355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Куприн » Слово о карте » Текст книги (страница 3)
Слово о карте
  • Текст добавлен: 19 декабря 2017, 23:30

Текст книги "Слово о карте"


Автор книги: Алексей Куприн



сообщить о нарушении

Текущая страница: 3 (всего у книги 10 страниц)

Как искажаются материки на карте

При изображении на плоскости географических объектов, расположенных на сферической поверхности, неизбежны искажения. На картах характер искажений зависит от вида проекции. На одних сильно меняются размеры площадей, но сохраняется равенство углов. Такие проекции называют равноугольными. Другие карты, наоборот, отличаются тем, что сохраняют размеры площадей, но сильно искажают конфигурацию материков. Это так называемые равновеликие проекции. Но многие карты имеют проекции, которые хотя и обладают своими видами искажений, однако каждое из них остается сравнительно малым. Такие проекции называются произвольными.

На рис. 13 приведены карты Северной и Центральной Америки, составленные в знакомых нам цилиндрических проекциях Меркатора, Ламберта и Энрико. Проекция Меркатора (рис. 13, а) равноугольная.

Рис. 13. Карта Северной и Центральной Америки в трех проекциях: а – равноугольной; б – произвольной; в – равновеликой.

На ней сохраняются направления, а следовательно, и конфигурация береговых линий в отдельных ее частях, но сильно искажаются площади по мере удаления от экватора. Площадь Аляски, например, вышла на карте в два раза больше Мексики, Между тем в действительности территория Мексики больше территории Аляски. Проекция Ламберта (рис. 13, в) – равновеликая. Здесь сохраняется соотношение площадей, но в значительной мере искажены углы. В результате конфигурация северных берегов материка настолько изменена, что стала совсем не похожей на действительную. По виду искажений квадратную проекцию (рис. 13, 6) следует отнести к произвольной, так как ей свойственны и угловые и площадные искажения, но в меньшей степени, чем в двух других.

Остановимся более подробно на карте в проекции Меркатора. В квадратной проекции искажения контуров материков особенно заметны потому, что при сохранении единого масштаба вдоль меридианов масштаб по параллелям нарастает и достигает огромных размеров вблизи полюсов. Меркатор решил пропорционально растяжению параллелей между меридианами увеличивать и отрезки самих меридианов. В этом случае, хотя и пришлось поступиться сохранением единого масштаба вдоль меридианов, все же удалось сохранить подобие фигур небольших участков земной поверхности, их действительные, неискаженные очертания. А в подобных фигурах углы остаются соответственно одинаковыми. Понятно, что при переходе к большим фигурам подобие и здесь нарушалось.

Итак, Меркатор дополнительно растянул отрезки меридианов в определенной последовательности: чем ближе к полюсу, тем большее растяжение испытывает отрезок меридиана. У полюсов меридианы становятся бесконечно длинными, и поэтому Меркатор был вынужден срезать карту сверху и снизу, отбросив приполярные области. Кстати очертания их тогда были известны крайне неточно и неполно, и спроса на карты этих территорий, естественно, не было.

Карта Меркатора особенно облегчала решение штурманских задач. Угол, измеренный на ней между направлением меридиана и направлением на конечный пункт, точно соответствует курсу корабля. Корабль вели по компасу, а если углы между меридианом и направлением пути как на карте, так и на поверхности Земли совпадают, значит, штурман может быть уверен в правильности курса. Но будет ли по этому направлению проходить кратчайший путь?

Перед нами карта в проекции Меркатора (рис. 14).

Рис. 14. Локсодромия и ортодромия на карте в проекции Меркатора.

Попытаемся нанести на нее кратчайший путь, например, из Гамбурга в Нью-Йорк. Соединим оба города прямой линией. На первый взгляд можно сказать, что по этой линии, которую называют локсодромией, и будет проходить кратчайший путь. Ведь это прямая линия, а что может быть короче прямого пути. Но это не так: на самом деле кратчайшее расстояние между Гамбургом и Нью-Йорком соответствует длине кривой линии, называемой ортодромией. На шаре это дуга большого круга, на эллипсоиде – более сложная кривая. Расстояние по локсодромии на поверхности земного шара всегда больше расстояния по ортодромии, за исключением направлений по меридиану и экватору, где локсодромия одновременно является и ортодромией. На рисунке показаны локсодромия и ортодромия, соединяющие Гамбург с Нью-Йорком. Как видите, кратчайшее расстояние между этими городами на карте в проекции Меркатора окажется кривой линией – ортодромией. В этом нетрудно убедиться, натянув на глобусе нить между заданными пунктами. Натянутая нить – бесспорный указатель кратчайшего пути. Именно по ортодромической трассе совершили в 1939 г. перелет Москва – Нью-Йорк Герой Советского Союза В. К. Коккинаки и штурман М. Гордиенко.

Впервые прокладку курса по кратчайшему пути разработал в 1731 г. русский ученый, крупнейший исследователь Сибири и Арктики С. Г. Малыгин. Он составил специальную карту, по которой можно нанести ортодромию. Пользуясь каргой Малыгина, корабль вели с помощью компаса кратчайшим путем, но в расчетный курс через определенные интервалы вводили поправки. Малыгин разработал не только карту, но и методику определения поправок в расчетные курсы и составил для этой цели специальные таблицы.

В отличие от проекции Меркатора проекция Ламберта (см. рис. 13, в) сохраняет правильное соотношение площадей материков, морей и др. Ламберт составил также в равновеликой проекции и карты полушарий. По начертанию параллелей и меридианов эта проекция откосится к поперечной азимутальной (рис. 15).

Рис. 15. Карта полушария в равновеликой проекции Ламберта.

Искажения конфигурации материков на карте полушарий в проекции Ламберта значительны. В этом можно убедиться, рассматривая очертания участков земной поверхности протяженностью 10° по широте и 10° по долготе. На глобусе все такие участки, расположенные на одной и той же широте, равны между собой, а на карте их очертания на разных долготах различны. Если у экватора в середине полушария клетка градусной сетки имеет форму квадрата, то к краям карты она сильно вытянута по долготе и сужена по широте. Подобные искажения градусной сетки наблюдаются и на любых других широтах.

Из карты двух полушарий можно составить одну карту мира, которая также имеет свойство равновеликости. Для этого проделаем следующее. На одном из полушарий у пересечения экватора со средним меридианом, имеющим вид прямой линии, подпишем нуль, а вправо и влево от этой точки по экватору дадим оцифровку меридианам через 20° (0, 20, 40, 180°). Получилась картографическая сетка для карты мира. Но если бы мы поместили в этот круг изображения материков с обоих полушарий, то свойство равновеликости было бы нарушено. Чтобы оно сохранилось, нужно из окружности сделать овал, уменьшив вдвое промежутки между параллелями по среднему меридиану. Такую проекцию впервые составил русский ученый-картограф Д. А. Аитов.

Равновеликие проекции часто применяют для составления политической карты мира, так как на ней очень важно показать правильное соотношение площадей различных стран. Политическая карта обычно бывает не в овальной рамке, а в прямоугольной, и в ее углах повторяют изображения одной и той же территории. Такие изображения, вырезанные из северо-западного и северо-восточного углов карты, представлены на рис. 16.

Рис. 16. Изображение Чукотки и Аляски в различных углах карты.

На правой и левой вырезках выделена клетка градусной сетки, ограниченная двумя одноименными меридианами (180 и 160° з. д.) и параллелями (60° с. ш. и Северным полярным кругом). Соответствующие стороны обеих клеток имеют почти одинаковые размеры, и поэтому площади одноименных островов и полуостровов на той и другой вырезке будут равны. Вместе с тем искажения в направлениях очень велики. Если на левой вырезке угол между параллелью и меридианом острый, то на правой вырезке он тупой, и наоборот. Соответственно искажены и углы с любого пункта на однозначные объекты. Все это сказывается на конфигурации полуостровов, островов, рек. Сравните, например, изображения Аляски на правой и левой вырезках из карт. Они настолько непохожи друг на друга, что на первый взгляд их трудно сопоставить. Обратите внимание на остров Святого Лаврентия. На левой вырезке он сплюснут, а на правой – вытянут, и нет никакого подобия между этими двумя изображениями одного и того же острова.

Для большинства карт применяют произвольные проекции, которые не дают резких искажений в очертаниях материков и их площадей. Поэтому в таких проекциях обычно составляют большую часть карт мира.

О масштабах

Читать карту, не зная масштаба, это все равно что читать рассказ, не зная где и когда происходят события. И тем, кто еще не научился им пользоваться, необходимо знать, что чем мельче масштаб, тем более обширное пространство может быть показано на листе карты, но местность на ней изображается с меньшими подробностями, и наоборот, чем крупнее масштаб карты, тем с большей детальностью могут быть показаны на ней элементы ее содержания.

Часто для иллюстрации обзорных статей в газетах и журналах приводятся две или даже три карты разных масштабов. Это дает возможность читателю рассмотреть во всех подробностях небольшую страну или ее часть и в то же время узнать ее местоположение на карте мира. В качестве примера на рис. 17 приводятся три вырезки из карт разных масштабов, на которых расположен город Аден.

Рис. 17. Картографическое изображение в разных масштабах.

Справа дана карта самого крупного масштаба: в 1 см 2 км. На ней показано подробное изображение города, ведущие к нему дороги и даже рельеф местности. Слева внизу показана обзорная карта очень мелкого масштаба: в 1 см 1000 км. Здесь мы можем познакомиться с местоположением Адена относительно частей света, морей и океанов. Слева вверху дана карта, на которой подробно отображено прилегающее побережье на десятки километров, но ее масштаб все же не позволил изобразить местность с такой подробностью, как на правой карте. Здесь мы обозначили масштабный отрезок размером 1 см, но не подписали, чему он соответствует. Попытайтесь сами определить это значение, т. е. узнать масштаб карты.

Для решения задачи измерьте на верхней левой карте ширину и длину Аденского полуострова в миллиметрах и сравните их с соответствующими расстояниями на правой карте. Если вы правильно сделали, то расстояния получатся в пять раз меньше. Значит, и масштаб ее будет в 5 раз мельче правой карты, т. е. в 1 см 10 км.

Масштабы карт обычно выражают отношением единицы к числу, показывающему, во сколько раз все размеры на карте меньше соответствующих размеров в натуре. Вот, например, два масштаба: 1:500 000 и 1:10000000. Сообразите, какой из них крупнее и во сколько раз.

Более крупным считается тот масштаб, в котором одни и те же географические объекты изображаются крупнее. В самом деле, масштаб представляет собой дробь, в числителе которой единица. А из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель. Значит масштаб 1:500 000 крупнее масштаба 1: 10 000 000 в 20 раз.

А если вам встретится такое выражение: «Масштаб карты более 1 км в 1 см», что же это будет за карта? Крупнее или мельче, чем карта масштаба 1:100 000, у которой 1 см точно соответствует 1 км? Оказывается мельче, потому что, чем больше знаменатель, тем мельче масштаб карты.

По численному масштабу очень легко узнать именованный масштаб (число километров, соответствующее 1 см карты). Километр, как известно, содержит 100 000 см. Значит, знаменатель масштаба надо разделить на 100 000, т. е. у знаменателя нужно зачеркнуть последние пять нулей.

В топографии мы привыкли считать масштаб для всего листа карты величиной постоянной. На мелкомасштабной карте, изображающей значительную территорию, масштаб непостоянен. Он бывает различен не только в разных частях карты, но и в различных направлениях в зависимости от проекции.

Необходимость иметь дело с переменным масштабом усложняет пользование картой. Для удобства работы картографы задают так называемый главный масштаб, который соответствует масштабу в каких-либо определенных местах проекции. Такими местами могут быть точки или линии касания поверхностей, на которые проектируется градусная сетка с глобуса на карту. Значит, чтобы определить главный масштаб карты, нужно прежде всего знать, в какой проекции она составлена.

Обратимся к рис. 13. Все три карты, представленные на нем, составлены в цилиндрических проекциях, а для них характерно касание цилиндра по линии экватора. Следовательно, на экваторе и будут главные масштабы для наших карт. Нетрудно догадаться, что в данном случае все карты имеют один и тот же главный масштаб, так как промежутки между двадцатиградусными меридианами везде равны и составляют 3 мм. Можно определить и величину главного масштаба. Известно, что дуга экватора в 10° на земном шаре равна 1113 км. Этому расстоянию соответствует на карте отрезок, равный 0,3 см. Значит, в одном сантиметре карты содержится примерно 3700 км (1113:0,3), и численный масштаб составляет 1:370 000 000.

Кроме главного масштаба каждая карта имеет частные масштабы. Их можно выражать в обычном виде или в долях от главного масштаба, например 0,9, 1,1 и т. п.

На карте в квадратной проекции (см. рис. 13, б) частный масштаб по всем меридианам на всем их протяжении одинаковый и равен главному. На карте в равноугольной проекции (см. рис. 13, а) он постепенно увеличивается от экватора к полюсу, а на карте в равновеликой проекции (см. рис. 13, в), наоборот, уменьшается. Частный масштаб по параллелям на всех трех картах по мере приближения к полюсу резко возрастает, а на самом полюсе им бессмысленно пользоваться, ибо точка, обозначающая полюс, «растянулась» на всю ширину земной поверхности.

Определим частные масштабы для наших карт по 60-й параллели. Чтобы решить такую задачу, нужно знать длины дуг параллелей на разных широтах. Значения их в 5 и 10° (в скобках) приведены в табл. 1.

Таблица 1
Длины дуг параллелей на разных широтах

Частный масштаб по 60-й параллели на всех трех картах будет один и тот же, ибо отрезки параллелей, заключенные между меридианами, равны и соответствуют так же, как и по экватору, 0,3 см. Возьмем из таблицы значение длины дуги параллели в 10° на широте 60° и, разделив ее на 0,3, получим именованный масштаб или, как еще говорят, величину масштаба, равную 1860 км в 1 см (558:0,3). Частный масштаб, выраженный в долях к главному, будет составлять примерно 2,0 (3700:1860).

Таким путем частный масштаб можно определить лишь в том случае, когда он остается постоянным по данному направлению. Если же масштаб изменяется, то у нас получится средняя его величина. Например, на карте в равноугольной проекции (см. рис. 13, а) на каждом бесконечно малом отрезке меридиана будет свой частный масштаб. Понятно, что практически пользоваться им нельзя. Но можно сопоставить отрезки по меридиану между какими-то параллелями. Например, отрезок между 60 и 70-й параллелями в два раза больше, чем у экватора. Значит, на этом отрезке средний масштаб крупнее главного в два раза.

В картографической практике не принят термин «средний масштаб», и на всех картах подписывают только главный масштаб. Для тех, кто пользуется картой, главный масштаб не всегда понятен, так как часто не выражает общей масштабности изображения. Обратимся к рис. 18, на котором показано полушарие в трех различных проекциях: равноугольной (стереографической), равновеликой и произвольной (ортографической).

Рис. 18. Картографическая сетка полушария в трех проекциях: а – равноугольной; б – равновеликой; в – произвольной.

Все три проекции азимутальные экваториальные, так как картографическая сетка во всех случаях перенесена на плоскость, касательную в точке экватора. Эта точка А называется точкой нулевых искажений, и для нее указывают и подписывают на карте главный масштаб. Несмотря на различные размеры полушарий, главный масштаб всех трех проекций получился одинаковым. В этом нетрудно убедиться. Возьмем клетку картографической сетки, расположенную в районе точки А. В первом приближении она имеет форму трапеции, и размеры ее во всех проекциях примерно одинаковы. Измерим основания трапеций, т. е. отрезки экватора, ограниченные ближайшими к точке А меридианами. Они получаются равными 0,6 см. Расстояние по экватору, соответствующее этому отрезку, т. е. дуге в 20°, составляет 2220 км. Значит, масштаб в центральной части каждой проекции, соответствующий примерно главному масштабу, будет равен 1:370000 000 (в 1 см 370 км). Такой масштаб и был бы подписан на всех трех картах, несмотря на разные размеры полушарий. Это удобно картографам, так как главный масштаб математически обоснован и они используют его как основу для расчета и составления проекций. Для нас же более наглядным и практичным был бы средний масштаб по каким-либо линиям или направлениям. В данном случае средний масштаб по экватору для стереографической проекции равен 1:286 000 000, а для ортографической – 1:572 000 000 (в два раза мельче).

На картах обычно дается не только численный, но и линейный масштаб в виде графической шкалы. Понятно, что для карты определенного масштаба строят соответствующую шкалу. Но можно построить и один график для карт разных масштабов.

Проведем две взаимно перпендикулярные линии и отложим по вертикальной оси вверх отрезок ВС, равный 10 см, а по горизонтальной оси влево – отрезок ВА, равный 2,5 см (рис. 19).

Рис. 19. Универсальный масштаб.

Этот последний отрезок будем считать основанием линейного масштаба для карты 1:20 000 000. В этом масштабе он будет соответствовать 500 км. Чтобы найти расстояние СЕ, от которого нужно отложить основание следующего масштаба (1:25 000 000), пользуются соотношением, полученным из подобия треугольников АВС и ADE:

СВ/CE = АВ/DE; CE = CB·DE/AB = 10DE/2,5 = 4DE.

Величина DE – основание линейного масштаба – для карты 1:25 000 000 соответственно будет равна 2 см (500 км:25 000 000), значит 8 см. Так же рассчитывают расстояния от точки С до линий, где будут строиться основания линейных масштабов других карт.

Построенный график можно использовать не только для измерения расстояний по картам разных масштабов, но и для определения среднего масштаба по любому меридиану и любой параллели. Масштаб карты по меридиану определяют в следующем порядке. Раствор циркуля-измерителя, соответствующий отрезку меридиана с разностью широт 5 или 10°, будем вести по нашему масштабу вдоль наклонных линий до тех пор, пока он не уложится в расстояние 555 км для 5° или расстояние 1110 км для 10° на какой-либо горизонтальной линии. Масштаб, подписанный над этой линией, будет соответствовать среднему масштабу карты по данному меридиану. Например, отрезок MN, снятый с карты по меридиану с разностью широт 10°, уложился в расстояние 1110 км по линии масштаба 1:40 000 000. Таков и будет средний масштаб карты в данном направлении.

Чтобы определить масштаб карты по параллели, нужно вначале найти по приведенной выше таблице длину дуги параллели в 5 или 10° на определенной широте, а затем порядок действий будет тот же, что и при определении масштаба карты по меридиану.

Мы сами составляем карты

Перед вами глобус. Как по нему составить карту какого-либо материка, допустим, Африки? Прежде всего выберем проекцию и построим соответствующую ей картографическую сетку в определенном масштабе. Возьмем наиболее простую проекцию – квадратную. На листе бумаги проведем две взаимно перпендикулярные линии. Вертикальную линию будем считать нулевым меридианом, а горизонтальную – экватором. Через равные интервалы проведем параллельные им линии, образующие квадраты. Стороны квадратов, т. е. расстояния между параллельными линиями, зависят от оцифровки параллелей и меридианов и масштаба карты. Предположим, мы хотим составить карту в масштабе 1:50 000 000 (по экватору и меридианам) с густотой картографической сетки 10°. В таком случае сторона квадрата составит 2,22 см (1110 км:50 000 000).

Пользуясь вычерченной сеткой параллелей и меридианов, перенесем с глобуса по соответствующим клеткам контур береговой линии африканского материка.

В пределах каждой клетки рисунок переносится на глаз. Чтобы береговая линия не была ломаной, нужно вначале наметить точки ее пересечения со сторонами клетки, а затем их соединять, учитывая общий изгиб линии.

По картографической сетке можно проверить правильность перенесения береговой линии на карту путем сличения координат соответствующих точек. Так, координаты крайних точек Африки следующие: северной – мыс Эль-Абьяд (37° с. ш., 10° в. д.); южной – мыс Игольный (35° ю. ш., 20° в. д.); западной – мыс Альмади (18° з. д., 15° с. ш.); восточной – мыс Хафун (51° в. д., 10° с. ш.)

Составим еще одну карту – карту Австралии в цилиндрической проекции, но за основу возьмем не глобус, а карту восточного полушария (рис 20, а).

Рис. 20. Изображение Австралии на карте полушария (а) и на карте в цилиндрической проекции (б).

Картографическая сетка для нашей карты будет прямоугольной с соотношением сторон клеток 1:2, например, отрезок меридиана в 10° широты будет соответствовать 2 см, а параллели в 10° широты – 1 см. Вычертим рамку карты, и у ее сторон подпишем широты и долготы у соответствующих параллелей и меридианов (рис. 20, 6). Контур материка будем переносить более точно – по опорным пунктам. Для этого на исходной карте определим координаты точек пересечения береговой линии с меридианами или параллелями и направление береговой линии в этих точках (табл. 2).

Таблица 2
Координаты точек пересечения береговой линии с меридианами и параллелями

По координатам нанесем на картографическую сетку опорные пункты и от них на глаз перенесем береговую линию со всеми ее изгибами. Опорные пункты дают возможность более точно перенести с исходной карты контур материка на карту, составляемую в другой проекции.

Сравните очертания Австралии в обеих проекциях. Если в первой проекции (см. рис. 20, а) общий вид материка примерно соответствует действительной конфигурации, то во второй проекции (рис. 20, 6) изображение получилось сжатым по долготе и вытянутым по широте. И тем не менее в обеих проекциях очертание береговой линии со всеми ее подробностями остается постоянным и географические координаты каждого ее изгиба будут одинаковыми.

Приведем еще пример преобразования одной картографической проекции в другую. Исходной картой будет карта СССР в конической проекции (рис. 21, a), a по ней нам нужно составить такую же карту, но в цилиндрической проекции (рис. 21, 6).

Рис. 21. Карта СССР в конической (а) и цилиндрической (б) проекциях.

Здесь по сути дела задача сводится к тому, чтобы растянуть дуги параллелей в прямые линии. А практически решается она так. Нанесем параллельно друг другу три прямые линии, которые обозначают параллели 40, 60 и 80°. Расстояния между ними равны соответствующим расстояниям на исходной карте (А'С' = АС). На параллели 60° отложим отрезки между меридианами (А'В' = АВ) и от точек отложения проведем линии, перпендикулярные к параллелям. Они будут меридианами. На построенную картографическую сетку перенесем по клеткам сухопутные и морские границы страны. Можно уточнить их положение путем отложения одинаковых расстояний по меридианам от 60-й параллели.

Обратите внимание на конфигурацию изображений в той и другой проекции: какие они разные! Взять, например, общее направление побережья Северного Ледовитого океана. На первой карте оно имеет вогнутый вид, а на второй – получилось выпуклым.

Картографы могут предложить множество проекций, причем каждая из них будет удовлетворять заданным условиям. Попытаемся и мы решить такую задачу. Допустим, нам потребовалась проекция карты, которая имела бы одинаковый масштаб по экватору и по всем меридианам, но в отличие от цилиндрической квадратной проекции, где это условие соблюдается, географические полюса в нашей проекции должны изображаться точками.

Для построения картографической сетки в данной проекции проведем линию экватора и отложим на ней равные отрезки, соответствующие определенному числу градусов долготы, например 30° (рис. 22).

Рис. 22. Проекция, в которой сохраняется одинаковый масштаб по экватору и всем меридианам.

Через середину линии экватора восставим перпендикуляр и отложим на нем вверх и вниз по три таких же отрезка, как и на экваторе. Вершины перпендикуляров соединим прямыми линиями со всеми точками деления на экваторе. Получились меридианы. Согласно условию задачи, масштаб по экватору и меридианам должен быть одним и тем же. Чтобы выполнить это условие, отложим на меридианах по три отрезка, равных отрезкам на экваторе и меридианах. Соответствующие точки на перпендикуляре и наклонных линиях соединим плавными линиями. Эти линии будут параллелями, построенными через 30° по широте. Таким образом, у нас получилась картографическая сетка, удовлетворяющая тем же условиям, что и сетка в квадратной проекции, а в вершинах меридианов находятся географические полюса.

В кратком историческом очерке создания карт вы познакомились с картографическими изображениями, построенными исключительно условно. Это арабские карты. Конфигурация материков и морей передается на них в виде геометрических фигур: окружностей, квадратов, треугольников и др. Составим и мы такую «карту» и попытаемся установить, не заложены ли в них какие-либо основы картографического проектирования.

На рис. 23, а изображена карта острова Калимантан. Разделим береговую линию острова точками A, B, C и D на четыре равных части и, спрямив их, построим квадрат A'B'C'D' (рис. 23, 6).

Рис. 23. Карта острова Калимантан (а) и составленная по ней карта в виде квадрата (б).

Понятно, что периметр квадрата будет равен всей длине береговой линии. Перенесем прибрежные населенные пункты на стороны квадрата. Для этого разделим каждый участок береговой линии и стороны квадрата на одно и то же число равных интервалов. В нашем примере участок побережья АВ и сторона квадрата А'В' разделены на 10 частей. Пользуясь идентичной шкалой равных отрезков, нанесем на нашу «квадратную карту» населенные пункты и подпишем их названия.

Составленная нами карта необычна для восприятия, но ею с успехом можно пользоваться при плавании, когда корабли курсируют между прибрежными населенными пунктами, не удаляясь далеко от берега. Она имеет даже некоторые преимущества перед обычной: по ней значительно легче и быстрее можно определить расстояние между любыми пунктами, расположенными на побережье. На такую карту можно нанести для любой стороны квадрата и картографическую сетку. Нанесем ее, например, для стороны А'В'. Крайние параллели пройдут от точек А' и В' на расстояниях, измеренных по карте от точек A и В, а средняя параллель пройдет между идентичными штрихами. Линии меридианов изогнутся в зависимости от конфигурации береговой линии. Наносятся они путем откладывания расстояний по параллелям от точек А' и В' и каждого штриха. Эти расстояния соответствуют расстояниям, измеренным на карте от соответствующих точек и штрихов до меридианов. Отложенные точки соединяются плавными кривыми. Координаты населенного пункта Баликпапан, определенные по нашей «карте», составят 1° ю. ш. и 117° в. д., т. е. получились такими же, как и снятые с обычной карты.

Построенная картографическая сетка для стороны АВ позволяет определить не только координаты прибрежных объектов. Перенеся линию меридиана к какой-либо точке на берегу, можно измерить угол от северного конца меридиана до направления береговой линии. Этот угол называется азимутом; им пользуются при вождении кораблей с помощью компаса. Так что наша карта имеет ряд картографических признаков, которые дают возможность пользоваться ею для практических целей. Вероятно, подобные признаки были заложены и в арабских картах. Частично раскрыть тайны этих карт удалось польскому ученому Иохиму Лелевелю, жившему в первой половине XIX в. По старым арабским рукописям и таблицам он расшифровал карту мира и представил ее в виде обычной карты, доступной современникам.


    Ваша оценка произведения:

Популярные книги за неделю