355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Абинов » Человек или машина? » Текст книги (страница 4)
Человек или машина?
  • Текст добавлен: 9 октября 2016, 02:00

Текст книги "Человек или машина?"


Автор книги: Анатолий Абинов



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

За электроникой – биотика

В основе технологии современных полупроводниковых элементов лежит сочетание двух видов обработки этих материалов: введение примеси, так называемого я-типа, способной отдавать электрон, и примеси p-типа, способной электрон принимать. Обычно такие примеси вводят в германиевый или кремниевый кристалл. Однако последние исследования в области органической химии показывают, как мы только что убедились, что. это не единственные кандидаты для создания полупроводниковых элементов или чипов.

В присутствии паров йода полиацетилен тоже может получать свойства проводимости p-типа. Йод, проникая в структуру полимера, внедряется в нее и «ждет» появления электрона. То есть ведет себя точно так же, как, например, бор или галлий в кристаллической решетке кремния. А для того чтобы ввести в полиацетилен примесь я-типа, можно использовать литий, натрий или калий.

Органический полупроводниковый материал уже изготавливается в массовых количествах и стоит не дороже обычной клеенки. А значит, вполне серьезно можно подумать и об использовании его в электронике. Первое возможное применение – создание фотоэлементов;-для этого достаточно совместить один слой n-типа и два слоя p-типа.

Правда, такие структуры получаются еще не очень стабильными, а значит, органические полупроводники не будут работать долго. Однако пока это ведь только начало. И начало, надо сказать, многообещающее. Скажем, уже в настоящее время удалось найти такие примеси, которые могут как отдавать, так и принимать электроны и оставаться при этом достаточно стабильными. На их основе уже созданы первые электробатареи, которые показали не только достаточную долговечность, но и оказались почти в 10 раз легче обычных.

Созданы также биочипы, в которых используется способность молекул ряда органических веществ выпрямлять электрический ток. В частности, установлено, что молекулы хинонов могут иметь два электрических состояния, отличающиеся распределением электрических зарядов и зависящих от них водородных связей. Таким образом, путем воздействия на хиноны электрическим током можно записывать логические нули и единицы. Причем, в отличие от обычных чипов, органическому соединению не требуется постоянный ввод команд V-он выполняет заданные функции при общем программировании.

Таким образом, уже сегодня начинают прорисовываться принципиальные возможности новой отрасли науки – биотики, которая, возможно, в следующем веке придет на смену всем нам хорошо известной электронике. Ведь уже сегодня есть биологические микроустройства, способные выполнять функции датчиков, процессоров, исполнительных механизмов. Родились новые разделы биофизики, которые изучают самоорганизацию биопроцессов. И если раньше исследователи шли в основном по пути воспроизведения в технике принципов, используемых в живых системах, то в настоящее время уже созданы гибридные системы и предпринимаются попытки, скажем, создать компьютер с процессорами, использующими элементы нервной системы. Его предполагают снабдить датчиками и исполнительными устройствами, в основе которых лежат молекулярные механизмы мышечного сокращения.

– Интерес к биологическим микроустройствам в мире не случаен, – считает член-корреспондент АН СССР Г. Иваницкий. – Источники биологических материалов дешевы и практически не ограниченны, благодаря непрерывным методам культивирования микроорганизмов и животных клеток. Биоустройствами обеспечивается широкий спектр преобразуемых видов энергии – химической, механической, световой, электрической, а в ряде случаев возможна обратимость процессов преобразования – это позволяет использовать датчики. для решения широкого круга задач. Биопреобразователи имеют сравнительно высокий коэффициент полезного действия (иногда почти до 100 процентов), благодаря успехам молекулярной биологии их можно конструировать с заранее заданными свойствами, избирательной реакцией и высокой чувствительностью. Эти и многие другие преимущества делают биологические системы конкурентоспособными с техническими, а по некоторым параметрам позволяют превосходить их…

Так говорит ученый – представитель той категории людей, которым обычно свойственны осторожные высказывания, снабжаемые, как правило, некоторыми оговорками. Ну а как обстоят дела на практике?

…В штате Техас один фермер недавно выиграл соревнование с компьютером местной метеостанции по точности составления прогнозов. А помогла фермеру… корова! Если она к ночи ложилась, фермер уверенно предсказывал приближающееся ненастье, если нет, значит, завтра надо ждать хорошей погоды. Корова и наблюдательный фермер оказались правы в 90% случаев, в то время как компьютер не ошибся лишь в 70%.

…Опыты, проведенные английскими учеными, показывают, что муха с высокой точностью отличает сахарин от сахара. Каким образом? Исследователи полагают, что рецепторы на лапках мухи настолько чувствительны, что она может определять различия в структуре молекул.

…Основатель космической биологии А. Чижевский еще в тридцатые годы сконструировал аппарат, который предупреждал о всплесках солнечной активности за несколько дней до начала очередной вспышки. Главной «деталью» этого прибора были крошечные бактерии, которые в зависимости от режима солнечного освещения меняли свою окраску.

И список таких примеров, когда живые существа оказывались намного чувствительнее сложнейших электронных приборов, можно продолжать еще долго. Так почему же тогда мы чаще всего пользуемся именно показаниями аппаратуры? Одна из главных причин– трудность дешифровки показаний живых «предсказателей», невозможность идентичной замены одного на другой. Нужен был наблюдательный глаз фермера, годами следившего за повадками животных, чтобы выявить взаимосвязь между погодой и поведением пеструхи. И заменить ее на буренку никак нельзя.

Работать с более мелкими живыми объектами уже проще. Сотрудники биофака МГУ как-то записали на осциллограф сигналы вкусовых щетинок комара-пискуна. При этом однозначно выяснилось, что каждому химическому соединению, которое комар пробует на «вкус», соответствует определенная электрическая последовательность импульсов, а сами датчики-щетинки срабатывали, даже если концентрация примесей составляла всего сотые доли грамма на литр воды. Эврика?! Не тут-то было… Стоило поменять комара, и характер электрических импульсов на экране тотчас менялся. То же происходило, когда экспериментаторы переходили от опытов с одной мухой j< опытам с другой. Точного повторения, а значит, и расшифровки результатов добиться не удалось.

Иное дело, когда мы переходим к опытам с микроскопическими живыми существами, а то и просто клетками. В опытах Чижевского замена одной пробирки другой вполне возможна – бактерий так много, что характерные черты отдельных особей нивелируются, сглаживаются, давая обобщенные результаты. Вот, оказывается, почему биофизики стремятся вести исследования именно на микронном уровне. Именно здесь появляется принципиальная возможность создания на биохимической основе отдельных элементов, а затем и целых систем, скажем, «биологических компьютеров» или «чувствующих роботов».

Конечно, такая проблема требует объединения усилий не только биофизиков и биохимиков, но и микробиологов, кибернетиков, специалистов по генной инженерии. Как такое объединение может происходить, можно судить хотя бы по проекту «Родопсин», созданному около 10 лет назад по инициативе академика Ю. Овчинникова. Его стараниями были объединены усилия ученых многих научных направлений для одной цели – детального исследования структуры и механизмов функционирования родопсинов – белков, названных так по имени зрительного пурпура, обнаруженного и у бактерий.

Совместными усилиями ученым удалось не только до тонкостей разобраться в структуре бактериородопсина, но и приспособить его для целей кибернетики. Каким образом? Чтобы понять это, давайте на минуту обратимся к классической ЭВМ.

Любой вычислительный процесс состоит из трех этапов. Вначале возникает задача: исходные данные и представление, что с ними надо сделать. Затем следует собственно решение: вычисления в определенном порядке по строго заданным алгоритмам. И наконец, на третьем этапе, полученное решение каким-то образом используется.

Но ведь нечто подобное сплошь и рядом происходит и в живой природе! По существу, вся жизнь состоит в решении задач и использовании полученных результатов. Проблемы нахождения пищи,* ее потребления, усвоения, развития и размножения организмов – все это задачи, решаемые по определенному набору алгоритмов. А раз так, то можно, наверное, и компьютер сделать по тому же образу и подобию.

Именно такую цель и поставили недавно перед собой японские специалисты, начавшие работы по специальному проекту, главная цель которого – создание «компьютера на основе элементов нервной системы, снабженного биологическими датчиками, а также исполнительными устройствами, использующими молекулярные механизмы мышечного сокращения…».

Ведутся подобные работы и в нашей стране.

– Работы по созданию биопреобразователей уже миновали стадию эмпирического поиска, – прокомментировал ситуацию Г. Иваницкий. – Сегодня благодаря успехам молекулярной биофизики можно конструировать датчики с нужными нам свойствами, избирательностью и высокой чувствительностью…

Что же собой представляют датчики-преобразователи, которые являются в биологической ЭВМ источником входной информации? Мы как-то привыкли считать, что белок – нечто чрезвычайно неустойчивое, быстроразлагающееся… Однако сегодня его уже научились получать в кристаллическом виде, и тогда молекулу белка можно рассматривать как твердое тело с механическими свойствами, подобными, скажем, органическому стеклу или эбониту. Можно также белки и ферменты присоединять к специальным подложкам из бумаги, полистирола, нейлона, стекла или металла, после чего они опять-таки приобретают необходимую механическую прочность, с ними легко и удобно работать.

Однако одних датчиков для работы биокомпьютера мало, ему нужна еще и память. И вот в том же Институте биологической физики АН СССР было обнаружено, что обезвоженный бактериородопсин может быть зафиксирован на определенной стадии фотохимического цикла, сохраняя записанное на нем изображение. А это означает, что его можно использовать как своеобразный фотоматериал с высокой разрешающей способностью. Добавьте к нему лазерную технику, позволяющую быстро записывать и стирать оптическую информацию, – и запоминающее устройство для компьютера готово.

Ну а как быть с процессором? Трудностей здесь еще предостаточно, причем не только технологического, но и принципиального плана. Дело в том, что скорость распространения нервного импульса по волокну-аксону составляет около 20 м/с. Длительность импульса возбуждения – около 3 мс, причем за импульсом тянется рефракторный хвост длительностью еще около 6 мс. Таким образом, быстродействие вычислительного устройства на основе биологических систем составляет не более 100 операций в секунду. Это, безусловно, мало, поскольку уже сегодня созданы ЭВМ с производительностью 10 9, а к 2000 году, согласно мировым прогнозам, надо ожидать повышения быстродействия компьютеров до 10 12операций в секунду. Так стоит ли тогда огород городить, заниматься биоструктурами с целью создания вычислительных устройств?

Оказывается, стоит. Дело в том, что быстродействие компьютера важно не само по себе. Более быстродействующие машины, как правило, оказываются и более «сообразительными», обладают большими возможностями. Но соображать-то ведь можно по-разному. Скажем, играя в шахматы, можно механически перебирать вариант за вариантом в поисках лучшего хода, а можно, в целом оценив ситуацию, сразу отсечь множество непригодных вариантов и. сосредоточить свое внимание на одном-двух наилучших. Люди при игре в шахматы пользуются именно этим способом, в отличие от машин, которые зачастую вынуждены (за неимением лучших алгоритмов) заниматься последовательным перебором. Потому-то люди зачастую и выигрывают у машин, невзирая на головокружительное быстродействие последних!

Как нам это удается? Как люди думают? Долгое время ответы на эти вопросы были покрыты густым туманом неизвестности. Но последнее время благодаря совместным исследованиям медиков и кибернетиков, биофизиков и математиков кое-что начинает проясняться. Человеку свойственно образное мышление. Говоря очень упрощенно, люди вместо того, чтобы заниматься кропотливыми расчетами, предпочитают создать образ, модель того или иного явления и по поведению этой модели прогнозировать результат.

Поясним суть при помощи такого примера. В известный всем по школьным задачам бассейн проведены не две-три трубы, а сотни. По одним в бассейн вливаются какие-то химические реагенты, по другим выливаются продукты реакции, сепарированные определенными фильтрами. И нам надо узнать, при каких условиях мы сможем получать наибольший выход того или иного продукта.

Можно, конечно, все это подсчитать «цифровым» способом: выяснить, сколько именно определенного вещества поставляет в бассейн каждая труба, сколько его проходит сквозь каждый фильтр, и запустить все эти цифры в ЭВМ. Но пока мы соберем нужную информацию, пока составим программу, пока компьютер закончит подсчеты… В общем, и года не пройдет, как результат будет получен., Того же, впрочем, можно добиться и другим способом. Давайте построим модель нашего бассейна. Причем для простоты и скорости получения результата будем строить не натуральную, а, скажем, электрическую модель. Трубы, по которым текут жидкости, заменим проводниками, бассейн – накопителем энергии, фильтры – сопротивлением и конденсаторами… Глядишь, таким образом нужный результат будет готов уже через неделю, несмотря на то что аналоговая ЭВМ работает гораздо медленнее числовой.

Вот такие-то аналоговые принципы и предлагают использовать ученые для создания биокомпьютеров. Причем, например, ту же систему с трубами и бассейном можно заменить устройствами, работающими на активных биопленках или на пленках, использующих специальным образом организованные химические реакции, например, автоволновые.

Впервые подобные реакции были открыты в 1956 году советским ученым Б. Белоусовым. А в 1970 году лауреаты Ленинской премии А. Жаботинский и А. Заикин создали такую химическую среду, в которой автоволновой процесс можно было наблюдать воочию: тонкий слой раствора периодически менял свою окраску, словно живой. Из желтого становился красным, потом снова желтел… По поверхности жидкости пробегали цветные, незатухающие волны – автоволновой химический процесс.

Автоволновые колебания сопровождают нас повсюду. Это и процесс сокращения сердечной мышцы, и начальные этапы морфогенеза – возникновение новых форм и структур – у простейших организмов, и процессы активации катализаторов… А коль дела обстоят так, значит, при помощи химических автоволновых процессоров легко такие процессы и моделировать.

Причем такая модель не обязательно должна помещаться в пробирке или чашке Петри. Подобные процессы, как показали последние исследования, происходят и в молекулах белка. Таким образом, молекула размером всего 30–50 ангстрем уже представляет собой элемент активной среды, может стать частицей биокомпьютера.

А это, в свою очередь, создает принципиальную возможность получения аналоговых вычислительных машин величиной с… клетку! Причем, как показывают расчеты, если автоволна движется со скоростью всего 0,1 мм/с, это уже соответствует быстродействию цифрового компьютера 10 6операций в секунду. А если еще учесть, что кусочек пленки площадью всего 1 кв. см может содержать свыше 10 12активных элементов, то от представления возможностей такого биокомпьютера просто голова идет кругом! Каждый сможет обзавестись персональным вычислительным центром, который скорее всего станут вживлять прямо под кожу. Так надежнее – и не затеряется в кармане, и всегда будет обеспечен всем необходимым для работы за счет энергетики организма.

Представляете, насколько могут возрасти интеллектуальные возможности каждого?!.

По примеру вирусов

Быстро, как говорят, только сказки сказываются. Дела же движутся намного медленнее, а в нашем случае могут и вообще застопориться, если мы не придумаем и технологию, соответствующую возможности нашего клеточного биокомпьютера. Действительно, трудно себе представить, что подобные чудо-устройства будут собираться вручную, при помощи микроскопа да набора стеклянных иголок, микроскальпелей и микропипеток, которыми орудуют сегодняшние генные инженеры.

Ученые, конечно, подумали и об этом. Роль сборщиков новых микроустройств они хотят поручить рибосомам – белковым структурам живой клетки. Ведь именно они способны читать «чертежи» генетического кода, а затем. и строить белки по полученной программе. И если задать рибосомам нужную программу, то можно будет в итоге получать белки с заранее определенными свойствами. Такие, которые могут затем послужить основой для создания, скажем, той же белковой ЭВМ.

Как задать рибосомам новую программу? Да примерно так же, как это делают вирусы. Проникая внутрь клетки, они приносят с собой новый генетический код и заставляют клетку работать по новой программе.

Подобные возможности – не беспочвенные фантазии. Методами генной инженерии уже в настоящее время удается поменять генетическую программу некоторым микроорганизмам, заставляя их вырабатывать нужные человеку вещества. Так, скажем, сегодня бактерии уже вырабатывают интерферон, который раньше удавалось получать лишь из клеток крови, лекарства для регулирования давления.

Создав первое поколение «монтажников», специалисты затем собираются перейти к следующему этапу. Генетическая программа вновь созданных белковых устройств должна быть построена так, чтобы в дальнейшем они сами себя совершенствовали и воспроизводили, как это делают сегодня все живые организмы. При этом в качестве исходного материала, возможно, будут использоваться не только белковые соединения, но и другие материалы – скажем, керамика или пластик. А отсюда уже недалеко и до изготовления любых веществ и даже предметов по заранее составленным программам!

Именно такую машину придумал не столь давно известный писатель-фантаст Д. Кларк. Он назвал ее «репликатор», т. е. «пополнитель», «заменитель». Это устройство, которое по команде может собрать любую вещь из атомов и молекул. В какой-то мере такой агрегат можно представить себе как. вариант конечной эволюции персонального компьютера, считает писатель. Подобно сказочному джинну, она сможет выполнить любое желание, удовлетворить все материальные потребности человека.

Однако, чтобы подобрать нужные атомы, соединить их в молекулы, а затем и в сообщества молекул – кристаллы, необходимы «микрозаводы» – чипы даже не микронного, а более мелкого размера. Все расстояния в этом мире будут измеряться миллиардными долями метра – нанометрами, поэтому и новое научное направление получило название «нанотехнология».

Пока она существует лишь в теории. Однако при желании ее первые ростки можно увидеть и в некоторых практических достижениях науки нашего времени. Искусственное получение элементов, которых еще недавно не было в таблице Менделеева, «Чтение» и исправление генетических кодов, «выкраивание» необходимых деталей из ферментов и «сшивание» белков с заранее заданными свойствами – все это начальные проявления нанотехнологии.

Есть и более глубинные проекты. Уже сегодня мы можем говорить о путях, которые могут привести к претворению идей фантаста в жизнь. Так, например, один из аспирантов Б. Литтла, о работах которого по сверхпроводящей органике мы уже говорили, предлагал вывести сверхпроводящий вид бактерий методом дарвиновского отбора. Для успеха эксперимента, полагал исследователь, надо создать в колонии такие условия, чтобы выживали бактерии с большей электрической проводимостью, и вести селекцию до той поры, пока природа сама не решит задачу сверхпроводимости при заданных температурных условиях.

К сожалению, в свое время эта оригинальная идея не дала практических результатов. Живым организмам, как оказалось, не нужна высокая электрическая проводимость, и ученым попросту не удалось отыскать подходящих особей для начала опытов. Однако сегодня картина заметно изменилась. Если таких особей нет в природе, их можно сконструировать – методы современной генной инженерии вполне позволяют это.

А дальше все пойдет по природному циклу. Природа разделила процессы производства живых существ на две составляющие: производство внутри клеток и производство организмов из этих клеток. Точно так же можно поступить и при производстве «живых компьютеров» и прочих «машиносуществ». Сначала, как мы уже говорили, будет налажено производство отдельных клеточных устройств и агрегатов. А затем уже из них можно собирать готовые «машины».

Причем сборку и на втором этапе можно доверить живой природе. Пусть этим займутся нанороботы – искусственно сконструированные живые организмы со специальной программой.


    Ваша оценка произведения:

Популярные книги за неделю