355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Смородинцев » Мир микробов » Текст книги (страница 6)
Мир микробов
  • Текст добавлен: 8 октября 2016, 23:38

Текст книги "Мир микробов"


Автор книги: Анатолий Смородинцев


Соавторы: Александр Кривиский
сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

6. Микробы и сельское хозяйство

Каково общее значение микробов на нашей планете? Мы видели, что многие микробы приносят человечеству огромный вред, вызывают опустошительные эпидемии, болезни домашних животных, полезных растений, портят пищевые продукты. Может быть, имело бы смысл направить усилия человека на уничтожение всех микробов на земле? Нет, это было бы весьма неправильным. Среди микробов известны многочисленные виды, приносящие человеку большую пользу. Микробы вошли настолько глубоко в многочисленные связи со всем остальным миром живых существ, что жизнь человека, животных и растений оказалась бы совершенно невозможной без участия микробов.

Одной из важнейших функций микробов является разложение органических остатков погибших животных и растений. Разлагая сложные азотистые и углеродистые соединения мёртвого тела, невидимые могильщики превращают их в простейшие соединения, легко усваиваемые зелёными растениями, и тем самым обеспечивают вечный круговорот веществ в природе.

Трупы животных в основном состоят из белковых соединений. Работу по разложению белков выполняют так называемые гнилостные микробы, к которым, кроме бактерий, принадлежат также актиномицеты и некоторые грибы. Гнилостные микробы разлагают или расщепляют белки до простейших соединений – аммиака, воды и углекислоты. При этом обычно выделяются некоторые дурно пахнущие продукты: сероводород, индол, скатол. Образование дурно пахнущих продуктов свидетельствует о далеко зашедшем процессе гниения. Поэтому-то обычно мы определяем испортившийся, загнивший пищевой продукт по его противному запаху. Гнилостные микробы очень широко распространены в природе. Поэтому, где бы ни находились пищевые продукты или трупы человека и животных, они везде подвергаются разложению – гниению, если этому благоприятствуют условия температуры и влажности. Но если температура очень низка, то процессы гниения не развиваются. В вечно мёрзлой почве Крайнего Севера Сибири находили совершенно не разложившиеся трупы мамонтов, пролежавшие десятки тысяч лет. В условиях низких температур и отсутствия влаги могут тысячелетиями сохраняться и трупы людей. Нередко в сухих и холодных склепах находят трупы людей, захороненных в давние времена. Вследствие быстрой потери влаги трупы мумифицировались и не подвергались гниению.

Предохраняющее действие низких температур и высушивания применяется и в практической жизни для сохранения пищевых продуктов. Всем известно, что высушенные рыба, мясо, грибы, фрукты могут годами сохраняться, не подвергаясь гниению.

Бывают случаи, что работа гнилостных микробов используется и в технических производствах: при выработке кож шкуры животных намеренно подвергаются гниению (швицеванию). С обработанной таким образом шкуры легко сходит шерсть. Дубление и мягчение кож также связано с работой гнилостных бактерий.

Кроме трупов животных, на поверхности земли каждый год откладывается огромное количество растительных остатков: солома, опавшие листья, стебли, сломанные ветви и стволы деревьев, мёртвые корни. Основную массу растительных остатков составляют уже не белковые соединения, а целлюлоза – клетчатка, представляющая собой углеродистое соединение. Клетчатка входит в состав толстых оболочек растительных клеток. Отдельные клетки прочно соединены между собой в трудно расщепляемые тяжи особым межклеточным веществом. Это межклеточное вещество состоит из слизистой массы, так называемого пектина.

И эти остатки сравнительно быстро подвергаются разложению, но работу эту производят другие группы микробов. Клетчатка разлагается целлюлозоразлагающими бактериями и грибами, а пектиновые вещества разрушаются некоторыми анаэробными и аэробными бактериями.

Разлагающие целлюлозу бактерии были впервые открыты известным советским микробиологом академиком В. Л. Омелянским (рис. 36).


Рис. 36.В. Л. Омелянский

Работами отечественных учёных – Омелянского, Виноградского, Исаченко, Имшенецкого – было установлено, что целлюлозоразлагающие бактерии чрезвычайно широко распространены в природе. При полном разложении клетчатка превращается в простейшие соединения – метан, водород, углекислоту. Но в почве разложение растительных остатков идёт медленно, причём образуются продукты неполного разложения, так называемый перегной, или гумус. Перегной играет большую роль в обеспечении плодородия почв. Перегной склеивает почвенные комочки и придаёт им прочность. Поэтому почва приобретает мелкокомковатую структуру, устойчивую против размывания водой. В такой почве задерживается влага, и растение легко высасывает из неё воду и растворённую в ней пищу.

Таким образом, в процессе разложения растительных остатков почва улучшает свои качества, приобретает структуру, повышающую её плодородие, а разлагающийся дальше перегной снабжает растение минеральной пищей.

Бактерии, разлагающие межклеточное вещество – пектин, имеют, кроме того, огромное значение в процессе технической обработки льняного волокна, из которого готовится льняная пряжа.

Можно смело сказать, что возможности изготовлять льняные ткани мы целиком обязаны в наше время деятельности этих полезных бактерий. В стебле льна льняные волокна склеены пектиновым веществом. Чтобы освободить волокна от стебля и сделать их пригодными для пряжи, производят так называемую мочку льна: льняные стебли закладывают в ямы, наполненные водой, – мочила. Находившиеся на поверхности стеблей бактерии через устьица попадают вместе с током воды внутрь стебля, усиленно размножаются и производят свою разрушительную, но полезную для человека работу по разложению пектина. После окончания процесса лубяные волокна льна легко отделяются от костры, высушиваются и становятся пригодными для изготовления льняной пряжи. Иногда в обычных условиях мочки льна в мочилах, где, кроме пектиноразлагающих бактерий, находится много других разнообразных, в том числе и вредных микробов, процесс может развиваться неправильно, и волокно получается плохого качества. Чтобы избежать этого, мочка льна теперь часто производится в заводских условиях, в специальных цементных баках, которые загружаются хорошо отсортированным стеблем. В баки добавляется лабораторная разводка микробов, особенно активно разлагающих пектин. Такие бактериальные закваски из чистых культур пектиноразлагающих бактерий можно применять и в колхозных мочилах. Мочка льна на чистых культурах бактерий значительно ускоряет процесс, повышает выход льняного волокна и улучшает его качество.

Мы видим таким образом, что микробы, разлагающие животные и растительные остатки, производят чрезвычайно полезную работу, необходимую для жизни растений. Разлагая сложные соединения, они превращают их в простейшие минеральные вещества, легко усваиваемые зелёными растениями, и тем самым возвращают природе запасы углерода и азота, затраченные на формирование живой материи.

Полезная деятельность микробов не ограничивается работой гнилостных, целлюлозо– и пектиноразлагающих бактерий. Как мы уже говорили, при разложении белков образуется аммиак, представляющий собой простейшее соединение азота и водорода. Как это доказал академик Д. Н. Прянишников, соли аммиака усваиваются растениями, но еще более пригодным источником питания для растений является селитра – соль азотной кислоты, которая ценится как прекрасный землеудобрительный препарат.

Долгое время человечество не знало, как происходит образование селитры в почве. Еще в середине XVIII века немецкая Академия наук объявила премию за решение этого практически важного вопроса. Но только в 1889 г. была раскрыта тайна происхождения селитры. Мы обязаны этим открытием одному из величайших микробиологов – русскому учёному Сергею Николаевичу Виноградскому (род. в 1856 г.) (рис. 37).


Рис. 37.С. Н. Виноградский

С. Н. Виноградский доказал, что селитра образуется из аммиачных солей под влиянием особой группы бактерий, так называемых нитрифицирующих (от слова «нитрум» – селитра). С. Н. Виноградский, применив разработанную им оригинальную методику, о которой мы говорили в главе 3 этой книги, установил, что в почвах живут мельчайшие бактерии, окисляющие аммиак в азотную кислоту, которая нейтрализуется солями кальция и магния и превращается в селитру. Нитрифицирующие бактерии оказались самыми непритязательными в смысле источников питания микробами: они пользуются для этой цели чисто минеральными соединениями – аммиаком, являющимся источником азота, и углекислотой воздуха, используемой для построения углеродистых соединений.

Нитрифицирующие бактерии образуют в почве огромные количества селитры. Летом в поверхностных слоях черноземной почвы может образоваться более 1500 килограммов селитры на 1 гектар. Селитра эта легко исчезает из почвы вследствие потребления её зелёными растениями, вымывания влагой, а также вследствие деятельности другой группы микробов, так называемых денитрифицирующих бактерий, которые разлагают селитру до свободного азота, нанося этим некоторый вред сельскому хозяйству и снижая плодородие почв.

Микробы помогают растениям черпать необходимые им источники азота не только из аммиака и селитры. Давно было замечено, что бобовые растения – горох, вика, клевер – могут прекрасно развиваться в почвах, в которые не вносились добавочные азотсодержащие удобрения. Больше того, оказалось, что бобовые растения даже обогащают почву азотистыми соединениями. Поэтому после выращивания бобовых на истощённой земле получается высокий урожай и других растений. В чём же причина такого необычного поведения бобовых растений? Еще в XVII веке учёные наблюдали на корнях бобовых растений небольшие желвачки – клубеньки и считали их проявлением заболевания растений. В 1886 г. русский ботаник академик М. С. Воронин доказал, что в клетках клубеньков находится огромное количество мельчайших телец, чрезвычайно похожих на бактерии. В дальнейшем была выделена чистая культура этих телец, действительно оказавшихся бактериями. Бактерии были названы клубеньковыми. Оказалось, что, поселясь в клетках корней бобовых растений, бактерии так действуют на корневую ткань, что клетки корневой ткани начинают усиленно делиться и образуют клубенёк. Но самое главное свойство клубеньковых бактерий – их способность усваивать атмосферный азот и превращать его в вещество своего тела. Промежуточные продукты усвоения азота бактериями используются бобовыми растениями. Поэтому бобовые растения не нуждаются в азотистых удобрениях. Бобовые растения при помощи клубеньковых бактерий накапливают огромные запасы усвояемого азота. По данным академика Д. Н. Прянишникова, клевер, например, накапливает в течение года до 150–160 килограммов азота на 1 гектар, а люцерна – до 300 килограммов на 1 гектар.

Здесь перед нами один из случаев столь распространённых в природе явлений взаимопомощи между двумя организмами – растением и микробом. Растение получает от бактерий азотистые соединения, а бактерии питаются выделениями растений. Эта взаимопомощь настолько тесна, что, по мнению некоторых учёных, клубеньковые бактерии, будучи изолированными от растений в чистую культуру, не в состоянии усваивать атмосферный азот. Для этих опытов был применён следующий весьма оригинальный метод: клубеньковые бактерии выращивались в атмосфере, содержавшей радиоактивный азот. Эти так называемые меченые атомы азота могут быть легко найдены в любой части растений при помощи физических методов, учитывающих радиоактивные элементы. Если меченый азот воздуха усваивается клетками, то он может быть обнаружен в бактериальной культуре. Но в лабораторной культуре клубеньковых бактерий не удалось найти радиоактивного азота. Клубеньковые бактерии в чистой культуре, вне бобового растения, по-видимому, не усваивали атмосферного азота.

Если клубеньковые бактерии помогают бобовым растениям усваивать азот воздуха, то, следовательно, чем лучше и активнее будет развиваться культура бактерий в клубеньках растения, тем выше будет урожай. Отсюда уже давно возникла идея: нельзя ли искусственно заразить бобовые растения наиболее активной культурой клубеньковых бактерий и тем самым повысить урожай таких ценных сельскохозяйственных культур, как горох, бобы, соя, клевер?

Первые такие опыты были поставлены еще в царской России в 1911–1912 гг. Но только при советской власти, в условиях крупного, колхозного и совхозного сельского хозяйства эти опыты могли дать практический эффект. В настоящее время препараты клубеньковых бактерий широко используются в Советском Союзе, как весьма действенное бактериальное удобрение. Этот бактериальный препарат называется нитрагин и представляет собой простерилизованную землю, в которой размножилась культура высокоактивных клубеньковых бактерий. Для каждого вида бобовых растений готовится соответствующая, приспособившаяся к развитию именно в этом виде культура клубеньковых. Перед посевом семян они смешиваются с нитрагином и небольшим количеством воды, тщательно перелопачиваются и немедленно высеваются. Обработка семян нитрагином повышает урожай бобовых растений (гороха, чечевицы, клевера) от 11 до 45 процентов, стоимость же этого способа в десятки раз ниже стоимости азотистых минеральных удобрений.

Но не только клубеньковые бактерии обладают способностью усваивать азот атмосферы и тем самым повышать урожай сельскохозяйственных культур.

В 1893 г. С. Н. Виноградским был открыт анаэробный микроб – клостридий, свободно живущий в почве и усваивающий газообразный азот. В 1901 г. учёные выделили другой микроорганизм, обладающий той же функцией, но развивающийся в присутствии кислорода, – аэробную бактерию азотобактер. Азотобактер строит белки своего тела, пользуясь азотом воздуха, а энергию, необходимую для этого процесса, получает, окисляя углеродистые соединения – сахар, крахмал, спирты. Отмершие клетки азотобактера разлагаются гнилостными микробами, выделяющими при этом аммиак, окисляются нитрифицирующими бактериями до азотной кислоты, а ее соли в виде селитры используются зелёными растениями. Хотя азотобактер фиксирует меньше атмосферного азота, чем клубеньковые бактерии, все же он способен накопить до 30–40 килограммов азота на 1 гектар.

Давно было замечено, что в Крыму табаки дают хороший урожай в течение ряда лет без внесения дополнительных удобрений. Заинтересовавшись причиной этого явления, академик С. Костычев и А. Шелоумова нашли, что на корнях табака прижилось очень много клеток азотобактера, которые снабжают растения азотистыми соединениями. Отсюда и родилась идея повышения урожая некоторых сельскохозяйственных культур путём заражения их корневой системы азотобактером. С 1937 г. по предложению А. Шелоумовой в Советском Союзе в массовом масштабе начато изготовление нового бактериального удобрения – азотобактерина. Выращенная в лаборатории культура азотобактера смешивается с торфом или перегноем и в таком виде запаковывается в ящики и рассылается в колхозы. В день посева семена увлажняются, тщательно перелопачиваются вместе с азотобактерином и высеваются. Азотобактер поселяется на корневой системе растения и значительно повышает урожай сельскохозяйственной культуры. Особенно удачные результаты получились с овощами. Так, урожай томатов увеличивается на 26 процентов, капусты – на 34 процента, огурцов – на 14 процентов. Прибавка урожая картофеля составила 15–20 процентов. Особенно эффективен азотобактерин, если он применяется в свежеприготовленном виде. Поэтому наиболее рационально было бы изготовлять его на месте – в колхозах. Колхозники ряда областей уже освоили приготовление азотобактерина и значительно повышают свои урожаи. Применяя азотобактерин собственного изготовления, в колхозе «Новая жизнь» Горьковской области собрали урожай ранней капусты, обладавшей крупными и тугими вилками, в количестве 360 центнеров на 1 гектар, та же капуста без азотобактерина дала только 220 центнеров.

Кроме азотистых соединений, большую роль в питании растений играют также соединения фосфора. К сожалению, фосфор находится в почве большей частью в виде сложных, не усваиваемых растением соединений. И здесь на помощь растению приходят микробы. Расщепляя эти соединения, бактерии освобождают фосфорную кислоту, которая в виде растворимых солей хорошо усваивается растением. Такие бактерии были получены в виде чистых культур в Советском Союзе. В настоящее время делаются попытки применить эти бактерии в качестве нового бактериального землеудобрительного препарата, называемого фосфоробактерин. Многочисленные опыты показывают, что фосфоробактерин является эффективным средством повышения урожайности зерновых культур.

Мы рассмотрели деятельность микробов в почве. Мы убедились, что микробы имеют огромное значение для сельского хозяйства. Изучение роли микробов в почвах позволяет нам правильно направить их деятельность и поставить их на службу человеку. Вместе с тем перед нами вырисовывается ведущая роль микробов в общем круговороте азотистых соединений в природе.

В этом круговороте можно различить несколько стадий, каждая из которых осуществляется специально приспособленной группой микроорганизмов. Вначале отмершие животные и растения разлагаются гнилостными и некоторыми другими микробами до простейших соединений. Образовавшийся при этом аммиак под влиянием нитрифицирующих микробов превращается в соли азотной кислоты – селитру. Селитра потребляется растениями, но может также разложиться денитрифицирующими бактериями до свободного азота. Но и свободный азот не теряется безвозвратно: клубеньковые и свободно живущие азотфиксирующие бактерии усваивают его и опять-таки превращают в соединения, используемые растениями.

Такого же типа превращение вещества, осуществляемое микроорганизмами, наблюдается и с соединениями, содержащими другие необходимые для жизни растения элементы – фосфор, серу, железо, углерод. Особенно интересны по своему практическому значению превращения углеродистых соединений, на которых основан целый ряд промышленных производств пищевых продуктов. Но об этом – в следующей главе.

7. Микробы в пищевой промышленности

Углерод имеет огромное значение для жизни человека, животных и растений. Простейшее соединение углерода – углекислый газ – с помощью световой энергии усваивается зелёными растениями и превращается в высокопитательные для человека и животных сложные углеводы: сахара, крахмал, клетчатку. В организме эти соединения, являясь важнейшим источником питания и дыхания, разрушаются, причём в качестве конечного продукта распада образуется углекислота, которая снова утилизируется растениями. Этим обеспечивается постоянный круговорот углерода в природе.

Превращение углеродистых соединений происходит не только в организме человека и животных, но и в огромных масштабах совершается микробами. В предыдущей главе мы уже говорили о распаде клетчатки и пектиновых веществ. В этой главе мы рассмотрим превращение других углеродистых соединений, главным образом сахаров. Эти соединения имеют особую питательную ценность и являются составной частью ряда высокополезных пищевых продуктов.

Используя разнообразные превращения сахара, человек с незапамятных времён приготовлял различные продукты. Вино, уксус, хлеб, кисломолочные продукты входили в рацион древнейших народов. Но до развития научной микробиологии не было известно, что все эти продукты получаются в результате деятельности микробов, превращающих сахар в спирт или молочную кислоту, а спирт – в уксус.

Наблюдая за процессом брожения виноградного сока, древние виноделы видели, что по мере превращения сока в вино происходит его просветление, а на дне накапливается осадок. В средние века некоторые учёные считали, что этот осадок является отбросами, экскрементами вина, образующимися при самоочищении «души» вина. Но было замечено, что если маленькую порцию осадка перенести в свежий виноградный сок, то сок очень быстро начинает бродить, теряя при этом сладкий вкус, и накапливает опьяняющее вещество – спирт. Еще Левенгук в 1680 г. разглядел в этом осадке большие (по сравнению с бактериями) округлые клетки. Но только Пастер окончательно доказал, что превращение сахара виноградного сока в спирт осуществляется одноклеточными грибками-дрожжами.

Каким же образом дрожжевая клетка превращает сахар в спирт?

Бактерии, актиномицеты и грибки, в том числе и дрожжи, обладают способностью продуцировать особые вещества, растворённые в клеточном соке и называемые ферментами, или энзимами. Эти вещества обладают свойствами химических катализаторов, т. е. они ускоряют, не входя в состав образующихся продуктов, химические реакции. Именно благодаря наличию в клетке ферментов микробы и производят самую разнообразную работу по превращению различных веществ в природе. Ферменты отличаются огромной активностью и специфичностью своего действия: достаточно весьма малых количеств фермента, чтобы превращение вещества пошло в строго определённом направлении. Поразительна специфичность энзима: из одного и того же вещества, например, сахара, в зависимости от воздействия на него того или другого энзима получаются самые различные соединения. Микробы весьма богаты самыми разнообразными энзимами.

Все превращения азотистых и углеродсодержащих веществ, о которых мы говорили в предыдущей главе, осуществляются при помощи различных энзимов. Существуют энзимы, расщепляющие белки, клетчатку, энзимы, окисляющие различные соединения, и т. д. Точно так же и в дрожжевых клетках имеется бродильный энзим, так называемая зимаза, осуществляющий спиртовое брожение сахара, т. е. распад его на винный спирт и углекислоту. Энзим может быть выделен из клетки в чистом виде. Впервые это было осуществлено русским учёным-женщиной М. М. Манассеиной в 1871 г. Открытие это неправильно приписывается зарубежному учёному Эд. Бухнеру (1896 г.). После растирания с песком Манассеиной удалось получить из дрожжевых клеток зимазу, которая воспроизводила спиртовое брожение вне клетки. Но не следует думать (как это себе представляют многие зарубежные учёные), что микробная клетка является лишь мешком, наполненным энзимами. Работа энзимов в клетке тесно связана со всей клеточной организацией, поэтому в живой клетке все химические реакции идут с поразительной согласованностью и направленностью. В живой клетке энзимы не только разлагают вещества, но и созидают новые. Каждый энзим одновременно является и разрушителем и строителем. А внеклеточное брожение, по образному выражению академика Костычева, можно сравнить с работой разрушенного химического завода, где исчезает стройный порядок последовательности хода процесса.

Поэтому-то, хотя биохимики и научились теперь выделять из клеток отдельные энзимы и даже очищать некоторые из них, живые клетки микробов всё же являются пока лучшими химическими реагентами при производстве некоторых веществ, в том числе и пищевых продуктов.

Роль микробов в изготовлении пищевых продуктов в основном сводится к двум типам брожений сахаристых веществ – к спиртовому брожению и к молочнокислому брожению.

Спиртовое брожение, преимущественно осуществляемое дрожжами, применяется в производстве вина, пива, спирта и в хлебопечении и заключается в анаэробном разложении сахара на спирт и углекислоту.

Изготовление вина известно с глубокой древности. На египетских пирамидах имеются изображения последовательных стадий виноделия. Теперь вино изготовляется по следующей схеме. Отжатый виноградный сок, оставленный при температуре 20–30°, бродит, так как в нём имеется большое количество дрожжевых клеток, попавших с поверхности винограда. При брожении выделяются пузырьки газа углекислоты. Обычно первый этап наиболее бурного брожения заканчивается через три дня, после чего молодое вино почти доверху наливается в бочки и дображивает в подвалах при более низких температурах (5–10°). В процессе дображивания вино частично осветляется вследствие оседания дрожжей, винной кислоты, дубильных и пектиновых веществ. При выдерживании вина в подвалах оно приобретает характерный для каждого сорта букет, т. е. аромат и вкус, связанный с накоплением ароматических веществ. Букет вина зависит и от сорта винограда и от тех химических процессов, которые медленно протекают при его хранении в подвале. Поэтому только более или менее длительное хранение вина в винодельческих подвалах сообщает ему все те свойства, которые характеризуют зрелое, выдержанное вино.

Вина делятся на красные и белые. Красные вина готовятся из виноградного сока, не отделённого от остатков раздавленных ягод. В клетках кожицы ягод находится тёмное красящее вещество, которое и придаёт красный оттенок зрелому вину. Кроме того, вина различают по содержанию в них сахара и спирта. Сухие, или столовые, вина получаются из малосахаристых сортов винограда. В процессе брожения таких вин сахар виноградного сока полностью перебраживается в спирт, количество которого достигает 9–10 процентов. Если применяются высокосахаристые сорта винограда, например, мускатный сорт, то часть сахара остаётся несброженной, и тогда получаются сладкие, или дессертные, вина. Вообще нужно иметь в виду, что дрожжевые грибки не могут дать более 14–15 процентов спирта, так как большая его концентрация уже действует губительно на дрожжевую клетку. Поэтому, если хотят получить вино с большим содержанием спирта (16–18°), то его добавочно спиртуют. Крепкие вина – портвейн, мадера и часть дессертных вин – это спиртованные вина.

Вина, изготовляемые путём самосброда, т. е. на случайно попавших с поверхности ягод дрожжевых грибках, нередко получаются низкого качества. Иногда брожение не доходит до конца, вино легко подвергается болезням, в нём накапливаются некоторые нежелательные продукты. Зависит это от того, что в виноградный сок вместе с винными дрожжами попадают и другие, вредные для вина микробы. Поэтому теперь в хорошо организованных винодельческих совхозах и колхозах применяются в качестве закваски чистые культуры дрожжей, выведенных в лабораториях и отличающихся способностью быстро сбраживать виноградный сок, давать легко оседающий осадок и придавать вину хороший вкус и аромат.

Вино можно изготовлять не только из винограда, но и из различных плодов и ягод, которые также содержат большие количества виноградного сахара – глюкозы. При производстве плодово-ягодных вин применяются специальные расы винных дрожжей, хорошо приспособленные к работе в этих соках, отличающихся большей кислотностью и меньшей сахаристостью. Многие плодово-ягодные вина обладают высокими вкусовыми качествами. Особенным успехом пользуется вино из малины «Мускат севера» и слабое яблочное вино, называемое сидром.

Близким к виноделию является процесс пивоварения. Производство пива также основано на деятельности дрожжей, перебраживающих сахар солода в спирт. Пивные дрожжи несколько отличаются от винных дрожжей и после брожения дают не более 4–5 процентов спирта.

Не обладая ферментом, разлагающим крахмал, дрожжи не могут непосредственно вырабатывать спирт из зёрен ячменя и пшеницы, употребляемых в качестве сырья при производстве пива; зёрна должны быть сначала превращены в солод, что достигается путём их проращивания. При проращивании ферменты, содержащиеся в зерне, осахаривают крахмал и тем самым делают его доступным для дрожжевых грибков.

Из солода приготовляют пивное сусло, которое и сбраживается дрожжами. Качество и вкус пива зависят не только от сбраживаемого сахара, но и от азотистых продуктов распада белков зерна, характера брожения и количества добавляемого хмеля, придающего пиву специфический горький вкус.

Научной разработкой практических вопросов виноделия и пивоварения мы обязаны Л. Пастеру. Многолетние работы учёного по этому вопросу позволили рационально поставить производство вина и пива, научили нас бороться с порчей и болезнями этих продуктов. Пастер доказал, что в большинстве случаев болезни вина и пива вызываются вредными микроорганизмами, и в целях предохранения бутылочного вина от порчи предложил прогревать его при 50–60°. При таком прогревании качества вина не изменяются, а бактерии-вредители погибают. Способ этот, получивший название пастеризации, широко применяется и сейчас для длительного сохранения вина, молока и некоторых других продуктов.

Производство спирта – винокурение, целью которого является получение возможно более чистого винного спирта, основано на сбраживании дрожжами осахаренных зёрен злаков, картофеля, сахарной патоки. Можно получать спирт даже из древесины, проваривая её с бисульфитом. В получающемся бисульфитном щёлоке содержится сахар, который и сбраживается дрожжами.

Существуют микробы, способные разлагать не только сахар, но и крахмал с образованием винного спирта. Это плесневый грибок – яванский мукор. Он сначала осахаривает крахмал, а потом сбраживает его, причём получается до 5 процентов спирта. Таким образом, слабоалкогольный напиток может быть получен и из обыкновенного крахмала. Для получения рисовой водки (сакэ) японцы пользуются смесью плесени, сахарифицирующей крахмал рисовых зёрен, с дрожжами, которые вызывают спиртовое брожение.

Нередко производство спирта объединяется с производством хлебопекарных дрожжей, так как в винокурении и хлебопечении применяется один и тот же вид дрожжей. Хлебопекарные дрожжи, размножаясь в тесте и вызывая спиртовое брожение осахаренного крахмала, выделяют углекислый газ, который и заставляет подыматься тесто. При выпечке хлеба углекислый газ улетучивается и хлеб делается ноздреватым.

Для производства хлебопекарных дрожжей выгодно накопить наибольшую массу, т. е. добиться мощного размножения дрожжей. Это достигается путём пропускания струи воздуха через чан, в котором размножаются дрожжи. Если в жидкости находится много кислорода, то дрожжи размножаются очень быстро, правда, при этом они не образуют спирта и полностью окисляют сахар до углекислоты и воды. После окончания процесса размножения дрожжевая масса осаждается, промывается, прессуется и в таком виде используется.

Белки дрожжей являются сами по себе ценным питательным материалом. Кроме того, в дрожжах накапливается большое количество витаминов. Поэтому дрожжи являются хорошим лечебным средством при некоторых заболеваниях, например фурункулёзе. Некоторые дрожжи, так называемые жировые, кроме того, энергично накапливают жиры.

Поскольку дрожжи могут размножаться за счёт переработки таких малоценных и непитательных веществ, как производные из древесины, быстро накапливая при этом большое количество питательного белка, то они уже давно используются в качестве корма для скота. Используются дрожжи и в чистом виде (кормовые дрожжи), и в смеси с другими кормами сельскохозяйственных животных (сдабривание кормов дрожжами называется дрожжеванием кормов).


    Ваша оценка произведения:

Популярные книги за неделю