355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Балакшин » Сергей Александрович Балакшин (1877—1933) » Текст книги (страница 4)
Сергей Александрович Балакшин (1877—1933)
  • Текст добавлен: 4 апреля 2017, 17:00

Текст книги "Сергей Александрович Балакшин (1877—1933)"


Автор книги: Александр Балакшин



сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

Падение рек определялось на основании результатов экспедиций Сибисполвода и литературных данных. По найденным расходам и падениям были подсчитаны мощности речных систем Алтайского края (см. прил. табл. 3) [1 В таблице указаны гидроэнергоресурсы рек, определенные по минимальным расходам с обеспеченностью 100 % в течение всего года. Валовой гидроэнергопотенциал этих рек значительно выше. То же относится к экономически наивыгоднейшим мощностям. – Примеч. ред.] На основании расчетов мощностей по рекам Алтайского края удалось установить гидропотенциал этого региона – 1,54 млн кВт.

Сейчас подсчитано, что среднемноголетний гидроэнергопотенциал Алтайского края (в его современных границах) составляет около 10 млн кВт (или по электроэнергии удельно 324 тыс. кВт в год на 1 км1 2 площади речного бассейна). Это весьма высокий потенциальный энергетический показатель по сравнению с данными по другим регионам и в целом по РСФСР. В то же время эти цифры подтверждают правильность предложения Сибисполвода о первоочередном использовании для получения водной энергии рек Алтая.

Куда же, по заключению Сибисполвода, должна была направляться энергия рек Алтайского края? Прежде всего на освещение населенных пунктов, развитие кустарных промыслов в городах и промышленности (металлургическая, электрохимическая и лесная), а также для электрификации железных дорог. Специалисты Сибисполвода указали и на необходимую различным потребителям мощность электроэнергии (см. прил. табл. 5), рекомендовали места размещения гидроэлектростанций и дали им названия (см. прил. табл. 4).

Все рекомендуемые Сибисполводом гидроэлектростанции, включая гидротехнические сооружения, турбины, линии передач и пр., оценивались в 120 млн золотых руб., причем ежегодные издержки (амортизация сооружений и оборудования) – в 8,5 млн руб./год. Было подсчитано, что в Алтайском крае энергия гидроэлектростанций будет в 2 раза дешевле энергии, получаемой от тепловых электростанций.

Ряд важных заключений Сибисполвод сделал и относительно развития гидроэнергетики тогдашней Иркутской губернии. По мнению его специалистов, электростанции там было целесообразно разделить на две группы: на обслуживающие действующую промышленность и на предназначенные для развития промышленных объектов на более отдаленную перспективу. Гидроэлектростанции второй группы могут быть удалены от индустриальных центров и являются как бы резервными.

К первой группе были отнесены объекты, которые можно было соорудить на притоках Ангары (Иркут, Китой, Белая, Ока, Ия, Уда). Эти реки протекают по промышленным районам Иркутской губернии и вблизи Иркутска и охватывают районы: Иркутский, Черемховский, Балагинский и Нижнеудинский. Потребность (по мощности) в электроэнергии данных районов составляла в то время около 60 тыс. кВт. По расчетам Сибисполвода необходимую мощность можно было получить, если построить станцию в излучине р. Иркут у Куличьего Носа и у села Мат, присоединив к ней энергию электростанции, работающей на отбросах Черемховского угля. Был определен и зимний (минимальный) расход Иркута – около 30 м3/с, а также летние расходы – 200 м3/с. Напор в 45—50 м у Куличьего Носа, по данным Сибисполвода, мог создать специальный 3,5-километровый деривационный туннель, подводящий воду в конце излучины к зданию ГЭС, а напор в 40 м у села Мат – с помощью плотины.

Планируемые здесь гидроэлектростанции располагались недалеко от потребителей энергии – Иркутска, Черемховского угольного района, Усольских заводов, Хайтеновской фабрики и районов с кустарными промыслами. В этой связи не рекомендовалось гидростроительство на Уде. Несмотря на то, что эта река имела большие уклоны, водопады и значительный сток, она была на 640 км удалена от Иркутска и на 480 км – от Черемхова.

Вторую группу энергетических источников составляли Ангара с ее порогами и Витим с порогами Делюн– Оронским и Парамским. По мысли С. А. Балакшина и его коллег, энергию, полученную на этих реках, можно было бы объединить в одну систему с энергией Казачинского порога на Енисее, способной питать установку примерно в 140 МВт. Мощная энергетическая линия прошла бы вдоль намечаемой к сооружению Северной Сибирской железной дороги и позволила бы электрифицировать будущую магистраль за счет дешевой водной энергии.

По данным Сибисполвода, теоретически обеспеченная мощность водной энергии восьми ангарских порогов достигала 900 МВт, из них 320 МВт приходились на Шиманский, 185 МВт – на Долгий и 135 МВт – на Падунский порог. Мощными запасами водной энергии обладал и Витим. Его минимальные расходы колеблются по отдельным годам в пределах 930– 2000 м3/с, а перепад воды у Делюн-Оронских порогов на протяжении 7,2 км составлял 8,5 м.

Использование энергии второй группы водных источников, по мнению специалистов Сибисполвода, должно было помочь развитию судоходства на отдельных участках этих рек и тем самым создать в ближайшие годы благоприятные условия для совершенствования водного транспорта, доставляющего грузы в отдельные районы Сибири, и роста местной промышленности. И надо сказать, что впервые широко водная энергия была применена в северной части Иркутской губернии для электрификации рудников.

Сибисполвод провел сравнительный анализ стоимости "Сибирской электроэнергии", полученной от ГЭС, от тепловых электростанций, работающих на каменном угле, и газогенераторных, использующих торф. В итоге были определены удельные капиталовложения и эксплуатационные расходы для мощностей порядка 4 мВт, данные о которых сведены в таблицу.

Удельные экономические показатели электростанций различных типов


Типы электростанцийЗатраты на 1 кВт установленной мощности, руб.
 Капитальные вложенияЕжегодные эксплуатационные расходы
Гидравлические3306,7
Тепловые на каменном угле26117,3
Газогенераторные на торфе34012,5

Сравнительно высокая стоимость затрат на первоначальное сооружение гидроэлектростанции компенсируется низкими ежегодными эксплуатационными расходами: срок окупаемости дополнительных капиталовложений в ГЭС по сравнению с тепловой электростанцией (при их одинаковой энергоотдаче) относительно мал (7—8 лет). Это говорит о том, что гидравлические установки являются наиболее экономичными для условий Сибири. Кроме того, гидравлические электростанции более надежны и просты в эксплуатации, могут обслуживаться менее квалифицированным персоналом, условия работы на них более гигиеничны, чем на тепловых электростанциях.

В 1923 г. ввиду отсутствия средств Сибисполвод был расформирован. Но даже краткий перечень работ, проведенных этой организацией по исследованию водной энергии рек Сибири, свидетельствует о ее значении в развитии сибирской гидроэнергетики. Действительно, за время своего существования (1920—1923 гг.) Сибисполвод проделал большую работу в области изучения природных богатств Сибири; впервые сформулировал многие важные положения развития гидроэнергетики этого края; составил первый водоэнергетический кадастр Сибири; наметил дальнейшие пути исследования и использования водной энергии сибирских рек; определил места постройки гидроэлектрических станций (места построенных позднее гидростанций Братской, Красноярской, Саяно-Шушенской и др.), внес значительный вклад в работу ГОЭЛРО по разработке плана электрификации Западной Сибири.

Подводя итог деятельности Сибисполвода, нельзя не отметить ту исключительную роль, которую сыграл его организатор – инженер и ученый С. А. Балакшин. Занимаясь вопросами сибирской гидроэнергетики с 1900 г., он утверждал, что энергетические возможности рек Сибири колоссальны, они по праву занимают первое место в мире по запасам водной энергии. Труды С. А. Балакшина "Запасы водных сил Сибири" и "Вопросы энергетики Сибири", опубликованные в нашей стране и за рубежом, были также доложены на Первой мировой энергетической конференции в Лондоне (1924 г.) и Второй мировой энергетической конференции в Берлине (1930 г.) [23, 24]. Работы, проводившиеся под руководством С. А. Балакшина в Сибисполводе, и личные разработки ученого легли в основу ленинского плана ГОЭЛРО по Сибири. Они вошли и в планы дальнейшего развития народного хозяйства Западной Сибири (Алтайская гидростанция на р. Ульбе и др.), ведь в работах С. А. Балакшина были обоснованы створы, где построены и строятся современные гидроэлектростанции.

С. А. Балакшин разработал первый кадастр водных сил Сибири [8]. На основе всестороннего анализа имеющейся отечественной и иностранной литературы, гроведения научно-теоретических расчетов по определению гидропотенциала как отдельных, так и всех сибирских рек ученый провел сравнение гидроэнергоресурсов Сибири с гидроэнергоресурсами других стран. При этом он указал на "незначительность современного (1922 г.) использования этого потенциала", наметил перспективы его дальнейшего использования, дал конкретные предложения по размещению будущих ГЭС и т. д. С. А. Балакшин считал, что к 1922 г. потенциал гидроэнергоресурсов Сибири равен примерно 38 млн кВт (при обеспечении его в течение 12 месяцев в году). В то время в США он составлял примерно 20 млн кВт в том же исчислении, т. е. был почти в 2 раза меньше. Однако там его использовали на 16,8 %, т. е. 3,33 млн кВт. В Сибири же было задействовано всего 0,18 % гидроресурсов, т. е. 67 240 кВт – в 50 раз меньше, чем в США, и в 10 раз меньше, чем в Швейцарии с ее самым высоким тогда процентом (27,5 %) использования гидропотенциала в мире (при гидропотенциале равным примерно 50 тыс. кВт). "Из всего вышеизложенного видно, – писал С. А. Балакшин, – какие колоссальные запасы водной энергии таит Сибирь в своих речных бассейнах и как ничтожно их использование в данное время и какая великая задача стоит перед нами отыскать скорейшую реальную возможность широко использовать эту энергию на благо населения Сибири" [8].

После расформирования Сибисполвода С. А. Балакшин продолжал свою деятельность в области электрификации Сибири. Так, по заданию Сибкрайплана в период разработки первого пятилетнего плана он вместе с инженером А. П. Афанасьевым принял активное участие в составлении пятнадцатилетнего плана электрификации Сибирского края. Этот план предусматривал увеличить к 1941 г. мощность электростанций почти в 10 раз и довести ее до 216 тыс. кВт, а выработку электроэнергии – соответственно в 35 раз с годовым производством в 942 млн кВт. ч. На проведение этого плана в жизнь требовалось затратить 71 млн руб. капитальных вложений. Наряду с генеральной перспективой разработки плана его авторы дали обстоятельную характеристику энергетических ресурсов района и состояния энергетического хозяйства [12].


Педагог, ученый, общественный деятель

В 1921 г. ректор Томского технологического института [1 В 1926 г. переименован в Сибирский технологический институт, в 1934 г. – в Томский политехнический институт им. С. М. Кирова.] профессор Н. В. Гутовский, учитывая многолетнюю деятельность инженера-исследователя С. А. Балакшина в области гидротурбостроения, предложил ему стать руководителем студентов-дипломников, занимающихся проектированием гидросиловых установок. Приступив к новой работе, С. А. Балакшин сразу же предложил для дипломных проектов такие темы, которые имели бы практическую ценность для дальнейшей инженерной деятельности выпускника. Студенты быстро полюбили нового преподавателя; приобрел он авторитет и среди своих коллег. В 1926 г. С. А. Балакшин был утвержден доцентом. Ему было поручено чтение курса «Гидравлические установки». Лекции ученого пользовались заслуженным успехом: в них содержалось много ценных сведений и материаловг накопленных С. А. Балакшиным за долгие годы практической работы в области гидротурбостроения. Спустя много десятилетий газета «Красное Знамя» в статье «У истоков Сибирской гидроэнергетики» писала: «Тринадцать лет Балакшин принимал непосредственное участие в подготовке в городе Томске новой советской интеллигенции, передавая молодым свои знания, навыки и любовь к Родине» [35].

Одновременно с чтением лекций и руководством дипломными проектами С. А. Балакшин вел большую научно-исследовательскую работу в институте и в Сибисполводе. Систематически читая иностранные технические журналы, С. А. Балакшин был всегда в курсе новостей мировой техники. Не удивительно, что его заинтересовал новый тип быстроходной пропеллерной гидротурбины. Однако в краткой заметке, рассказывающей об этой новинке, содержались весьма отрывочные сведения. И тогда С. А. Балакшин сам рассчитал основные узлы и разработал конструкцию пропеллерной гидротурбины, а также сделал ее рабочие чертежи. Для проверки параметров турбины он вместе с сыновьями-студентами изготовил модель и испытал ее в гидравлической лаборатории Томского технологического института. Испытания, показавшие хорошие результаты, получили высокую оценку профессора В. Н. Пинегина. Руководитель гидравлической лаборатории писал в 1922 г.: ". . .в особенности для меня дороги сегодняшние испытания нового типа турбины" [2 Книга отзывов С. А. Балакшина // Архив Балакшиных.].

В это же время С. А. Балакшин определил необходимые параметры пропеллерной гидротурбины, которую предполагалось установить на мельнице в пригороде Томска. При этом ученый-инженер самолично разработал рабочие чертежи турбины и совместно с дочерью и сыном изготовил ее, как говорится, "для натурных условий". Рабочее колесо четырехлопастного пропеллерного типа было отлито из латуни, а отсасывающая труба конического типа выполнена из железобетона. Направляющий аппарат состоял из нижнего кольца-основания и верхней крышки, изготовленных также из железобетона, а между ними были помещены направляющие лопатки, отлитые из латуни. Сверху крышки было надето кольцо-коллектор с закрепленными на нем тягами, соединенными с лопатками. Установленная на мельнице быстроходная пропеллерная гидротурбина С. А. Балакшина работала хорошо, надежно обеспечив необходимую мощность и требуемые обороты.

Создав конструкцию быстроходной пропеллерной турбины, создав и испытав ее модель, С. А. Балакшин стремился дать ей практическое применение. Несколько турбин, изготовленных полукустарным способом, ему удалось установить на мельницах, расположенных вблизи Томска. Наряду с помолом муки турбины, соединенные с гидрогенераторами, обеспечивали мельницу и близлежащие строения электрическим освещением.

В ноябре 1923 г. группа уполномоченных села Горекино обратилась к руководству Томского технологического института с просьбой оказать помощь по электрификации этого села. Ученые института живо откликнулись на этот призыв. С. А. Балакшин спроектировал для Горскино быстроходную турбину пропеллерного типа мощностью 100 кВт. В процессе работы он в мае 1924 г. выезжал на место для обследования р. Ур и измерения ее расхода. Изготовление гидротурбины было поручено учебно-вспомогательным мастерским института (директор – инженер А. И. Мельников). В июне 1924 г. турбина была испытана в гидравлической лаборатории института и в дальнейшем эксплуатировалась без капитального ремонта свыше 25 лет до момента подключения села к общесоюзной электросети.

Электротехническую часть проекта электрификации Горскино (расчет генератора, трансформатора, электросети) выполнял преподаватель института В. А. Надежницкий, являвшийся большим специалистом в этой области. Поставку электроматериалов и электрооборудования осуществило Томское электробюро. Большую помощь в электрификации Горскино оказал первый в нашей стране добровольный студенческий строительный отряд, сформированный из студентов-комсомольцев старших курсов Томского технологического института. Пятнадцать студентов-добровольцев смонтировали в селе всю электропроводку и установили столбы. Строительством здания гидроэлектростанции руководил инженер-строитель Е. П. Лавров.

Главный корпус Томского технологического института, 1925 г.

Несмотря на трудности, возникавшие в ходе строительства, нехватку ряда необходимых материалов, первая в Западной Сибири сельская гидроэлектростанция начала свою работу в конце 1924 г., хотя ее торжественное (официальное) открытие было приурочено к 8 марта 1925 г. Лампочка Ильича загорелась не только в Горскино, но и в двух соседних селах – Ново-Пестерово и Урском. Гидроэлектростанция давала энергию и построенной одновременно с ней мельнице, столь необходимой тогда местным крестьянам. Позднее земляная плотина мельницы была заменена бетонной. Жители Горскино гордились своей электростанцией.

Тем временем С. А. Балакшин продолжал работу над совершенствованием пропеллерной турбины. В 1927 г. Курганский турбиностроительный завод заказал ему разработку рабочих чертежей нескольких типов пропеллерных гидротурбин [3 Письмо Курганского турбиностроительного завода от 20 июля 1927 г. № 922 // Архив Балакшиных.]. Ученый быстро разработал рабочие чертежи, и гидротурбина получила условный шифр «Богатырь-быстроход» конструкции С. А. Балакшина. Курганский турбиностроительный завод освоил и выпустил некоторое количество гидротурбин этого типа.

Все это лишний раз свидетельствует о том, что С. А. Балакшин, даже находясь на преподавательской работе, не порывал своих связей с производством. В 1929 г. он спроектировал (опять-таки по просьбе Курганского турбиностроительного завода) открытую вертикальную гидротурбину мощностью 370 кВт, предназначенную для приведения в движение прокатных станов на железноделательном заводе на Урале. С. А. Балакшин систематически консультировал инженерно-технический персонал Курганского турбиностроительного завода, который сам организовал в 1900 г.

Активная деятельность С. А. Балакшина в области гидроэнергетики продолжалась много лет (1900– 1933 гг.). При этом, разрабатывая конструкции и технологию изготовления гидротурбин, выпускаемых большими сериями, ведя научно-исследовательскую работу в этой области, он одновременно активно занимался подготовкой квалифицированных инженеров– гидроэнергетиков.

Труды по гидроэнергоресурсам Сибири. Научная деятельность С. А. Балакшина разнообразна и затрагивает ряд проблем, над которыми ученый работал на протяжении всей своей жизни. Особое место в его научных исследованиях занимали вопросы определения гидроэнергетического потенциала сибирских рек и способы его практического использования. С. А. Балакшин понимал, что эта проблема имеет огромное значение для страны в связи с намечаемым в те годы бурным развитием промышленности, сельского хозяйства, транспорта и др.

Как известно, запасы таких источников энергии, как каменный уголь, нефть, природный газ, ограничены и не восстанавливаются. Запасы других источников (дерево, торф), хотя и образуются постоянно, восстанавливаются крайне медленно. Но существуют такие энергетические источники (вода, ветер, солнечное излучение), запасы которых возобновляются постоянно, и их энергия является самой дешевой* Поэтому С. А. Балакшин считал, что в процессе реконструкции народного хозяйства страны гидроэнергия должна играть роль одной из главных производительных сил.

Как уже говорилось, на основе результатов исследований, проведенных Сибисполводом, инженер-конструктор С. А. Балакшин составил первый приближенный кадастр водоэнергетических ресурсов Сибири и опубликовал теоретическую работу "Запасы водных сил Сибири" [8, 23]. В ней С. А. Балакшин попытался выяснить общий запас водной энергии Сибири, ее территориальное распределение и возможное использование на ближайшую и более дальнюю перспективу.

Прежде всего он наметил площади отдельных водосборных бассейнов сибирских рек по гипсометрической карте азиатской части России. Затем С. А. Балакшин определил количество выпадавших там осадков: их изолинии он наносил на основании метеорологических материалов того времени. Для подсчета количества воды, стекающей с разных частей бассейнов, ему потребовалось установить коэффициент стока или отношение количеств стекающей и выпадающей воды.

Ввиду изменения коэффициента стока в зависимости от высоты бассейна над уровнем моря, уклона и других факторов С. А. Балакшин разделил высоту каждого бассейна на три части: равнинную – от 0 до 200 м над уровнем моря; среднюю – от 200 до 500 м и гористую – выше 500 м над уровнем моря. Исходя из этих данных, он обвел и определил планиметрированием по гипсометрическим картам, составленным Ю. М. Шокальским [43, 78], площади отдельных частей каждого бассейна. Вся площадь Сибири была разделена на 16 отдельных бассейнов, причем одновременно были вычислены площади водосборных бассейнов сибирских рек, находившихся в Монголии, откуда берут начало некоторые сибирские реки (Обь, Енисей, Амур). В результате такой обработки была составлена таблица площадей водосборных бассейнов рек Сибири (см. прил. табл. 6).

Для того чтобы узнать количество воды, стекающей как с отдельных поясов разных высот бассейнов, так и с площади каждого бассейна, необходимо было установить количество осадков и рассчитать коэффициент стока. Сколько осадков выпадает в том или ином бассейне С. А. Балакшин подсчитал по изменяющимся у него метеорологическим материалам. Исходя из полученных данных, он составил карту распределения осадков азиатской части России по отдельным бассейнам [8].

Пользуясь этой картой, исследователь провел планиметрирование площадей различных частей бассейна для каждой высоты его пояса с одинаковым количеством осадков и на основании этого подсчитал количество воды, выпадающей в каждой отдельной площади бассейна.

Эти данные легли в основу расчета "количества воды, выпадающего на каждый пояс бассейна. При этом количество годовых осадков, выпадающих на площадь между двумя изолиниями годовых осадков, принималось как среднее арифметическое".

Затем С. А. Балакшин перешел к установлению количества стока сибирских рек. Прежде всего, использовав данные зарубежных литературных источников, он определил коэффициенты стока: сибирских рек: для равнинной части бассейна (высота до 200 м) – 0,3; для средней (до 500 м) – 0,4; для гористой (500– 1200 м и выше) – 0,6. С. А. Балакшин изложил в своей работе материалы, подтверждающие правильность выбора приведенных коэффициентов стока [8]. Учитывая коэффициенты стока и данные о количествах выпадающих осадков, он вычислил "объем стока по бассейнам рек Сибири и его распределение по высотам бассейнов".

Говоря об использовании высотных перепадов бассейна, С. А. Балакшин писал: "Полное падение или весь уклон использовать невозможно, некоторая часть его должна быть потеряна на движение воды к океану или на само перемещение ее". Ученый принял следующие уклоны поверхности рек (в мм), позволяющие воде естественно перемещаться к океану (на 1 км длины) для: гористого пояса – 120, для холмистого – 40; для равнинной части – 20. Далее он вычислил потери на естественное перемещение воды в речных бассейнах по отдельным поясам, определив для каждого из них средний уклон бассейна.

Полезной высотой падения отдельных поясов С. А. Балакшин считал для равнинной части бассейна – 100 м; средней – 300; гороистой – 700 м. Рассматривая – вопрос о применении количества стекающей воды, С. А. Балакшин указывал, что энергетические установки, действующие на водной энергии, строятся с расчетом на использование минимального количества воды при непрерывной работе в течение 12 месяцев в году или с расчетом полной нагрузки в период нескольких месяцев. Минимальный расход, наблюдаемый в реках обычно зимой, по мнению С. А. Балакшина, "составлял только часть среднего расхода реки".

По данным С. А. Балакшина, за 12 месяцев можно использовать годового стока (в %) для: гористой части бассейна – 15; средней части – 20; равнинной – 25. При этом он подсчитал, что наиболее оптимальное отношение расчетного расхода на ГЭС к минимальному равно двум. Следует сказать, что во всех расчетах С. А. Балакшин принимал коэффициент полезного действия гидравлических машин равным 90 %. Что касается общего коэффициента использования водных ресурсов, то он в расчетах С. А. Балакшина колебался от 10,5 до 45 %.

Мощность того или иного пояса бассейнов сибирских рек С. А. Балакшин находил по формуле

N = 1000QHη/75,

где N – мощность пояса, л. с.; Q – расход воды, стекающей с пояса, м3/с; Н – используемое падение пояса в пределах исследуемого контура над уровнем моря, м; η – коэффициент полезного действия гидравлических машин [4 По современной методике этот кпд принимается равным единице.]. Результаты определения потенциальных мощностей бассейнов рек Сибири даны в приложении (см. табл. 7). Здесь же следует сказать о выводе, к которому пришел С. А. Балакшин в итоге своих исследований. По его убеждению, в Сибири возможно использовать в течение 12 месяцев речные бассейны мощностью 38 000 МВт и в течение 9 месяцев – 75 000 МВт.

В работе "Запас водных сил Сибири" С. А. Балакшин показал, что Сибирь при гарантированных запасах водной энергии в размере 38 000 МВт занимает первое место в мире по запасам этого вида энергии (см. прил. табл. 8). Из имевшихся гарантированных гидроэнергоресурсов на 1 января 1922 г., подчеркивал ученый, Сибирь употребила лишь 0,2 %.

Данное исследование, как уже говорилось, стало первой попыткой научно осветить водноэнергетический кадастр Сибири. На основаниий этой работы появилась возможность наметить планы использования энергии сибирских рек для нужд народного хозяйства края. В этом непреходящее значение этого труда С. А. Балакшина. Как показала дальнейшая практика, предложения, высказанные С. А. Балакшиным, подтвердились и способствовали разработке плана строительства крупных сибирских гидроэлектростанций. В 1924 г. "Запасы водных сил Сибири" были представлены участникам Первой мировой энергетической конференции в Лондоне [23].

В работе "Вопросы энергетики Сибири" [18, 24] С. А. Балакшин высказал мысль о том, что странам, обладающим большими запасами водной энергии, принадлежит будущее. Исходя из этого, он в своей новой работе показал народнохозяйственные перспективы сибирского края, привел данные, характеризующие запасы всевозможных энергетических ресурсов на территории Сибири к 1930 г., наметил пути их применения в 30-е годы. (Под Сибирью он подразумевал часть СССР, расположенную от Уральского хребта на западе до Тихого океана на востоке и до среднеазиатских республик и государственной границы на юге.)

С. А. Балакшин попытался составить краткую сводку запасов, распределения и использования отдельных видов энергии в Сибири, сведя все данные к условному топливу (7 тыс. кал на 1 кг условного топлива). Ученый разделил эти запасы на невозобновляемые и возобновляемые (с накоплением через 200 лет). Сравнив энергетические ресурсы стран мира, СССР и Сибири, он пришел к выводу о том, что на долю последней к началу 30-х годов приходилось 7,5 % мировых и 80 % отечественных энергетических запасов.

Первое место среди различных видов энергии Сибири, по мнению С. А. Балакшина, занимает каменный уголь (57 %). В Сибири к началу 30-х годов его запасы составляли 397 млрд т, или 5,4 % от всех мировых запасов. Наибольшие залежи каменного угля в этом районе были выявлены в Кузнецком бассейне.

Значок участника Первой мировой энергетической конференции, полученный С. А. Балакшиным

С. А. Балакшин обращал внимание на огромные запасы сибирского «белого угля». Ученый считал использование водной энергии в Сибири делом экономически выгодным: гидравлическая энергия, как показали расчеты тех лет, были в 2—3 раза дешевле энергии, получаемой от паровых и газогенераторных электростанций. Не случайно, говоря о грандиозном плане электрификации Сибири, он подчеркивал, что «в ближайшие годы здесь намечается строительство ряда крупных гидроэлектростанций».

Важным энергетическим ресурсом Сибири С. А. Балакшин считал лес – "зеленый уголь". На начало 30-х годов площадь всех сибирских лесов равнялась 348,960 млн га, что составляло 30 % мировых и 69 % лесных запасов СССР. Однако лесные богатства нашей страны в то время осваивались крайне медленно, причем в северных районах были даже не обследованы.

В Сибири много торфа. По данным С. А. Балакшина, его запасы там исчислялись 227 000 млрд т (70 % всех запасов в СССР). Правда, в начале 30-х годов, подчеркивал ученый, изучение сибирских торфяников велось еще очень слабо, впрочем так же, как и их использование. Причину этого С. А. Балакшин видел в богатстве Сибири другими видами топлива, а также слабым развитием путей сообщения.

По подсчетам С. А. Балакшина, Сибирь обладает значительными потенциальными запасами энергии ветра – "голубого угля". Но и эта энергия в те годы почти не использовалась. И все же С. А. Балакшин был твердо убежден, что в будущем "голубой уголь" Сибири будет верно и с пользой служить людям.

В 30-е годы шли разговоры о наличии в Сибири нефти. Однако тогда этот вопрос был изучен недостаточно. К тому времени нефть была обнаружена на о-ве Сахалин и в Забайкалье, но, несомненно, она имелась и в Сибири. Это утверждал И. М. Губкин, об этом писал в своей работе и С. А. Балакшин. Он даже считал, что уже в начале 30-х годов Сибирь могла дать стране 374 млн т нефти. В наши дни прогнозы С. А. Балакшина полностью подтвердились.

Размещение энергетических ресурсов Сибири, по мнению С. А. Балакшина, вполне благоприятствовало их использованию в народном хозяйстве. Разведанные запасы каменного угля находились сравнительно недалеко от главной сибирской магистрали и рядом с месторождениями железной руды. Крупные судоходные реки Сибири (Ангара, Енисей, Иртыш, Томь) были пригодны для строительства ГЭС большой мощности. Строительству ГЭС благоприятствовал и ряд створов на горных реках Алтая и Приалтая (Катунь, Бия и др.). Запасы леса и торфа на севере Сибири можно было эксплуатировать по мере сооружения подъездных путей.

По данным С. А. Балакшина, в 1930 г. в Сибири имелось всего 19 383 источника энергии с общей мощностью в 1013 тыс. кВт. Часть действующих в то время стационарных источников энергии имела суммарную мощность 143 тыс. кВт; подвижные источники ^паровозы, пароходы, автобусы и др.) обладали мощностью около 1 млн. кВт. Таким образом, считал С. А. Балакшин, Сибирь электрифицирована пока крайне незначительно. Ученый верил в великие возможности этого процесса. "Отсюда видно, – писал он в заключение работы, – какими крупными шагами государственное хозяйство СССР предполагает развернуть в ближайшие годы проблему энергетики и электрификации Сибири. И, очевидно, недалеко то время, когда колоссальные энергетические ресурсы и природные богатства Сибири будут широко использованы" [18].

Работа С. А. Балакшина "Вопросы энергетики Сибири" была доложена на Второй мировой энергетической конференции, состоявшейся в июле 1930 г. в Берлине [24].


    Ваша оценка произведения:

Популярные книги за неделю