Текст книги "Почему и как летает самолет (Изд. 2-е)"
Автор книги: Алексей Жабров
сообщить о нарушении
Текущая страница: 4 (всего у книги 4 страниц)
ВИРАЖИ И ФИГУРЫ В ПОЛЕТЕ
Почему самолет может делать виражи[15]15
Вираж – французское слово, означает поворот.
[Закрыть] и фигуры?
Какие силы заставляют тяжелую машину легко кувыркаться в воздухе? Как летчик управляет этими силами в криволинейном полете?
Конечно, это все те же аэродинамические силы. И в криволинейном полете опять-таки главную роль играет подъемная сила крыла.
Известно, что всякое тело по инерции стремится двигаться прямолинейно. Чтобы заставить его двигаться по кривой, нужна так называемая центростремительная сила. Вот пример.
Если привязать нитку к камню и вращать его, то нитка натянется и, удерживая камень, заставит его описывать круги. Движение камня по окружности будет происходить под действием силы вашей руки. Передаваясь через нитку, эта сила не позволяет камню удалиться от центра вращения. Если нитка оборвется, то действие этой силы прекратится и камень по инерции полетит прямолинейно. Сила, с которой ваша рука действует на камень и заставляет его вращаться вокруг некоторого центра, и называется центростремительной (она направлена от окружности к центру).
При движении велосипедиста по кривой линии центростремительной силой служит слагаемая силы веса, так как велосипедист наклоняет машину в сторону поворота. При движении самолета по криволинейной траектории роль центростремительной силы обычно выполняет слагаемая подъемной силы крыла (рис. 29, а). Когда летчик наклоняет самолет на некоторый угол в сторону желаемого разворота, то на такой же угол отклоняется от вертикали и подъемная сила (рис. 29, б).
Рис. 29. Вираж самолета: а) вираж по кругу; б) действие сил на вираже: вертикальная слагаемая подъемной силы П1 уравновешивает силу веса В, а горизонтальная слагаемая П2 играет роль центростремительной силы.
И если разложить ее на две слагаемые – по вертикали и горизонтали, то становится ясно, что слагаемая П1 поддерживает самолет в воздухе, а слагаемая П2, направленная к центру виража, служит центростремительной силой (ей всегда сопутствует центробежная сила Ц, направленная в противоположную сторону).
Чтобы подъемной силы крыла хватило и на то и на другое, летчик при вводе самолета в вираж увеличивает угол атаки (или скорость полета).
Накреняя самолет элеронами в сторону виража, летчик одновременно отклоняет в ту же сторону и руль направления (действующий подобно рулю лодки). Благодаря этому самолет разворачивается «охотнее».
На самолете можно делать виражи различных радиусов. Особенно важны виражи малых радиусов (например, при фигурных полетах или в воздушном бою, когда нужно быстро развернуться). Для уменьшения радиуса виража приходится увеличивать крен – ведь при этом растет центростремительная сила.
Радиус виража сильно зависит от скорости полета.
Вы знаете, что при быстром беге, быстрой езде на велосипеде, мотоцикле, автомобиле трудно сделать крутой поворот, для поворота приходится уменьшать скорость. Так и на самолете: если летчик желает уменьшить радиус виража, то он должен уменьшить скорость полета.
По этой причине тихоходный самолет может делать виражи малых радиусов, а истребитель – только больших радиусов. Например, самолет ПО-2 может сделать вираж с радиусом всего в 60 метров, тогда как истребитель делает вираж с радиусом самое меньшее 350–400 метров. Именно поэтому во время Великой Отечественной войны самолеты ПО-2 нередко спасались от нападения фашистских истребителей: в опасный момент советский летчик делал крутой вираж и самолет противника, не имея возможности так же круто развернуться, проскакивал мимо.
Очень интересен быстрый вираж с одновременным подъемом, который называют боевым разворотом (рис. 30, а).
Рис. 30. Фигурный полет самолета: а) боевой разворот, б) петля Нестерова.
Для боевого разворота летчик накреняет машину элеронами и одновременно сильно увеличивает угол атаки. Самолет с креном круто взмывает вверх, причем по мере подъема крен увеличивается, а радиус разворота уменьшается. Затем летчик выравнивает самолет и берет нужное направление полета.
Самая эффектная фигура – петля Нестерова (рис. 30, б). Первым в мире ее выполнил замечательный русский летчик П. Н. Нестеров в 1913 году. В прежние времена в цирках показывали очень интересный номер. Акробат на велосипеде или на тележке съезжал по крутому настилу, изгибавшемуся затем в виде вертикальной петли. Вершину петли акробат проезжал вниз головой. Этот номер именовался «мертвой петлей».
Подобием ее и является петля, выполняемая на самолете, – с той лишь разницей, что разгон самолета достигается тягой силовой установки.
Для выполнения петли летчик в горизонтальном полете энергично берет ручку рулевого управления на себя.
Поэтому угол атаки крыла сильно увеличивается, подъемная сила резко возрастает и становится больше силы веса, то есть появляется некоторый излишек подъемной силы. Под действием излишка подъемной силы траектория полета круто изгибается вверх. Самолет описывает первую половину петли при работе двигателя на полном газе. На вершине петли машина оказывается вверх колесами, а летчик – вниз головой. Всегда сопутствующая центростремительной силе центробежная сила как бы прижимает самолет к воздуху, находящемуся выше его, а летчика – к сидению. Когда самолет переходит за вершину петли, летчик уменьшает тягу винта до самой малой и ставит ручку управления в среднее положение, а за-тем выбирает ее на себя, чтобы перевести самолет из пикирования в нормальный полет.
Действие центростремительной и центробежной сил можно легко проверить на опыте с вращением камня, если последний заменить ведерком с водой. При вращении вокруг некоторого центра ведерко будет описывать «мертвую петлю» и вода из него не выльется. Центробежная сила будет отбрасывать ведерко от центра к окружности, прижимать воду к донышку, как прижимает и летчика к сидению.
Форма петли, выполняемой на самолете, получается не круглой, а несколько вытянутой вверх. Это объясняется тем, что при подъеме на вершину петли скорость падает, и радиус кривизны траектории уменьшается. Во второй половине петли (при пикировании) скорость снова нарастает, и радиус опять увеличивается.
Кроме петли Нестерова и боевого разворота, на самолете можно выполнять и другие фигуры – так называемую горку, переворот через крыло, двойной переворот, называемый «бочкой» и т. д.
Фигурный (высший) пилотаж играет большую роль в подготовке летчиков. Цель его – научить летчика маневрировать в полете и развивать в нем уверенность в своих силах, выносливость, самообладание, бесстрашие.
Эту цель и ставил себе основоположник высшего пилотажа П. Н. Нестеров. Советские летчики – его достойные последователи.
ЗАКЛЮЧЕНИЕ
Вся история развития самолета – от его рождения до наших дней – это история борьбы за скорость полета. Дальнейшее развитие авиации, несомненно, будет также тесно связано с ростом скорости полета.
Полвека назад максимальная скорость полета была всего лишь около 100 километров в час, а в наше время она превышает 2000 километров в час. Как был достигнут этот замечательный успех авиации?
Сначала скорость росла благодаря непрерывному улучшению аэродинамических форм самолета и увеличению мощности его силовой установки. Однако к 40-м годам нашего века аэродинамические формы самолета были доведены уже до такого совершенства, что дальнейшее улучшение их могло дать лишь незначительный выигрыш в скорости. Увеличение мощности силовой установки также не сулило большой выгоды, так как с увеличением мощности возрастают вес и размеры поршневого двигателя, а это ведет к повышению веса самолета и его лобового сопротивления – в результате скорость увеличивается незначительно.
Мешали и другие причины, лежащие в самой природе полета с большими скоростями.
Воздух, как и всякий газ, легко подвергается сжатию. Сжимаемость воздуха мы часто наблюдаем в быту. Например, волейбольный мяч приобретает значительную твердость, когда в него накачивают много воздуха. Еще большую твердость приобретает автокамера, в которую воздух накачивают под большим давлением. Следовательно, сжатие воздуха получается тем больше, чем больше давление.
При сравнительно небольших скоростях полета (до 400–500 километров в час) давление воздуха перед самолетом хотя и повышается, но незначительно. Поэтому и сжатие воздуха тоже невелико. Но при больших скоростях, близких к скорости звука и тем более превышающих ее, давление и сжатие воздуха сильно возрастают[16]16
Скорость распространения звука у поверхности земли равна приблизительно 1200 километрам в час.
[Закрыть].
Появляется дополнительное, так называемое волновое сопротивление, которое в несколько раз увеличивает лобовое сопротивление самолета. Для преодоления большого лобового сопротивления обычная силовая установка оказывается малопригодной.
Дело осложняется еще тем, что с увеличением скорости полета тяга воздушного винта неуклонно падает. Мало того, при очень больших скоростях полета лопасти винта тоже испытывают волновое сопротивление, поэтому полезная работа винта уменьшается.
Новый период в борьбе за скорость полета начался с появлением авиационных реактивных двигателей.
Существуют различные типы авиационных реактивных двигателей, но сила тяги возникает у них в общем одинаково. В камере сгорания двигателя (где сгорает жидкое горючее) давление нагретых газов повышено и они с большой силой выбрасываются наружу через отверстие – сопло. При этом с такой же силой газы давят и на стенку камеры сгорания двигателя, противоположную соплу. Это противодавление (реакция истечения газов) и является реактивной силой тяги, которая заставляет двигаться самолет в сторону, противоположную истечению газов из сопла.
Заметим, что воздушный винт по сути дела работает тоже на реактивном принципе – его лопасти, отбрасывая воздух назад, стремятся двигаться вперед. Однако здесь для получения реактивной тяги поршневой двигатель предварительно преобразует энергию топлива в энергию вращения винта. В реактивных же двигателях продукты сгорания горючего, выбрасываемые из сопла, непосредственно создают реактивную тягу. Поэтому реактивные двигатели, в отличие от винто-поршневых, называются двигателями прямой реакции.
Отличительной особенностью реактивных двигателей является то, что тяга их с увеличением скорости не падает, а даже немного увеличивается. Поэтому при больших скоростях полета реактивный двигатель оказывается гораздо выгоднее обычной силовой установки. Вот почему реактивному двигателю оказалось под силу преодолевать лобовое сопротивление самолета при больших скоростях.
Реактивным самолетам конструкторы придают несколько иные аэродинамические формы, чем винтовым, так как при больших скоростях приходится учитывать влияние сжимаемости воздуха на полет самолета.
Например, применяют стреловидные крылья, которые при больших скоростях полета аэродинамически выгодны.
С появлением реактивных самолетов скорость полета сразу возросла и продолжает расти сейчас[17]17
О реактивных самолетах см. популярную брошюру Гостехиздата: Л. К Баев и И. А. Меркулов, Самолет-ракета, издание третье, переработанное.
[Закрыть].
В нашем военном воздушном флоте уже полностью наступила, как предсказывал К. Э. Циолковский, «эра аэропланов реактивных». На последних воздушных парадах в Москве участвовала почти исключительно реактивная авиация – от истребителей (рис. 31) до тяжелых бомбардировщиков.
Рис. 31. Советские реактивные истребители в полете.
В гражданском воздушном флоте, вероятно, еще некоторое время сохранят свое значение обычные винтовые самолеты. Они удобны на товаро-пассажирских воздушных линиях небольшой протяженности, а также во многих других областях применения самолета в народном хозяйстве, например, для борьбы с вредителями полей, для подкормки посевов, для охраны лесов от пожаров, для аэрофотосъемки, для исследовательской работы в разного рода экспедициях и т. д.
Но на воздушных линиях большой протяженности, а также на воздушных трассах, связывающих нашу страну с другими странами, теперь уже широко применяются реактивные многоместные самолеты-экспрессы ТУ-104 (рис. 32) конструкции А. Н. Туполева.
Рис. 32. Реактивный пассажирский самолет ТУ-104.
В последние годы А. Н. Туполевым и другими советскими конструкторами созданы еще более мощные воздушные корабли, снабженные турбовинтовыми двигателями (рис. 33).
Рис. 33. Турбовинтовой пассажирский самолет ТУ-114.
В таких двигателях почти вся мощность идет на вращение воздушного винта и лишь небольшая ее часть – на создание непосредственной реактивной тяги. Турбовинтовые двигатели экономичны и имеют ряд других достоинств.
Наши ученые и инженеры упорно работают также над созданием атомного авиационного двигателя. Теперь уже нет сомнения в том, что появление атомных самолетов – не за горами.