Текст книги "Энергетика сегодня и завтра"
Автор книги: Александр Проценко
Жанр:
Прочее домоводство
сообщить о нарушении
Текущая страница: 8 (всего у книги 14 страниц)
На объединении "Азот" такие новые установки соседствуют со старыми. Нужно заменять старые новыми и еще более совершенными. Правда, эти "еще более совершенные" разрабатываются и осваиваются медленно, очень медленно. Судите сами хотя бы по такой детали. Предполагалось начать установку новой модели аммиачного агрегата АМ-85 в 1985 году. А теперь, оказывается, он будет испытываться лишь в 1990 году. В этой новой установке затраты энергии сократятся на 30-40 процентов.
Нужно сказать, что северодонецкое объединение "Азот" – передовое в отрасли по экономии топливноэнергетических ресурсов. Его коллектив не нужно убеждать в необходимости рационального расходования энергии. Движение за экономию охватывает на нем все производства, цехи и службы.
Немного найдется предприятий, на которых, как на "Азоте", ежедневно проводятся селекторные совещания с анализом расхода энергоресурсов. В одиннадцатой пятилетке экономия ресурсов составляла ежегодно несколько процентов.
На каждом предприятии существуют десятки и даже сотни способов экономии энергии. Некоторые могут дать существенный эффект. На "Азоте", кроме экономии энергии за счет повышения КПД основных технологических агрегатов, большую роль играет экономия вторичных ресурсов.
Очень часто над химическим или нефтехимическим заводом возвышается труба, из которой вырывается огненный факел. Благодаря такой "свече" обеспечивается безопасность производства. Ведь здесь кругом газы, которые при смешении с кислородом воздуха образуют взрывоопасную смесь. Их приходится сбрасывать из установок при запуске или аварии и сжигать. Вот почему постоянно горит "свеча".
Не всегда огонек "свечи" маленький. Иногда слышится даже рев пламени. Это означает, что предприятие сжигает вторичные энергетические ресурсы, прежде всего загрязненные ненужными примесями горючие газы, которые сбрасываются из различных точек технологических процессов. Из процесса выводятся также газы, не удовлетворяющие технологическому процессу по тем или иным параметрам. Чаще всего вторичные энергетические ресурсы – это горючие газообразные продукты сгорания, выходящие из различных печей. При охлаждении технологических потоков нагретых веществ сбрасывается в атмосферу большое количество физического тепла.
Еще хуже, когда горючие органические вещества выносятся сточными водами. Губятся реки и водоемы, пропадает топливо. До недавних пор не удавалось решить эту проблему – фильтры или очистные устройства оказывались малоэффективными или дорогостоящими.
Но сейчас научились использовать такую воду для производства пара. Образовавшийся пар "поджигают", и в его пламени сгорают загрязняющие растворенные компоненты. При "сгорании" пар дополнительно перегревается, воспринимая энергию растворенных горючих веществ.
До проведения активных работ по энергосбережению потенциальные запасы вторичных ресурсов на объединении "Азот" составляли около десятой части от всего энергопотребления. Раньше обычно не принимали в расчет воды, нагретые на 50-60 градусов. Считалось, что на предприятии, где выбрасывается много тепла значительно более высокого потенциала, использовать их экономически и энергетически невыгодно.
А на "Азоте" сумели найти применение и этому теплу. Большинство технологических процессов проходит здесь при высоких давлениях. Значит, без компрессоров не обойтись. Затраты же энергии на сжатие газов в компрессорах меньше при более низкой температуре. Нагревающиеся при сжатии газы охлаждаются водой. Поэтому нагретой воды много. Заводчане нашли ей применение.
Правда, только в зимнее время. Но ведь не хватает энергии именно зимой.
Рядом с "Азотом" расположен институт ГосНИИметанолпроект. Специалисты обеих организаций предложили подогревать с помощью этого тепла речную воду, направляемую на обработку. Температура ее должна быть не менее 25 градусов. Разработали проект, построили теплообменный блок. "Азот" стал экономить преимущественно зимой 30 тысяч тонн условного топлива в год. Кроме того, уменьшился расход электроэнергии на градирнях водооборотной системы.
Значительную экономию топлива на "Азоте" тоже получили, собрав сбросные горючие газы от нескольких действующих производств.
Пришлось решить ряд сложнейших технических вопросов, связанных с безопасностью и экономной транспортировкой влажных газов. Само это мероприятие проводилось с соблюдением мер экономии.
Например, были использованы нагнетатели, освободившиеся после закрытия старого производства аммиака.
Не забывают на "Азоте" и об обычных организационно-технических мерах, не требующих больших затрат материальных и трудовых ресурсов и длительных сроков.
Речь идет о ликвидации простых потерь тепла, совершенствовании схем электроснабжения, разработке оптимальных режимов работ, улучшении работы сооружений водооборота.
Однако от всех недостатков в энергосбережении избавиться не удалось. Членам нашей группы, созданной по постановлению ГКНТ, не раз приходилось летать в гостеприимный Северодонецк, проверяя, а как же выполняется программа "Энергосбережение". Ныне опыт производственного объединения "Азот" широко распространяется в химической промышленности.
А опыт действительно драгоценный. Постоянный изобретательский поиск во имя сбережения энергии вознаграждается. "Азот" в течение долгого времени наращивает выпуск продукции при том же расходе топлива.
За разработку и внедрение комплекса мероприятий по экономии топливно-энергетических ресурсов группе работников объединения в 1984 году присуждена премия Совета Министров СССР.
Сборник отличных мыслей
В этой голубенькой книжечке 150 страниц. Называется она: "Сборник предложений по экономии электрической и тепловой энергии, премированных на тридцать пятом Всесоюзном конкурсе". На конкурс подано 1700 предложений, а в книжке рассказывается только о 200, отмеченных премией. Какова судьба остальных?
Наверное, многие дельные идеи так и не вышли за стены тех предприятий, где родились. Это обидно – очень уж расточительно ограничиться всего двумястами премированными находками. Смотрю тираж брошюры – всего 5000 экземпляров на сотни тысяч различных предприятий страны! Пожалуй, такие книги надо издавать миллионами и рассылать на предприятия даже в обязательном порядке.
Читателю, конечно, ясно: не то что рассказать обо всем этом бесконечном множестве идей, но даже перечислить наиболее важные в различных отраслях промышленности невозможно. Мы и не станем пытаться это делать. Резоннее будет лишь взглянуть на главные пути этой деятельности.
Улучшая организацию производства и использования энергии и применяя недорогие технические новшества, можно добиться около четверти всей экономии. Нестандартный подход способен принести ощутимые результаты. Вот пример из сборника "Отличных мыслей". Десятки тысяч промышленных холодильных установок разной мощности работают на хладокомбинатах, базах по хранению продуктов, столовых. Летом и зимой они потребляют громадное количество электроэнергии. Зимой?! Когда на улице мороз? И вот предлагается вентилировать хранилища зимним наружным воздухом. К сожалению, в большинстве случаев так делать нельзя, но можно ввести в схему холодильной установки специальный воздушный конденсатор-охладитель предлагают авторы изобретения. В результате экономятся миллионы киловатт-часов электроэнергии.
Недавно прочитал, что в Финляндии такие холодильные установки уже работают.
Чтобы сберечь энергию, надо также, говорится в Энергетической программе СССР, совершенствовать эксплуатацию действующего оборудования, сокращать непроизводительные потери.
Около 60 процентов всех электродвигателей нашей страны используются для привода вентиляторов, компрессоров, насосов, воздуходувок. Они вращаются с постоянной скоростью. Но ведь требования потребителей меняются во времени. Значит, вращение выгодно регулировать с помощью, скажем, современных полупроводниковых регуляторов. Тогда в масштабах страны можно было бы сэкономить до 10 процентов (!) всей вырабатываемой электроэнергии.
Полупроводниковые регуляторы способны эффективно снизить напряжение при уменьшении нагрузки. При этом будет поддерживаться высокий уровень КПД. Дело пока дорогое, но во многих случаях окупается за счет экономии энергии.
Если же научиться разумно распоряжаться вторичными энергетическими ресурсами, то в принципе, как показывает опыт объединения "Азот", это может дать еще около 10 процентов всей сэкономленной энергии. Но сорок процентов всей ожидаемой экономии энергии можно получить благодаря, как сказано в Энергетической программе, "разработке и освоению энергосберегающих технологий".
Сначала ответим на вопрос: "Сколько энергии нужно теоретически для того, чтобы создавать различные вещества и материалы, используемые человеком?"
Теория и практика иногда значительно расходятся.
Теоретически для производства одной тонны цемента нужно затратить 25 килограммов условного топлива, а практически – более чем в десять раз больше: 320 килограммов.
Приведу небольшую табличку, которая прямо-таки вопиет: "Люди, зачем вы транжирите энергию, столь нужную для повышения качества жизни?" Вот сколько тонн условного топлива расходуется на производство одной тонны продукта.
...........................................................
.__________________________Алюминий__Сталь__Цемент__Бумага.
.Современный расход___________7________1______0,3_____1,5_.
.Возможный расход с ис-___________________________________.
.пользованием новых до-___________________________________.
.ступных технологий___________6_______0,6_____0,15______1_.
.Теоретически минимально__________________________________.
.необходимый расход___________1_______0,2_____0,025___0,01.
...........................................................
Как видим, современные расходы отличаются от теоретических в пять-десять раз, а при получении бумаги более чем в сто раз. Теоретические цифры определяются энергией, необходимой для разрыва связей между атомами в различных сырьевых материалах – окислах алюминия, железа, кальция, кремния. В действительности приходится затрачивать много энергии на отделение примесей, добычу сырья, производство оборудования, пол" чение необходимой структуры.
А если в теплообменниках, машинах и другом оборудовании перейти на керамические материалы, те самые окислы, которые разлагают, извлекая из них металлы?
Увы, пока для получения керамик с требуемыми хорошими свойствами нужно потратить энергии больше, чем на выделение из них металлов.
Если нижняя строка таблицы – это цель далекого будущего, то во второй строчке отражен уровень энергетичоских расходов, достижимый в ближайшие годы. Так, при производстве стали и цемента энергопотребление можно снизить в полтора-два раза.
Сначала о цементе – хлебе строительства. Изобретен отт был в 1824-1825 годах почти одновременно каменщиком из английского города Лидса Джозефом Эспдином и русским инженером Егором Герасимовичем Челиевым, одним из авторов проекта восстановления Москвы после пожара 1812 года. Когда смесь известняка и глины прокаливается при температуре 1400-1500 градусов, то образуются различные сплавы окислов кальция и двуокиси кремния, которые и есть цемент.
У нас в стране ежегодно производится 130 миллионов тонн цемента. Согласно таблице при этом расходуется 40 миллионов тонн условного топлива. А производство цемента должно еще наращиваться. Как снизить энергопотребление?
Со времени изобретения цемента прошло более 150 лет, а, по сути дела, способ его производства почти не изменился. Сами изобретатели применяли так называемый "сухой" способ. Потом в смесь известняка и глины стали добавлять воду, благодаря чему получалась более однородная сметанообразная масса и улучшалось качество цемента. Но резко возросли затраты энергии на выпаривание воды. На это долгое время не обращали внимания – ведь топливо было дешевым. Подавляющая часть цемента у нас в стране производится таким "мокрым"
способом.
А во Франции, ФРГ, Японии почти все заводы уже перешли на "сухой" способ. В этом случае затраты энергии могут быть уменьшены в полтора-два раза. Некоторые заводы в нашей стране тоже работают по "сухому" методу.
Однако он пока не получил массового распространения, хотя у 75 процентов заводов страны имеется подходящая для этого сырьевая база.
Для производства некоторых марок цемента можно использовать цементный клинкер – почти готовую цементную массу, требующую только размельчения и введения некоторых добавок. Применение клинкера – побочного продукта черной и цветной металлургии – также дает существенное уменьшение энергопотребления.
Несколько лет назад сотрудники Ташкентского института строительных материалов открыли новый способ получения цемента – холодный. Они изучали влияние различных добавок на скорость образования цементною клинкера. Наилучшие результаты дал хлористый кальций. Оказалось, в его присутствии можно обжигать цемент при температуре около 1000 градусов, то есть снизить ее на 400 градусов. Топлива экономится почти на треть. Кроме того, в полтора раза возрастает производительность печей – громадных 30-метровых вращающихся барабанов, в которых сжигается нефть или газ.
Как показали дальнейшие исследования, ташкентские ученые создали фактически новый вид цемента, названный алинитом. От обычного кристалла цемента алинит отличается тем, что в него вкраплен еще и атом хлора.
Алинитовый цемент в полтора-два раза легче измельчается и значительно быстрее твердеет при замешивании с водой, песком и щебнем. Значит, и здесь экономятся время и энергия!
На VII Международном конгрессе по химии цемента в Париже в 1980 году сообщение советских специалистов вызвало необычайный интерес. В Ташкент зачастили гости из ФРГ, Финляндии, Индии и других государств.
Судя по всему, в ближайшие годы удастся заметно понизить уровень энергопотребления в производстве цемента, уменьшить потребность в энергии более чем вдвое.
В полтора раза можно также уменьшить потребление энергии на производстве стали, если комплексно использовать различные новые технологические процессы металлургического производства, совершенствовать все его многочисленные технологические цепочки. Чтобы снизить удельный расход кокса, этого самого дефицитного топлива металлургии, целесообразно применять в доменном производстве природный газ, обогащать доменное дутье кислородом или повышать температуру дутья. В домнах будет потребляться на пять-десять процентов энергии меньше, если их объем увеличить с 2000 до 5000 кубометров.
Применение непрерывной разливки стали на 20 процентов увеличивает выход годного металла и тем самым также снижает расход энергоресурсов. Если увеличить долю лома как первичного сырья, то опять-таки существенно экономится энергия – энергозатраты при производстве стали изменятся в десять, а алюминия даже в пятнадцать раз.
В некоторых газетных статьях иногда встречаются неточности, создающие неправильное представление о возможных масштабах экономии энергии в черной металлургии. Например, утверждается, будто "применение кислородно-конвертерного способа позволяет в десять раз уменьшить потребление топлива при производстве стали по сравнению с мартеновским". Слов нет, кислородно-конвертерный способ очень прогрессивен и позволяет сократить потребление природного газа раз в десять. Но только природного газа. Общее же потребление энергии в конвертерc иногда выше, чем в мартене.
Уже сейчас кислородно-конвертерное производство в промышленно развитых капиталистических странах обеспечивает около двух третей выпуска металла. У нас – существенно меньше. Дело в том, что сохранение постоянных цен на жидкое и газообразное топливо в 70-х годах не стимулировало внедрение этого метода.
"Четверть всей экономии в ближайшие пятилетия можно получить за счет совершенствования внутриотраслевой и межотраслевой структур" – таковы сухие строчки Энергетической программы СССР. А это означает, что замена металлов менее энергоемкими конструкционными материалами приводит к энергетическим выигрышам в масштабах всего народного хозяйства. Здесь для конструкторов и производственников безграничный простор новаторского поиска.
Быстро или медленно!
Десять граммов условного топлива нужно израсходовать, чтобы перевезти по железной дороге одну топну груза на расстояние в один километр. Много это или мало? С чем сравнить эту величину?
Теоретически вообще не нужно затрачивать никакой энергии для того, чтобы при равномерном движении без трения переместить груз по горизонтальной поверхности. Затраты необходимы при ускорении и торможении.
Другая причина энергетических потерь – трение. Без него не смог бы существовать наш мир, но за использование сил трения нужно платить дорогой ценой. Рельсы, асфальт, вода, воздух препятствуют движению. Расход энергии зависит от типа двигателя, его КПД и, конечно, от вида транспортного средства, его размеров и формы.
Морской и речной транспорт расходует топлива в 10 раз меньше, чем железнодорожный, – всего 1 грамм на один тонно-километр. Это и понятно. Ведь и скорость у судов поменьше, и размер побольше. У автомобилей больше скорость, но гораздо меньше грузоподъемность.
А отсюда и значительные затраты энергии – 200 граммов на тонно-километр.
Ради наглядности сведем эти показатели (расход топлива в граммах на один тонно-километр) в таблицу:
Речные и морские суда ____________________1.
Трубопроводный транспорт нефти____________1.
Железная дорога__________________________10.
Трубопроводный транспорт газа____________50.
Автомобили______________________________200.
Авиация________________________________1000.
Человек_________________________________100.
Веломобиль_______________________________10.
Пчела__________________________________2000.
Пчела транспортирует свое тело самым неэкономичным образом, а вот человек передвигается гораздо эффективнее. Если бы конструктору предложили охарактеризовать человека как транспортное средство, он сказал бы: "Двигатель с автономным энергопитанием линейного типа. Весьма доступен и прост в обращении, надежен в работе. Конструкция усовершенствована опытами, проводившимися длительное время. Работает в широком диапазоне общедоступных топлив. Средний срок службы без капитального ремонта составляет 70-80 лет".
Вернемся к железным дорогам. Они обеспечивают половину всего грузооборота страны. Еще одна треть грузов передается по трубопроводам. Остальное перевозят морской транспорт, авиация и автомобили.
Не вот какая несообразность – на долю автомобилей приходится одна двадцатая грузооборота, а расходуют они 70 миллионов тонн условного топлива. Это почти треть транспортного энергопотребления. В то же время железные дороги, обеспечивающие 3,5 миллиарда тоннокилометров грузовых перевозок, забирают всего 15 процентов топлива.
Почему бы не передать половину автомобильных перевозок железнодорожному транспорту? Тогда дефицитного жидкого топлива будет сэкономлено около тридцати миллионов тонн!
Однако столь кардинальное совершенствование внутриотраслевой транспортной структуры неосуществимо по нескольким причинам. Во-первых, автомобили незаменимы при доставке грузов на малые и средние расстояния. Необходимо также перевозить грузы потребителям с железнодорожных станций. А ведь существуют еще карьеры, где не обойдешься без большегрузных автомобилей. Кроме того, в удаленные и труднодоступные места невыгодно пока прокладывать железные дороги, которые становятся экономичными только в том случае, когда грузопоток на них достаточно велик.
Совсем недавно завершилось ороительство БАМа. Десятки тысяч молодых строителей не жалели сил, сооружая одну из самых трудных железных дорог страны. Им бросали вызов и местность, и климат, и отдаленность от человеческого жилья. Однако в ближайшие пятилетки на БАМе 6} дет экономична только одна колея. Подопдет время, и проведут вторую нитку. И лишь потом встанет вопрос об электрификации. А почему не сделать этого сейчас?
Вопрос стоит так: "Что выгоднее – тепловоз или электровоз?" Затраты первичной энергии на электротягу (то есть топлива на электростанциях, вырабатывающих электроэнергию) меньше, чем на количество дизельного топлива, потребляемого тепловозами. Кроме того, электростанции вырабатывают электроэнергию из менее дефицитного угля, сланцев, ядерного горючего. Вроде бы электровоз выгоднее?
Однако электрифицировать железную дорогу – дело очень дорогое. Нужно затратить около 100 тысяч рублей на километр пути. Электрификация выгодна, если напряженность перевозок по железной дороге велика, так как в этом случае капиталовложения быстро окупятся. Если же железнодорожных эшелонов пропускается мало, лучше использовать тепловоз.
У нас в стране средняя грузонапряженность очень большая – около 25 миллионов тонн в год. Если состав весит 3 тысячи тонн, то железная дорога пропустит в год около восьми тысяч эшелонов, а с учетом пассажирских поездов – вдвое больше. Составы будут следовать дру!
за другом каждые полчаса. Такая высокая загрузка обусловливает и высокою экономичность железнодорожного транспорта нашей страны.
В Западной Европе и США картина совсем другая Железных дорог там построено очень много. Например, в США – около 300 тысяч километров железнодорожных путей. Однако используются они весьма слабо, даже расточительно. Грузопоток достигает всего 1-1,5 миллиона тонн в год, то есть в пять-десять раз меньше, чем в СССР. Поэтому электровозы там невыгодны. В США доля электрифицированных железных дорог составляет всего один процент.
В СССР же электрифицировано более трети железных дорог, по которым проходит половина грузооборот?
страны.
Совершенствование железнодорожного транспорта идет по всем направлениям – создаются более мощные тепловозы, увеличиваются их скорости. Идут испытания поездов на магнитной подвеске, разрабатываются проекты экспрессов, "летящих" в тоннелях. Нужны разные поезда – быстрые для пассажиров и экономичные для грузов.
Разумеется, конструкторы железнодорожного транс порта, конечно, тоже думают о том, как уменьшить затраты энергии.
На кольцевой линии Московского метро появился новый поезд с серебристыми шестигранными бочкообразными вагонами, выполненными из высокопрочных алюминиевых сплавов. Весят эти вагоны почти вдвое меньше прежних, также сделанных на Мытищинском машиностроительном заводе. Уменьшенный вес – это первый выигрыш, позволивший увеличить полезную нагрузку.
Кроме того, бочкообразная форма позволяет взять в каждый вагон на 30 пассажиров больше.
В поезде применена система возврата электроэнергии обратно в сеть в тот момент, когда он начинает тормозить. Двигатели при торможении переводятся в режим выработки электроэнергии, то есть работают как электрогенераторы. Только в результате этого усовершенствования энергозатраты уменьшаются на 12 процентов.
Из-за рельефа местности, ограничений при прохождении опасных участков, остановок на станциях скорость движения железнодорожных поездов неравномерна. Это значит, что можно выбирать оптимальную скорость, при которой расход топлива минимален. Делать это можно различными способами.
На станции Москва-Пассажирская – Курская машинисты депо пользуются методом "усредненных скоростей". Оптимальный режим работы двигателя выбирается в зависимости от характера пути, но на глазок. Лучше иметь перед глазами машиниста прибор-советчик, который связывал бы расход энергии со скоростью, профилем дороги.
На автомобилях такой прибор уже испытан. Когда шофер следит за расходом бензина на 100 километров пути по стрелке бортпроцессора, он становится бережливее. Изобретатель устройства Велло Лейто считает, что с его помощью можно сэкономить до 15 процентов бензина.
Самые опытные водители, садясь за руль "Жигулей", удивлялись: судя по показаниям прибора, они пользовались машиной крайне неэкономично. Привыкнув нажимать на педаль акселератора перед подъемом, они расходовали на испытательном участке до 15 литров бензина. Изобретатель же благодаря своему бортпроцессору цри той же средней скорости укладывался в 11-12 литров. Освоив новый экономичный стиль езды, водитель приучается тратить минимально необходимое количество горючего.
Безусловно, подобный прибор пригодился бы и машинистам тепловозов.
Сейчас на железных дорогах страны уже не осталось паровозов. В 1955 году на стальное шестикилометровое кольцо подмосковной испытательной станции близ Щербинки вывели самый мощный (4800 лошадиных сил) последний экспериментальный паровоз отечественной конструкции. "Век паровоза навеки ушел в прошлое, ибо на смену им пришли более совершенные локомотивы", писали в газетах.
Однако в последние годы в печати мелькают сообщения о попытках опять вернуться к паровозу. "Паровозная ностальгия" – не просто от любви к старине. Изобретатели-конструкторы надеются создать "новые" паровозы с высоким КПД.
Первый русский паровоз, построенный Черепановыми на Нижне-Тагильском заводе, перевозил 3,3 тонны груза со скоростью 15 километров в час. КПД последнего паровоза мощностью 4800 лошадиных сил был всего около 9 процентов. В проектах "неопаровозов" эту величину удалось поднять почти в три раза благодаря сжиганию в топках угольной пыли, уменьшению выброса в атмосферу вредных веществ.
Если КПД составит двадцать пять процентов, такой локомотив становится выгодным. У нас в стране есть много регионов с большими запасами каменного угля, ГДР электрификация железных дорог еще нецелесообразна.
Это, в частности, и район БАМа.
Уголь рассматривается как возможное топливо не только в паровозах, но и автомобилях. Конструкторы фирмы "Дженерал моторе" создали двигатель, работающий на угольной пыли с величиной частиц меньше трех микрон. Золу и серу удаляют мокрым рафинированием – уголь смешивают с жидким растворителем и очищают.
Угольная пыль вдувается из карбюратора в камеру сгорания сжатым воздухом. Для запуска такого турбинного двигателя необходимо жидкое топливо. Есть и другие неудобства. Мелкодисперсный уголь склонен к слеживанию, поэтому бак необходимо подвергать постоянной вибрации.
Главная нерешенная проблема – очень высокое содержание в выхлопных газах окислов азота.
Фирма "Дженерал моторе" не оригинальна. В начале XIX века француз Жозеф Ньепс, считающийся одним из первооткрывателей фотографии, изобрел и двигатель внутреннего сгорания. В качестве топлива в нем использовалась угольная пыль, смешанная со смолой. На реке Сене лодка с мотором Ньепса демонстрировалась перед французским императором Наполеоном I, не сумевшим оценить изобретение. Оно было забыто, но созданный почти сто лет спустя первый двигатель Дизеля также работал на угольном порошке.
Сейчас получили широкое распространение дизельные двигатели. Расход топлива в них на 30-40 процентов меньше, чем в двигателях внутреннего сгорания карбюраторного типа. В карбюраторных двигателях процесс горения инициируется при пропускании искры через сжатую смесь паров бензина и воздуха. В дизельных же двигателях воспламенение происходит от сжатия. Сначала воздух в цилиндрах сильно сжимается и при этом разогревается до 500-600 градусов, а затем под давлением в цилиндр впрыскивается горючее, которое загорается и медленно сгорает. Слово "медленно" говорит о том, что скорость горения топлива в дизельном двигателе меньше, чем в карбюраторном. В карбюраторных маторах применяются высокооктановые не детонирующие бензины, а для дизельных нужно другое топливо с высоким цетановым числом, характеризующим склонность юплива к самовозгоранию.
Перевод автомобильного транспорта на дизельные двигатели – одно из главных направлений экономии энергии. Возможности здесь еще далеко не исчерпаны.
Так, конструкторы надеются, что с помощью топливных насосов прямого впрыска, отказавшись от существующей сейчас форкамеры, можно уменьшить расход топлива еще на 15 процентов.
Самый главный и дешевый путь снижения расхода горючего – это борьба с перерасходом, уменьшение не проектных, а эксплуатационных его расходов за счет организации правильной эксплуатации автомобиля. Что для этого нужно сделать?
Надо оснастить автопарки, пункты технического сервисного обслуживания современными средствами диагностики и регулировки топливной аппаратуры. Большею помощь может оказать и описанный выше бортпроцессор. В комплекте со стрелочным прибором выпускается также и цифровой, дающий информацию о некоторых параметрах работы двигателя.
Много ли могут дать такие меры? Когда я, автолюбитель с 25-летним стажем, увидел в одной из книг данные по перерасходу топлива из-за различных неисправностей, то был поражен. Судите сами. Расход топлива увеличивается (в процентах):
..............................................
.не работает одна свеча________________20-30%.
.нарушен контакт прерывателя______________30%.
.неправильно отрегулирована система__________.
.питания топлива_______________________20-30%.
.неисправна система зажигания____________2-3%.
.та же неисправность при интенсивном_________.
.движении в городе________________________10%.
..............................................
А насколько можно в перспективе сократить потребление горючего при передвижении на автомобиле?
Фирма "Мерседес" создала автомобиль, который при скорости в 21 километр проезжает на 1 литре бензина 1028 километров. Мировой рекорд установлен в Швейцарии – 1284,13 километра на одном литре бензина. Однако этот рекорд был показан при меньшей скорости и более благоприятных дорожных условиях. Машина весит 55 килограммов, у нее пластмассовый корпус, мощность равна 0,736 киловатта.
Достижения автомобилестроителей на первый взгляд поражают. "Жигули" расходуют на 1200 километров 100 литров. Однако учтем, что скорость и вес у автомобиля-рекордсмена гораздо меньше. Скорость "Жигулей", при которой определен расход топлива, в четыре раза больше (80 километров в час). Если принять усредненную квадратичную зависимость от скорости, то показатель расхода автомобиля-рекордсмена увеличился бы в 16 раз. А ведь "Жигули" к тому же вдесятеро тяжелее.
Конечно, рекорды наглядно показывают, что облегчение автомобиля за счет применения пластмасс даст существенную экономию в расходе бензина. Эти рекорды заставляют также задуматься о том, какая скорость оптимальна в том или ином случае. Между тем наши автомобилестроители, сообщая о создании новых моделей, почему-то не всегда считают нужным говорить о важнейшем показателе – затратах горючего, а делают упор на скорость, приемистость. Впрочем, сейчас конструкторы стремятся уменьшить расход топлива по всем направлениям. Они совершенствуют аэродинамику автомобиля, снижают потери на трение, всячески облегчают конструкцию и, конечно, повышают КПД двигателя.