355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Виленкин » Мир многих миров. Физики в поисках иных вселенных. » Текст книги (страница 6)
Мир многих миров. Физики в поисках иных вселенных.
  • Текст добавлен: 21 октября 2016, 21:03

Текст книги "Мир многих миров. Физики в поисках иных вселенных."


Автор книги: Александр Виленкин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 6 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]

Секрет быстрого успеха

На то, чтобы новая теория стала общепризнанной, обычно требуются годы, если не десятилетия. Физики могут восхищаться красотой идеи, но признают ее лишь тогда, когда предсказания теории подтверждаются экспериментами или астрономическими наблюдениями. Это вдвойне верно в отношении космологии, где наблюдателям всегда было тяжело угнаться за воображением теоретиков, и теория Большого взрыва иллюстрирует это не хуже других. Статьи Александра Фридмана при жизни оставались незамеченными, а работа Георгия Гамова едва ли не игнорировалась на протяжении более чем десятилетия. Какой контраст со встречей, оказанной теории инфляции!

Почти 40работ по новой теории было опубликовано в течение года после выхода первой статьи Гута. Еще через год их число выросло до 200и оставалось на уровне около 200статей в год в течение всего следующего десятилетия. Казалось, будто люди бросили все, чем они занимались, и принялись работать над инфляционной теорией.

С чем связан такой молниеносный успех? Отчасти его можно объяснить социологическими причинами. Физики, занимающиеся элементарными частицами, только что завершили разработку теорий сильного и электрослабого взаимодействий. И эта небольшая армия неожиданно обнаружила, что ей нечем заняться. Все новые идеи в физике частиц были связаны с чрезвычайно высокими энергиями. Не было никакой надежды проверить эти теории на существующих ускорителях, и прогресс застопорился. Единственным ускорителем, который мог разогнать частицы до требуемых энергий, оказался Большой взрыв, и физики элементарных частиц все чаще присматривались к космологии как к испытательному полигону для новых идей. В начале 1980-х годов начался массовый переход из физики элементарных частиц в космологию. Переведшие были новичками в этой сфере и искали интересные задачи для применения своих сил.

Именно на этом фоне Гут предложил свою идею инфляции и дал физикам в точности то, что они искали. Особенно помогла незавершенность его теории. Когда вы полностью решаете важную проблему, работа может вызывать восхищение, но индустрию на ней не построишь. Инфляция, напротив, была лишь наброском теории с многочисленными пробелами, которые предстояло заполнить. Она предлагала множество задач для работы и самим ученым, и их аспирантам.

Однако помимо социологии продолжительная популярность инфляции связана с привлекательностью и силой самой этой идеи. В каком-то смысле инфляция похожа на дарвиновскую теорию эволюции. Обе теории предлагали объяснение того, что прежде считалось необъяснимым. Сфера научного исследования, тем самым, значительно расширялась. В обоих случаях объяснение было чрезвычайно привлекательным, а убедительных альтернатив никто не предложил.

Другая параллель с Дарвином состоит в том, что в то время, когда Гут предложил идею инфляции, она уже носилась в воздухе. [41]41
  Эраст Глинер, Старобинский и Линде в СССР, Кацухико Сато (Katsuhiko Sato) в Японии и Роберт Брут (Robert Brout), Франсуа Энглер (Francois Englert) и Эдгар Гунзиг (Edgard Gunzig) в Бельгии – все они рассматривали возможность периода экспоненциального расширения в ранней Вселенной. Сато был также в курсе проблемы изящного выхода.


[Закрыть]
Главное достижение Гута состояло в ясном понимании того, чем хороша инфляция, и, тем самым, в создании мотивации для решения проблемы изящного выхода и других трудностей инфляционного сценария.

Вселенная как бесплатный обед

До сих пор мы предполагали, что начальной точкой инфляции была маленькая замкнутая Вселенная со скалярным полем в состоянии ложного вакуума на вершине энергетического холма. Но эти предположения не являются обязательными. Вместо этого мы можем начать с небольшого кусочка ложного вакуума в бесконечной вселенной. Такое начало тоже приводит к инфляции, но несколько неожиданным способом.

Вспомните, ложный вакуум имеет огромное натяжение, которое вызывает его отталкивающую гравитацию. Если он заполняет все пространство, то натяжение повсюду одинаково и нет никаких физических проявлений, кроме гравитационных. Но если он окружен истинным вакуумом, натяжение внутри не уравновешивается никакой внешней силой и заставляет кусочек ложного вакуума сжиматься. Можно подумать, что натяжению противостоит отталкивающая гравитация, но на самом деле это не так.

Анализ, основанный на общей теории относительности Эйнштейна, показывает, что гравитационное отталкивание является чисто внутренним. Так что, если вы принесете кусочек ложного вакуума, чтобы продемонстрировать на лекции, предметы не будут отталкиваться от него, как на рисунке 1.1. Вместо этого они станут притягиваться. Снаружи от ложного вакуума сила гравитации проявляется как обычное тяготение. Результат зависит от размеров кусочка.

Если он меньше некоторой критической величины, побеждает натяжение, и кусочек съеживается, как растянутая резинка. Затем, после нескольких колебаний, он распадается на элементарные частицы. Если размер больше критического, побеждает отталкивающая гравитация, и тогда ложный вакуум начинает раздуваться. В ходе этого процесса он искривляет пространство наподобие воздушного шарика. Этот эффект проиллюстрирован на рисунке 6.7 для случая сферической области ложного вакуума. Показано только два пространственных измерения, так что сферическая граница области представлена окружностью. Натяжение влечет границу внутрь, к центру сферы, и это приводит к уменьшению объема ложного вакуума. Но это сокращение совершенно ничтожно по сравнению с экспоненциальным расширением внутренней части.

Рис. 6.7.Раздувающийся шар ложного вакуума (темный), соединенный с внешним пространством «кротовой норой» и видимый извне как черная дыра.

Расширяющийся шар соединен с внешним пространством узкой «кротовой норой». Снаружи она видна как черная дыра, и внешний наблюдатель никогда не сможет подтвердить или опровергнуть, что внутри этой черной дыры скрывается огромная раздувающаяся вселенная. Аналогично, наблюдатель, который появится внутри раздувающейся вселенной-пузыря, увидит только крошечную часть всего пространства и никогда не узнает, что его вселенная имеет границу, за которой имеется другая большая вселенная.

Поскольку судьба сферы из ложного вакуума так радикально зависит от того, превышает ли ее радиус критическое значение, важно знать, чему же оно равно. Ответ зависит от плотности энергии вакуума: чем больше плотность энергии, тем меньше критический радиус. Для электрослабого вакуума он составляет около  1миллиметра, а для вакуума Великого объединения – в  10триллионов раз меньше. Это все, что нужно для создания Вселенной! Воистину, совершенно бесплатный обед. Ну, или почти бесплатный...

Часть II. Вечная инфляция

Глава 7
Антигравитационный камень

Теория инфляции стала основной темой моей работы вскоре после того семинара в Гарварде, где я впервые о ней услышал. Надо сказать, что если бы я был более склонен к мистике, то мог бы заметить предзнаменования этого еще до семинара Гута. Определенные указания на отталкивающую гравитацию были как раз в той работе, которой я занимался в университете Тафтса.

Кампус Тафтса, стоящий на пологом склоне холма и окруженный тенистыми вязами, наполнен атмосферой изящества и покоя. Поднимаясь по ступеням на холм, к ядру кампуса, и проходя мимо укрытой ивами часовни в романском стиле, можно заметить странный памятник. Большая гранитная плита поднимается вертикально из земли подобно старинному надгробию. Надпись на ней гласит:

«Данный монумент воздвигнут Роджером У. Бэбсоном, основателем Фонда исследований гравитации. Он призван напоминать студентам о прекрасном будущем, когда будут открыты полуизоляторы, способные обуздать гравитацию как свободную энергию и сократить число авиакатастроф».

Это пресловутый антигравитационный камень, знак моей судьбы.

Роджер Бэбсон, основатель Бэбсоновского колледжа, был живым свидетельством того, как проницательность в управлении бизнесом может мирно уживаться с самыми ненаучными идеями. Он утверждал, что, опираясь на законы механики Ньютона, предсказал биржевой крах 1929 года и последовавшую за ним Великую депрессию. С Ньютоновой помощью он сколотил огромное состояние и в благодарность сэру Исааку выкупил помещение, служившее последним местом проживания Ньютона в Лондоне, а также яблоню из потомства того знаменитого дерева, которое росло возле родного дома Ньютона в Линкольншире. Согласно легенде, именно с него упало яблоко, которое навело Ньютона на мысль о гравитации. И, как вы могли догадаться, именно гравитация занимала центральное место во вселенной Бэбсона.

Одержимость Бэбсона гравитацией восходит к временам его детства, когда его сестра утонула в реке. Он винил в ее смерти гравитацию и решил освободить человечество от ее фатального притяжения. В своей книге "Гравитация – наш враг номер один" Бэбсон описывает преимущества, которые принес бы изолятор, противодействующий гравитации. Он бы уменьшил вес самолетов и повысил их скорость; его применение в подошвах обуви снизило бы вес при ходьбе. Знаменитый изобретатель Томас Эдисон, с которым Бэбсон дружил всю жизнь, навел его на мысль, что в коже птиц может содержаться некое антигравитационное вещество, и Бэбсон немедленно приобрел коллекцию из пяти тысяч птичьих чучел. Неясно, что именно он с ними потом делал, но, очевидно, это направление исследований не принесло успеха.

К чести Бэбсона надо признать, что он действительно вкладывал деньги в то, о чем говорил. Он сделал пожертвования нескольким университетам, включая Тафтский, чтобы способствовать антигравитационным исследованиям. Единственным условием этого гранта была установка в кампусе данного монумента с надписью.

Странное сооружение смущало администрацию Тафтса и послужило поводом для многочисленных студенческих забав. Время от времени оно исчезает, а потом появляется там, где его менее всего ожидают найти. Однажды оно преградило вход попечительскому совету и президенту университета в день вручения дипломов. В другой раз казалось, что камень действительно пропал, но чудесным образом он объявился на своем месте спустя десять лет. Оказалось, что группа студентов зарыла его где-то на территории кампуса, а затем выкопала и вернула на место на юбилейной встрече выпускников. Одной только гравитации было явно не под силу удержать камень на постаменте, так что в конце концов его закрепили в земле при помощи цемента.

Поскольку мало кто из ученых станет утверждать, что ведет активные исследования по антигравитации, получить деньги Бэбсона оказалось весьма непросто. Не то чтобы никто этого не пробовал: президент университета Джин Мейер, диетолог по специальности, безуспешно пыталась доказать, что потеря веса – это антигравитация. После многих лет дискуссий и юридических доказательств деньги наконец пошли на учреждение Института космологии Тафтса.

Как у любой уважающей себя академической организации, у нашего института есть свой уникальный ритуал – церемония "инаугурации" получающих докторскую степень по космологии. После защиты диссертации на голову новоиспеченного доктора, стоящего на коленях перед антигравитационным камнем, роняют яблоко. Оно падает из руки научного руководителя работы и должно быть съедено новоиспеченным доктором.

Рис. 7.1.Доктор Виталий Ванчурин (Vitaly Vanchurin) после присуждения ему докторской степени в окружении сотрудников Института космологии. Слева направо Ларри Форд (Larry Ford), Кен Олам (Ken Olum) и автор.

фото: Делия Перлов (Delia Perlov).

К моменту учреждения Института космологии Бэбсон уже давно умер, а его Фонд гравитационных исследований превратился в респектабельное учреждение, выдающее гранты на исследования по гравитационной тематике. Никто, естественно, не ждал, что космологи Тафтса станут изучать антигравитацию, но, как это ни удивительно, они занялись именно этим. Большая часть исследований в институте связана с ложным вакуумом и отталкивающей гравитацией, которую естественно считать антигравитацией. Так что, я думаю, мистер Бэбсон не смог бы найти лучшего применения своим деньгам. Даже несмотря на то, что мы так и не преуспели в сокращении числа авиакатастроф.

Глава 8
Вечная инфляция

Я думаю, самый вероятный ответ на вопрос о том, что было до инфляции, – еще большая инфляция.

Алан Гут

Вселенная за горизонтом

 Что лежит за нашим сегодняшним горизонтом? Этот вопрос занимал меня с самых первых дней знакомства с инфляцией. Если нам видна лишь крошечная часть Вселенной, то какова же ее общая картина – вроде того вида нашей планеты, что открывается космическому путешественнику, когда его корабль удаляется от Земли?

Теория возмущений плотности давала об этом некоторое представление. В соответствии с нею рисунок распределения галактик в пространстве определяется квантовыми флуктуациями, которые испытывало скалярное поле во время инфляции. Этот процесс был случайным, и потому некоторые области такого же размера, как наша, содержат больше галактик, а другие – меньше. Причина, по которой галактика Млечный Путь находится именно здесь, состоит в том, что скалярное поле в этом месте едва заметно сдвинулось назад от состояния истинного вакуума и в результате скатилось с энергетического холма чуть позже, чем в местах по соседству. Это вызвало появление небольшого уплотнения, которое позднее развилось в нашу галактику. Подобные же небольшие сгущения на однородном фоне распределения плотности породили соседнюю с нами Туманность Андромеды и бесчисленное множество других галактик как внутри нашего горизонта, так и за его пределами. Это описание формирования структур предполагает, что самые далекие части Вселенной более или менее похожи на то, что окружает нас здесь. Однако у меня стало возникать подозрение, что в этой картине чего-то недостает.

Влияние квантовых флуктуации крайне невелико, поскольку они намного уступают силе, тянущей скалярное поле вниз по склону энергетического холма. Вот почему поле везде одновременно достигает нижней точки, и возникают лишь очень небольшие возмущения плотности. Однако я задался вопросом: что случится, если поле находится у вершины холма, где уклон очень маленький? Здесь оно будет отдано на милость квантовых флуктуации, толкающих его случайным образом то в одну, то в другую сторону. Вселенная, возникающая после инфляции, может в результате оказаться куда менее упорядоченной и более разнообразной, чем казалось на первый взгляд.

Для описания поведения скалярного поля у вершины холма мы используем неполиткорректную, но весьма уместную аналогию. Позвольте представить вам джентльмена, назовем его мистер Филд [42]42
  От англ. field – «поле». – Примеч. перев.


[Закрыть]
, который слишком много выпил и теперь пытается сохранить вертикальное положение. Он плохо контролирует свои ноги, не представляет, куда направляется, и поэтому шагает то влево, то вправо совершенно случайно. Мистер Филд начинает свою прогулку с вершины холма, как показано на рисунке 8.1. Поскольку в среднем он одинаково часто шагает и вправо, и влево, ему не удастся слишком быстро куда-то уйти. Но после большого числа шагов он рано или поздно отойдет от вершины. Наконец, приблизившись к более крутой части склона, он неизбежно поскользнется и закончит путь, скатываясь вниз на пятой точке.

 

Рис. 8.1. Мистер Филд случайным образом блуждает по плоской части холма и соскальзывает вниз, оказавшись на крутом склоне.

Скалярное поле во время инфляции ведет себя очень похоже. Оно бесцельно блуждает вблизи вершины энергетического холма, пока не достигает крутого склона; тогда оно «скатывается» вниз, чем и заканчивается инфляция. На плоском участке вблизи вершины холма вариации поля вызываются квантовыми флуктуациями и совершенно случайны, в то же время скатывание по склону происходит упорядоченно и предсказуемо и лишь слегка возмущается флуктуациями. Интервалы времени между последовательными флуктуациями примерно равны инфляционному времени удвоения. Это означает, что мистер Филд за такой период успевает сделать лишь один шаг. Поскольку, блуждая по плоской вершине холма, он делает много шагов, это означает, что ложный вакуум, прежде чем распасться, успевает многократно удвоиться.

Конкретная последовательность шагов, приводящая мистера Филда с вершины холма к его подножию, представляет одну из возможных историй скалярного поля. Однако квантовые флуктуации, испытываемые полем, различаются от одной точки к другой, и поэтому истории скалярного поля тоже будут различными. Каждая флуктуация воздействует на небольшой участок пространства. Его размер примерно равен расстоянию, проходимому светом за один интервал инфляционного удвоения; мы будем называть этот размер "кикспэном" [43]43
  Слово «кикспэн» ( kickspan) образовано от англ. слов kick– «толчок» и span– «величина», «амплитуда». Это максимальное расстояние, на котором возможна коммуникация в инфляционной Вселенной. Оно равно критическому размеру кусочка ложного вакуума, необходимого для инфляции (см. главу 6):  1миллиметр для электрослабого вакуума и в 10 13раз меньше для вакуума Великого объединения. Это расстояние играет роль горизонта в расширяющейся инфляционной Вселенной.


[Закрыть]
. Можно представить себе целую группу джентльменов в таком же состоянии, как мистер Филд, каждый из которых представляет скалярное поле в некоторой точке пространства. Когда две точки находятся в пределах кикспэна друг от друга, они испытывают одинаковые квантовые флуктуации, так что соответствующие два джентльмена делают все шаги синхронно, как пара чечеточников. Но точки быстро удаляются друг от друга из-за инфляционного расширения Вселенной, и, когда расстояние между ними превысит кикспэн, компания из пары джентльменов распадется и они станут шагать независимо. Как только это случится, значения скалярного поля в двух точках начнут постепенно расходиться, а расстояние между ними продолжит стремительно расти за счет инфляции.

Малость флуктуации плотности в наблюдаемой нами области пространства говорит о том, что эта область лежала в пределах кикспэна, когда скалярное поле уже вовсю катилось вниз с холма. Вот почему эффект квантовых флуктуации был очень мал, а поле почти всюду достигло нижней точки почти одновременно. Но если бы мы могли перемещаться на очень большие расстояния, много больше горизонта, то увидели бы области, которые были в общей компании, когда поле еще блуждало у вершины холма. Истории скалярного поля в таких областях могут очень сильно отличаться от нашей, и я хотел узнать, как выглядит Вселенная на таких сверхгигантских масштабах.

Представьте себе огромную толпу пьяных людей, которые начинают расходиться с вершины холма. Каждый выпивоха представляет отдаленный регион Вселенной, так что все они движутся независимо. Если плоская часть холма имеет протяженность Nшагов, то средний джентльмен пересечет ее, сделав N 2шагов. Примерно половина сделает это быстрее, а другая половина – медленнее. Например, если дистанция составляет  10шагов, то в среднем потребуется  100случайных шагов, чтобы ее преодолеть. Так что после  100шагов примерно половина толпы достигнет своей конечной точки у подножья холма, а половина все еще будет наслаждаться прогулкой. Еще через  100шагов число гуляющих вновь уполовинится, и так далее, пока последний из друзей не сверзится наконец вниз.

Но теперь заметим, что между пьяницами и расширяющимися областями пространства, которые они символизируют, есть важнейшее различие. Пока наш джентльмен шатается у вершины холма, соответствующая область пространства подвергается экспоненциальному инфляционному расширению. Поэтому число независимо развивающихся областей быстро увеличивается, как если бы наши пьяные джентльмены быстро размножались. По мере того как я размышлял об этом, картина постепенно обретала форму.

Вечная инфляция

Инфляция в известном смысле похожа на размножение бактерий. Есть два конкурирующих процесса: воспроизведение бактерий в результате деления и их эпизодическое уничтожение антителами. Исход зависит от того, какой процесс окажется эффективнее. Если бактерии уничтожаются быстрее, чем размножаются, все они скоро умрут. Напротив, если размножение идет быстрее, бактерии быстро размножатся (рис. 8.2).

Рис. 8.2. Число бактерий быстро растет, если они размножаются быстрей, чем уничтожаются.

В случае инфляции два конкурирующих процесса – это распад ложного вакуума и его «воспроизведение» в результате расширения инфлирующих областей. Эффективность распада можно охарактеризовать периодом полураспада [44]44
  Термин «период полураспада» происходит из ядерной физики, где он означает время, в течение которого распадается половина атомов в образце радиоактивного вещества.


[Закрыть]
– временем, в течение которого распадается половина ложного вакуума, если бы он не расширялся. (В нашей аналогии со случайным блужданием это время, за которое число гуляющих сокращается вдвое.) С другой стороны, эффективность воспроизведения задается временем удвоения, за которое объем расширяющегося ложного вакуума увеличивается в два раза. Объем ложного вакуума будет сокращаться, если период полураспада короче времени удвоения, и расти – в противном случае.

Однако из обсуждения в предыдущих главах ясно, что период полураспада велик по сравнению с временем удвоения. Причина этого в том, что в моделях инфляции энергетический холм весьма пологий, и нужно много шагов, чтобы его пересечь. Поскольку каждый шаг случайного блуждания соответствует одному периоду удвоения в ходе инфляции, период полураспада должен быть много больше времени удвоения. Отсюда вытекает, что области ложного вакуума размножаются намного быстрее, чем распадаются. А значит, во Вселенной в целом инфляция никогда не заканчивается и рост объема инфлирующих областей продолжается беспредельно!

В этот самый момент какие-то отдаленные части Вселенной заполнены ложным вакуумом и испытывают экспоненциальное инфляционное расширение. Но вместе с тем постоянно возникают области, подобные нашей, где инфляция закончилась. Они образуют "островные вселенные" в море инфляции. [45]45
  Алан Гут называет эти острова «карманными вселенными». Однако Ленни Сасскинд (Lenny Susskind) отметил, что это уничтожает всякую романтику. (Следует отметить, что в первой половине прошлого века термином «островные вселенные» в научно-популярной литературе называли галактики. – Примеч. перев.)


[Закрыть]

Из-за инфляции пространство между этими островами быстро расширяется, создавая место для рождения все новых островных вселенных. Таким образом, инфляция – это процесс, идущий вразнос, который остановился в наших окрестностях, но продолжается в других частях Вселенной, заставляя ее расширяться в бешеном темпе, постоянно выметывая новые островные вселенные, подобные нашей.

Энергия распада ложного вакуума зажигает горячий огненный шар из элементарных частиц, запускает процесс образования гелия и все последующие события стандартной космологии Большого взрыва. Таким образом, момент окончания инфляции играет в этом сценарии роль Большого взрыва. Если их отождествить, то нам уже не надо считать Большой взрыв одномоментным событием в нашем прошлом. Множество таких взрывов отгремело до него в отдаленных частях Вселенной, и бессчетное число других еще произойдет повсюду в будущем. [46]46
  Во избежание путаницы с этого момента я буду пользоваться термином «Большой взрыв» для обозначения конца инфляции, а начальное (или конечное) состояние с бесконечной кривизной и плотностью буду называть сингулярностью.


[Закрыть]

Едва в голове у меня сложилась эта новая картина мира, я уже изнемогал от желания поделиться ею с другими космологами. И кто бы мог лучше подойти на роль моего первого конфидента, чем сам мистер Инфляция – Алан Гут, чей офис в МТИ (Массачусетский технологический институт) был всего в двадцати минутах езды от Тафтса? Так что я просто сел в машину и поехал в знаменитый институт на встречу с Аланом.

МТИ занимает громадный комплекс сооружений, где я не раз безнадежно терялся. Можно идти по коридору третьего этажа корпуса шесть и вдруг обнаружить, что уже находишься на четвертом этаже корпуса шестнадцать. Я решил не рисковать и выбрал простейший, хотя и самый длинный путь к цели – через главный вход (выделяющийся рядом коринфских колонн и увенчанный сверху зеленым куполом). Пройдя весь Бесконечный Коридор и поднявшись на несколько лестничных пролетов, я в итоге достиг офиса Гута.

Я рассказал Алану о случайном блуждании скалярного поля и о том, как описать его математически. И тут, в самой середине описания моей новой поразительной картины мира, я заметил, что Алан стал засыпать. Много лет спустя, узнав его получше, я понял, что он вообще очень сонлив. Мы организовали совместный семинар для космологов Бостона и окрестностей, и на каждом заседании Алан мирно засыпал спустя несколько минут после начала доклада. Удивительным образом, когда выступление заканчивалось, он просыпался и задавал самые глубокие вопросы. Алан отрицал наличие у него каких бы то ни было сверхъестественных способностей, но не все в это верили.

Оглядываясь назад, я понимаю, что должен был продолжать, но в то время, не зная о волшебной способности Алана, я быстро закруглился. Другие коллеги в своих отзывах тоже не проявляли энтузиазма. Физика – это наблюдательная наука, говорили они, так что мы должны воздерживаться от утверждений, которые не допускают проверки. Невозможно наблюдать ни другие большие взрывы, ни отдаленные области, где продолжается инфляция. Все они лежат за нашим горизонтом, и как нам убедиться в их реальном существовании? Я был сильно разочарован таким холодным приемом и решил включить эту работу в качестве раздела в статью по другой теме, посчитав, что она не заслуживает отдельной самостоятельной публикации. [47]47
  A. Vilenkin, «The birth of inflationary universes» («Рождение инфляционных вселенных»), Physical Review, vol. D27, p. 2848 (1983). Это статья о квантовой космологии; вечная инфляция обсуждается в последнем разделе.


[Закрыть]

Для объяснения идеи вечной инфляции в этой статье я использовал аналогию прогулки пьяницы у вершины холма. Пару месяцев спустя мне пришло письмо от редактора, в котором говорилось, что статья принята, за исключением того, что обсуждение пьяниц "неприемлемо для такого солидного журнала как The Physical Review", и я должен заменить его более подходящей аналогией. Я слышал, что подобный инцидент произошел ранее с Сиднеем Коулманом. В его статье была диаграмма, которая выглядела как кружок с волнистым хвостиком. Коулман называл ее «диаграммой-головастиком». Как вы уже поняли, редактор счел и этот термин неприемлемым. «О'кей, – ответил Коулман, – давайте назовем ее диаграммой-сперматозоидом». В итоге без дальнейших комментариев была принята исходная версия статьи. Я прикинул возможность применить тактику Коулмана, но в итоге отказался от нее – не хотелось ввязываться в драку.

Я не возвращался к теории вечной инфляции почти  10лет. Если не считать одного эпизода...


    Ваша оценка произведения:

Популярные книги за неделю