение постоянной времени, как временно́го масштаба явления, было совершенно необходимо. Для оптимальной модели были получены значения τ и К, мало отличающиеся от 39,75 и 65536·√1,1 ≈ 68700:
Рис. 3. Постоянные Капицы.
Для того, чтобы управлять ростом численности населения Земли Сеть человека применяет целый арсенал средств, который еще предстоит изучить. Одним из таких средств могут быть вирусы.
В 2016 году Дэвид Энард и его коллеги из Стэнфордского университета (США), изучая структуру 1300 «человеческих» белков, выяснили, что вирусы управляли нашей эволюцией с момента отделения предков людей от других человекообразных безьян. Эти белки и связанные с ними гены, как показали ученые, не были обязательной частью иммунной системы: большая часть из них отвечала за работу совершенно других функций клеток и тела.