Текст книги "Мир микробов"
Автор книги: Анатолий Смородинцев
Соавторы: Александр Кривиский
сообщить о нарушении
Текущая страница: 7 (всего у книги 11 страниц)
Каждому известно, что если оставить при комнатной температуре стакан вина или пива, то уже через несколько дней жидкость скисает. При этом количество спирта уменьшается и накопляется уксус. На поверхности жидкости образуется плёнка. Рассматривая кусочек этой плёнки в капельке воды под микроскопом, мы увидим, что она состоит из небольших палочковидных бактерий (рис. 38). Это уксуснокислые бактерии, окисляющие спирт до уксусной кислоты и использующие выделяющуюся в процессе окисления свободную энергию. Превращение вина в уксус известно еще с глубокой древности. Упоминание об этом процессе можно найти у древнего греческого историка Геродота. Теперь же для промышленного производства уксуса применяются культуры уксуснокислых бактерий. В качестве сырья применяются молодое вино, пиво или водные экстракты из чёрных сухарей, яблок, ягод, обогащённые спиртом.
Рис. 38.Уксуснокислые бактерии
Уксус является предметом широкого потребления в качестве приправы к пище и как консервирующее средство. Для большинства бактерий, в том числе и гнилостных, уксусная кислота, содержащаяся в уксусе, является ядом. Поэтому уксусные маринады широко применяются для предохранения различных пищевых продуктов от порчи.
Кроме уксусной кислоты, некоторые микробы производят щавелевую и лимонную кислоту. Эти кислоты также широко применяются в пищевой промышленности, и их изготовление в заводских условиях основано на работе микробов. Щавелевая кислота получается при окислении сахара глюкозы плесневым грибком – чёрным аспергиллом. При окислении того же сахара плесневым грибком цитромицес получается лимонная кислота. Советский учёный проф. В. С. Буткевич разработал технологию производства лимонной кислоты при помощи этого грибка.
Огромное значение в производстве пищевых продуктов имеет и молочнокислое брожение, осуществляемое особой группой молочнокислых бактерий, приспособившихся к сбраживанию молочного сахара в молочную кислоту. Молочнокислое брожение имеет широчайшее применение в молочнокислой, масляной и сыроваренной промышленности, в изготовлении силоса (высокопитательного корма для скота), в квашении овощей.
Молочная кислота применяется в различных отраслях промышленности. Без неё нельзя обойтись в кожевенном деле для удаления извести с кож. Она широко используется и в ситцепечатном и красильном деле. В медицине она является средством прижигания и входит в состав некоторых лекарств. В пищевой промышленности она используется также в производстве конфет и безалкогольных напитков.
Молочнокислые бактерии весьма распространены в природе. Они находятся на поверхности сосков вымени и в шерсти коров, и в воздухе, и в сене, поэтому уже и в свежевыдоенном молоке всегда имеется много молочнокислых бактерий. Молоко вообще является особенно благоприятной средой для развития не только молочнокислых, но и многих других бактерий. Там всегда можно найти гнилостные бактерии, кишечные палочки, плесени, дрожжи.
Если в молоко попадут болезнетворные бактерии, палочки туберкулёза, брюшного тифа, холеры, бруцеллёза, то они там прекрасно развиваются. Поэтому некипячёное молоко может служить путём передачи заразы. Но при хранении молока в тепле при температурах выше 15° в нём обычно раньше других размножаются молочнокислые бактерии. Выделяя молочную кислоту, которая является ядом для гнилостных и многих других бактерий, они тем самым подавляют развитие вредных микробов. В результате превращения молочного сахара в молочную кислоту из молока выпадает в виде сгустка его белковая часть – казеин. Молоко свёртывается, превращается в простоквашу. Помимо истинных молочнокислых бактерий, многие другие микробы, например, кишечная палочка, также могут разлагать сахар до кислоты. Поэтому молоко свёртывается после размножения в нём кишечной палочки. Но при свёртывании молока кишечной палочкой сахар разлагается на кислоту и углекислый газ, который, выделяясь на поверхность, делает сгусток ноздреватым. Молочнокислые же бактерии целиком превращают молочный сахар в молочную кислоту без выделения газа. Поэтому хорошая простокваша, получившаяся под воздействием истинных молочнокислых бактерий, отличается гладкой поверхностью сгустка. Для получения хорошей простокваши обычно пользуются специальными заквасками – чистыми культурами молочнокислых бактерий. Простокваша, действительно, является весьма ценным питательным продуктом и часто применяется как диетическое блюдо при некоторых заболеваниях. Еще более ценным лечебным продуктом является ацидофилин. Это та же простокваша, получившаяся после молочнокислого брожения на чистой культуре так называемой ацидофильной молочнокислой палочки. Ацидофильные палочки в природных условиях живут не в молоке, а в кишечнике детей и животных, откуда они были выделены в чистых культурах, употребляемых для приготовления закваски. Ацидофилин, или ацидофильное молоко, применяется для лечения и предупреждения некоторых кишечных заболеваний человека и животных. В последние годы выяснилось, что его применение особенно успешно при лечении кишечных заболеваний молодых животных: телят, поросят, цыплят.
Опыты, проведённые еще в 1939 г. в колхозах Московской области, показали, что вскармливание молодняка ацидофильным молоком снизило заболеваемость в 2–2,5 раза и увеличило вес животных.
Большой известностью пользуются также такие кисломолочные продукты, как кефир и кумыс. Но в изготовлении этих продуктов, кроме молочнокислых бактерий, принимают участие также и дрожжевые грибки. Кефир и кумыс – это продукты молочнокислого и спиртового брожения.
Кефир имеет древнее происхождение. Родиной его является Северный Кавказ. Это очень приятный на вкус, освежающий диетический напиток, содержащий около 0,7 процента молочной кислоты и столько же спирта. Приготовляется он путём заквашивания коровьего молока особыми кефирными зёрнами, которые местные горцы раньше называли «зёрна пророка» или «пшено пророка» и считали, что зёрна эти посланы им богом в подарок.
Кефирные зёрна были впервые описаны известным кавказским врачом Джогиным в 1866 г. Они состоят из цепочек молочнокислых бактерий, в складках которых залегают группы дрожжевых клеток. В зависимости от длительности брожения молока различают слабый – молодой однодневный кефир, средний – двухдневный и крепкий – трёхдневный.
Кумыс приготовляется из кобыльего молока. Он также обладает целебными свойствами и применяется при лечении туберкулёза и общего истощения. В кумысе содержится до 2 процентов спирта и 1 процент молочной кислоты. Кумыс также известен с глубокой древности, и, судя по описаниям Геродота, способ его изготовления и целебные свойства были известны еще древним скифам.
Приготовление таких кислоспиртовых напитков, как мацони, айран, крымская буза, хлебный квас, также основано на совместной деятельности дрожжей и молочнокислых бактерий. Этот тесный симбиоз между двумя организмами, конечно, не случаен. Объясняется он следующим: дрожжи частично питаются молочной кислотой, выделяемой бактериями. Тем самым они снижают её концентрацию, что благоприятно влияет на жизнедеятельность молочнокислых бактерий, которые не переносят высокого содержания кислоты. Кроме того, дрожжи обогащают питательную жидкость витаминами, что также благоприятствует развитию бактерий.
В домашнем быту мы встречаемся еще с одним случаем использования сожительства – симбиоза двух микробов для приготовления приятного слабокислого напитка – чайного кваса. Чайный квас получается после заражения сладкого чая культурой так называемого чайного или японского гриба, разрастающегося в виде толстой, морщинистой, слизистой плёнки на поверхности жидкости. Этот псевдогрибок состоит из уксуснокислых бактерий и дрожжеподобных организмов. Дрожжи вырабатывают из сахара спирт, а уксуснокислые бактерии окисляют часть его в уксус. В результате получается очень приятный на вкус, освежающий слабоспиртовой и кисловатый напиток.
Молочнокислые бактерии участвуют и в изготовлении сливочного масла и сыров. При изготовлении масла они способствуют отделению жира от молока и, вырабатывая молочную кислоту, предохраняют масло от дальнейшей порчи. Специфический аромат хорошего масла также зависит от деятельности определённой группы микробов, выделяющих ароматические продукты. Эти микробы были названы академиком В. Л. Омелянским душистыми микробами. Душистые микробы играют большую роль в образовании соответствующего букета вина, специфического запаха сыра, молока. Применяя соответствующую культуру микроба, можно даже придать винный букет простому пивному суслу (ячменное вино). Академик В. Л. Омелянский получал чистые разводки микробов, обладавших запахом дыни, земляники, ананаса.
Изготовление различных сыров основано на деятельности бактерий. В отличие от кисломолочных продуктов процесс производства сыров занимает часто очень длительное время (иногда до двух-четырёх лет), но зато получаемый продукт может долго сохраняться без порчи. Поэтому приготовление сыров является наилучшим способом сохранения наиболее важной для питания белковой части молока. Производство простейших сыров типа брынзы известно очень давно. Гомер в «Одиссее» рассказывает, что циклоп Полифем, прибавляя к молоку сок кислых трав, получал из него сыр.
Как же получается брынза? Под влиянием молочной кислоты, образуемой молочно-кислыми бактериями, и сычуга, добавляемого к молоку, в нём образуется сгусток белковой части молока – казеина, который после уплотнения превращается в творог. Посоленный творог прессуется и получается сыр – брынза.
Более сложно готовятся сыры голландские, швейцарские и другие. После прессования и посолки сырная масса переносится в подвалы с температурой около 13° для дальнейшего, часто длительного созревания. Здесь молочнокислые бактерии продолжают свою работу по переработке остатков молочного сахара в кислоту. После этого на помощь приходит другая группа бактерий – так называемые пропионовокислые бактерии, которые особым ферментом превращают молочную кислоту в пропионовую и уксусную кислоты и углекислый газ. Этими кислотами и определяется острый вкус выдержанного сыра. Углекислый газ, постепенно выделяясь через сырную массу, образует в ней пустоты – глазки.
При созревании сыров известную роль играют и гнилостные микробы, которые разлагают белки молока, а выделяющиеся продукты разложения придают сыру соответствующий запах. В созревании сыра рокфор основную роль играют плесени, которые можно видеть на ломте сыра.
Молочнокислые бактерии широко применяются и при квашении овощей и фруктов – капусты, помидоров, огурцов, мочёных яблок. На свежих овощах находятся миллионы различных бактерий, преимущественно гнилостных, всегда имеются и молочнокислые бактерии. Поэтому при квашении важно создать такие условия, чтобы сахар овощей использовался именно молочнокислыми бактериями. Гнилостные микробы наиболее активно развивают свою деятельность при широком доступе кислорода воздуха, молочнокислые, являясь анаэробами, наоборот, производят молочнокислое брожение при отсутствии кислорода. Поэтому квашение овощей производят в непроницаемых для воздуха сосудах – бочках, кадках, ушатах, банках. Овощи туго уплотняются для удаления воздуха, и сосуд покрывается кружком с грузом. Таким образом создаются бескислородные условия, в которых молочнокислые бактерии развиваются лучше, чем гнилостные. Начинается молочнокислое брожение. Выделяющаяся молочная кислота предохраняет овощи от развития гнилостных микробов. Поэтому хорошо сквашенные овощи могут длительное время храниться, не портясь и не загнивая.
В колхозах и совхозах широко применяется еще один вид молочнокислого брожения – это так называемое силосование кормов для скота. В Советском Союзе ежегодно изготовляются миллионы тонн силоса. Силос является прекрасным, сочным, богатым витаминами и питательными веществами кормом. Ценность силоса состоит также в том, что для его изготовления применяется не только трава, но и такие отходы овощеводства, как картофельная ботва, стебли подсолнечника, солома и т. д., которые в свежем виде неохотно поедаются скотом. Обрезки капусты, ботва свёклы, болотные травы также идут на изготовление силоса.
Для силосования кормов необходимо плотно уложить в ямы или в силосные башни влажные измельчённые растения. Так же, как и при квашении, здесь важно, чтобы в силосе шло не гниение, а молочнокислое брожение. Если растительная масса уложена правильно, хорошо уплотнена и доступ воздуха устранён, то молочнокислые бактерии размножаются, вытесняют гнилостных микробов, а образующаяся молочная кислота является консервирующим средством, позволяющим сохранять силос в течение всей зимы.
Всесоюзный институт сельскохозяйственной микробиологии выпускает теперь специальную закваску из культур молочнокислых бактерий, приспособленных к силосованию кормов. Применение этой закваски ускоряет созревание силоса до 10 дней вместо 20–25. Улучшаются и вкусовые качества силоса – он охотно поедается даже лошадьми, которые очень разборчивы в пище. Главное же – гораздо быстрее накапливается необходимая для консервирования концентрация молочной кислоты.
8. Микробы вырабатывают лекарства
Есть в природе места, особенно изобилующие микробами. Чернозёмная почва, навозные кучи, кишечник млекопитающих животных и человека постоянно содержат миллиарды разнообразных бактерий, актиномицетов и простейших.
Как бы заглянуть глазом в эту невидимую жизнь? Как бы рассмотреть, что делают там микробы в их естественной обстановке, а не в искусственно выращенной лабораторной культуре?
Советский микробиолог, академик Н. Г. Холодный в 1930 г. предложил оригинальный и чрезвычайно простой метод, позволяющий увидеть под микроскопом всё разнообразие и богатство микробов почвы в естественной обстановке. Острым ножом он производил вертикальный разрез в почве и вставлял в это отверстие небольшое четырёхугольное стерилизованное стекло, а потом его закапывал. Закопанное стекло скоро покрывалось почвенным раствором, к нему прилипали мелкие почвенные частички, среди которых поселялись и размножались различные микроорганизмы, обитающие в почве. Затем стекло извлекалось, высушивалось и после соответствующей обработки рассматривалось под микроскопом. Приставшие к стеклу почвенные частички и микробы сохранялись в их естественном расположении, и таким образом можно было наблюдать отдельные «кадры» из грандиозного фильма о жизни микробов в почве. В разных полях зрения микроскопа можно было найти кокки, отдельные палочки и споры и целые скопления микробов.
Видно было, что отмирающие нити грибов становятся добычей бактерий, разлагающих их. Среди скоплений бактерий были видны охотящиеся за ними амёбы, тело которых было переполнено остатками бактерий и грибов.
В 1936 г. академик Холодный непосредственно наблюдал под микроскопом за жизнедеятельностью почвенных микробов в чрезвычайно близкой к естественным условиям обстановке. Он насыпал мельчайшие частички почвенной пыли на влажную поверхность тоненького покровного стёклышка, которое накладывал на другое стекло с углублением в центре. Если края замазать вазелином, то получается «влажная камера», не высыхающая неделями. Наблюдая такой препарат под микроскопом, академик Холодный видел, что уже через 5–6 дней вокруг почвенных пылинок развивались густые микробные колонии, появлялись скопления бактерий, тянулись нити грибов и актиномицетов, медленно ползали амёбы, изредка пробегали инфузории и флагеллаты.
Новые методы, предложенные академиком Холодным, имели огромное значение для дальнейшего развития почвенной микробиологии.
Естественно, что в таких тесных сообществах микробы вступают в различные взаимоотношения друг с другом. Тут наблюдаются и случаи взаимопомощи – симбиоза, примеры которого мы уже видели в предыдущих главах, тут широко развиты и явления ожесточённой борьбы между представителями разных микробных видов, так называемый антагонизм микробов. Борьба эта проявляется не только в прямом пожирании амёбами и инфузориями бактерий, но и в выделении одними микробами химических соединений, вредно действующих на других микробов и подавляющих их жизнедеятельность.
Антагонизм и его следствие – победа в борьбе за существование – достигается у микробов разными путями.
С некоторыми случаями антагонизма мы сталкивались в предыдущей главе, изучая процессы квашения и силосования. Молочнокислые микробы угнетали развитие гнилостных микробов, образуя молочную кислоту. Точно так же винные дрожжи, выделяя спирт, а уксуснокислые бактерии выделяя уксусную кислоту, предохраняют жидкость, в которой они живут, от развития большинства других микробов, для которых спирт и уксус являются ядом. Во всех этих случаях нормальные, основные продукты микробного обмена играют роль антагонистически действующих веществ. В высоких концентрациях они тормозят и развитие тех микробов, которые образовали эти вещества.
Но существуют микробы, у которых антагонистически действующие вещества являются не основными, а побочными продуктами обмена. Такие вещества, совершенно не влияя на выделившего их микроба, часто обладают чрезвычайно сильным угнетающим действием на развитие микробов других видов. Замечательно, что это угнетающее действие ярко проявляется часто не на всех, а только на некоторых микробах. Таким образом, эти вещества обладают избирательностью, специфичностью своего действия. Невольно складывается впечатление, что такие вещества вырабатывались в процессе эволюции некоторых микробов в качестве своеобразных орудий защиты и нападения против других микробов, с которыми они постоянно сталкивались в своей жизнедеятельности, почему вещества эти и называются антибиотиками.
Особенно много известно антибиотиков, которые вырабатываются почвенными микробами. Это вполне понятно, так как именно в почве микробы образуют отдельные скопления, в которых могут действовать антибиотики. Возникновение зоны антибиотического вещества вокруг скопления микробов может служить им надёжной защитой. Вряд ли у водных микробов антибиотики имели бы значение, так как в этих условиях вещество распределялось бы во всей массе воды, а в почве оно сосредоточивается гнёздно.
Систематические многолетние исследования члена-корреспондента Академии Наук СССР Н. А. Красильникова с сотрудниками убедительно показали, что в почвах очень широко распространены различные грибы и актиномицеты, вырабатывающие антибиотики, губительно действующие на многие бактерии. Несомненно, эти антибиотики создают для грибов благоприятные условия борьбы с почвенными бактериями, для которых, как это мы уже видели на живых препаратах академика Н. Г. Холодного, грибы являются лакомой пищей.
Многие бактерии также способны вырабатывать антибиотики. Вещества, выделяемые палочкой синего гноя или уже знакомой нам палочкой чудесной крови, действуют угнетающе не только на некоторых других бактерий, но и на почвенных амёб и инфузорий, охотящихся за бактериями.
Член-корреспондент Академии Наук СССР проф. А. А. Имшенецкий, впервые установивший этот интересный факт, совершенно правильно считает, что возникновение способности вырабатывать антибиотики предохраняет бактерии от пожирания простейшими и, таким образом, является средством их самозащиты.
А нельзя ли употребить это замечательное свойство микробов на пользу человека? Нельзя ли лечить заболевание человека, вызванное развитием и размножением микробов, при помощи безвредного для него микроба-антагониста, который угнетал бы развитие болезнетворного вида и тем устранял бы причину болезненного состояния человека?
Эти мысли витали в умах многих микробиологов еще во второй половине XIX столетия. Русский врач А. Д. Павловский (1887 г.) пытался лечить сибирскую язву путём введения в организм животных бактерий, угнетающих развитие возбудителей этого заболевания.
Но только знаменитому русскому учёному И. И. Мечникову обязано человечество широкой и всеобъемлющей постановкой проблемы практического использования антагонизма микробов для лечения микробных заболеваний (рис. 39).
Рис. 39.И. И. Мечников
Классик материалистической биологии и медицины, воспитанный на прогрессивных идеях философии русских революционеров-демократов – Герцена, Белинского, Чернышевского, Добролюбова, Писарева, Мечников являлся учёным, исследования которого в области медицинской микробиологии непосредственно вытекали из общебиологических проблем.
Мечников с энтузиазмом воспринял прогрессивное ядро эволюционного учения Ч. Дарвина (рис. 40). Всю свою жизнь он был убеждённым дарвинистом и усиленно пропагандировал это учение в России.
Рис. 40.Ч. Дарвин
Дарвин положил конец воззрению на организмы как на богом созданные и неизменяемые. Из учения Дарвина следовало, что все существующие виды животных и растений развиваются и изменяются в процессе развития. Материалистическим ядром дарвиновского учения являются три принципа: изменчивость, наследственность и отбор. Своей теорией Дарвин дал рациональное объяснение целесообразного устройства растительных и животных организмов. Изменчивость, наследственность и естественный отбор дают материалистическое объяснение целесообразности устройства организмов. Своим учением Дарвин нанёс сильный удар ложным, религиозным взглядам.
Бесспорно передовое и материалистическое учение Дарвина имело и ошибочные положения. Они были вскрыты классиками марксизма-ленинизма. Так, Дарвин перенёс в мир растений и животных черты, характерные для капиталистического общества. Он распространил на мир растений и животных положение английского философа Гоббса о войне всех против всех, буржуазное экономическое учение о конкуренции. Основным фактором эволюции Дарвин считал не приспособляемость и изменчивость, а борьбу за существование между организмами. Дарвин некритически воспринял реакционное, человеконенавистническое «учение» английского попа Мальтуса.
Как известно, Мальтус проповедовал антинаучную теорию, согласно которой человечество якобы размножается гораздо быстрее, чем растут средства существования. Жесточайшая борьба за существование, конкуренция, столь развитая в капиталистическом обществе и приводящая к обнищанию народных масс, является по Мальтусу не порождением капиталистического строя, а законом развития человеческого общества, следствием перенаселённости.
Дарвин считал, что основным законом природы является наличие борьбы между разными видами. Наряду с этим он высказывал мысль в соответствии с «теорией» Мальтуса, что еще более жестокая борьба за существование происходит между особями одного и того же вида животных или растений, возникающая из-за перенаселённости.
Вздорность, антинаучность и реакционность мальтусовых измышлений и связанных с ними ошибок Дарвина были убедительно вскрыты Марксом, Энгельсом, Лениным и Сталиным. Академик Т. Д. Лысенко своими блестящими опытами доказал отсутствие внутривидовой борьбы.
Еще в 1876 г. И. И. Мечников, критически разобрав ошибочные положения Дарвина, в своей прекрасной работе «Очерк вопроса о происхождении видов» совершенно правильно указал, что не внутривидовая борьба, а «взаимная борьба многих разнородных форм» имеет решающее значение для видообразования и эволюции. «В действительности оказывается, – писал Мечников, – что усиленная плодовитость далеко не имеет столь важного значения в возбуждении борьбы, как это было предположено Дарвином, что в этом отношении несравненно большую роль играет конкуренция и борьба разнородных форм».
Мечникову удалось бесспорно доказать, что в пробирке некоторые микробы, посеянные вместе с холерным вибрионом – возбудителем азиатской холеры, содействуют его развитию, а другие микробы угнетают его. Если это так, то, может быть, можно подобрать соответствующих микробов, которые будут подавлять жизнедеятельность болезнетворных возбудителей и в организме человека и животных? К сожалению, многочисленные и утомительные опыты, в которых Мечников пытался защитить лабораторных животных от заболевания холерой при помощи других микробов, не дали достаточно определённых результатов.
Зато полный успех был достигнут в опытах с молочнокислыми микробами, которые успешно боролись в организме человека и животных с вредными микробами кишечного гниения. Глубокая теоретическая и практическая разработка этого вопроса И. И. Мечниковым явилась первым в истории науки случаем успешного применения микробов-антагонистов для лечения и предупреждения заболеваний, вызванных деятельностью вредных микробов, и положила начало развитию новой плодотворной отрасли микробиологии – учению об антибиотиках.
К практическому применению деятельности молочнокислых бактерий Мечников подошёл на основании своих работ о причинах старения человеческого организма. По его мнению, одним из важнейших факторов, ускоряющих старение, являлось отравление человеческого организма вредными продуктами, выделяемыми гнилостными микробами. Гнилостные микробы массами заселяют толстый кишечник млекопитающих.
Развитие гнилостных микробов подавляется молочной кислотой, образуемой молочнокислыми бактериями. Особенно пригодной для этого Мечников считал молочнокислую бактерию, так называемую болгарскую палочку, применявшуюся при изготовлении болгарской простокваши – ягурта. Мечников и предложил употреблять для лечения хронических кишечных заболеваний простоквашу. Знаменитая мечниковская простокваша, или лактобациллин, нашла широкое распространение в профилактике и лечении кишечных расстройств.
Впоследствии оказалось, что болгарская палочка не приживается в кишечнике человека. В 1905 г. по почину русского детского врача А. А. Гартье она была заменена другой молочнокислой бактерией – ацидофильной палочкой, о которой уже шла речь выше. Ацидофилин очень хорошо помогает при профилактике и лечении хронических запоров, хронических колитов, пищевых отравлений. С 1941 г. ацидофильная палочка применяется по предложению советского учёного Хлебниковой также в виде молочной ацидофильной пасты, которая содержит в 20–30 раз больше бактерий, чем ацидофильное молоко.
В Советском Союзе пасту с успехом применяли во время Отечественной войны при лечении гнойных ран, накладывая её на поверхность раны. После такого лечения быстро исчезали многие гноеродные микробы.
Работы Мечникова и его школы вызвали огромный интерес к проблеме практического использования антагонизма микробов.
Много в этой области работали и старейший советский микробиолог почётный академик Н. Ф. Гамалея и одесский врач И. Г. Шиллер, который подметил интересное явление, названное им «насильственный антагонизм». Явление это заключалось в том, что в условиях голодания микробы, обычно не обладавшие антагонистическими свойствами, начинали выделять вещества, растворяющие других микробов, и питались продуктами растворения. Заставляя голодать безвредную для человека картофельную бациллу, Шиллер лечил гнойничковые заболевания кожи (стафилодермию).
Советский микробиолог Л. Г. Перетц много лет практически разрабатывает проблему антагонизма между нормально обитающими в кишечнике человека кишечными палочками и болезнетворными бактериями – возбудителями кишечных заболеваний (например, дизентерии). Предложенный Л. Г. Перетцом живой препарат колибактерин состоит из активной, антагонистически полноценной разводки кишечной палочки.
А нельзя ли выделить из микроба в химически чистом виде это антибиотическое вещество? Нельзя ли превратить живое лекарство, не всегда одинаковое по своим свойствам, в точно дозируемый, стойкий, выдерживающий хранение порошок, который в любой момент можно вынуть из аптечного шкафа и предложить больному?
Этого удалось достичь. Наблюдая, как в почве любое органическое вещество в конце концов разлагается микробами, учёные предположили, что та же участь постигнет в этих условиях и живые клетки болезнетворных микробов. Смесь различных проб земли выдерживали в деревянном ящике до тех пор, пока находившиеся в земле почвенные микробы использовали все подходящие для них запасы и стали голодать. Тогда периодически поливали землю культурой живых болезнетворных гноеродных бактерий, так называемых стафилококков. Если в почве, находившейся в ящике, присутствовали некоторые микробы, способные разрушать клетки болезнетворных стафилококков и питаться за их счёт, то эти микробы должны усиленно размножаться, всё больше приспособляясь к питанию живым стафилококком. Учёные поливали землю стафилококковой разводкой более года и, действительно, в конце концов выделили отсюда культуру короткой палочки, которая обладала удивительным свойством разрушать некоторых болезнетворных микробов. Прибавляя эту палочку к болезнетворным культурам стафилококков, стрептококков, пневмококков, наблюдали, что болезнетворные микробы погибают.
Разрушающее болезнетворных бактерий вещество удалось выделить из культур микробов-антагонистов и получить в чистом, концентрированном состоянии в виде белого кристаллического порошка. Вещество это было названо тиротрицином. Тиротрицин оказался эффективным лекарством при лечении длительно незаживающих гнойных ран. Такие раны часто излечивались тиротрицином в течение нескольких дней. А главное – тиротрицин не оказывал никакого вреда на ткани человека, не убивал фагоцитов – белых кровяных телец, помогающих организму в борьбе с инфекцией, и действовал только на гноеродных стафилококков и стрептококков. Вот эта избирательность, специфичность действия некоторых антибиотиков является их ценнейшим свойством, превращающим их в безвредное лекарство строго направленного действия.
Уже в 1942 г. советские учёные Г. Ф. Гаузе и М. Г. Бражникова вырастили из огородных почв Подмосковья новый вид бактерий, из которого удалось извлечь новый кристаллический антибиотик – советский грамицидин, или грамицидин С. Грамицидин С значительно превосходил тиротрицин по силе и «спектру» своего действия. Ничтожные дозы этого препарата (сотые миллиграмма) убивали стрептококков, стафилококков и пневмококков.
Большую пользу принёс советский грамицидин во время Отечественной войны с фашистской Германией. Обширные, длительно тянувшиеся нагноения, возникавшие после ожогов, быстро излечивались этим лекарством. Лечение грамицидином гнойных заболеваний суставов, костей, органов грудной и брюшной полости также давало прекрасные результаты.
Эти успехи в области получения новых химически чистых антибиотических препаратов микробного происхождения открыли новую эру в медицине. Многие микробиологи активно взялись за разработку этой увлекательной проблемы. Десятки лабораторий в СССР и зарубежных странах принялись выделять из разнообразных почвенных микробов антибиотические препараты и испытывать их лечебное действие. За последние годы описаны сотни различных антибиотиков, но пока лишь единичные из них оказались пригодными для лечебных целей. Остальные, будучи способными убивать болезнетворных микробов в пробирке, или не проявляли подобного действия в организме человека, или оказывались ядовитыми также и для самого больного.