355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Проценко » Энергетика сегодня и завтра » Текст книги (страница 7)
Энергетика сегодня и завтра
  • Текст добавлен: 21 сентября 2016, 14:25

Текст книги "Энергетика сегодня и завтра"


Автор книги: Александр Проценко



сообщить о нарушении

Текущая страница: 7 (всего у книги 14 страниц)

Но в нашей стране много районов, где нет централизованного теплоснабжения от ТЭЦ и могут оказаться эффективными тепловые насосы например, если вблизи жилищ есть теплые сбросные воды заводов, фабрик, коммунально-бытовых предприятий. Температурный потенциал сбрасываемого тепла может оказаться недостаточным для жилищ, но тепловому насосу гораздо легче "перекачать" теплую воду на уровень, необходимый для отопления. Слово "легче" здесь означает, что для такой "перекачки" тепла потребуется меньше электроэнергии, чем на нагрев воды до температуры, необходимой в отопительной системе жилья.

Илп возьмем ситуацию, когда есть дешевая электроэнергия. Такой она бывает, например, ночью. Тепловой насос в это время может "накачать" в аккумуляторные баки массу горячей воды, достаточную для отопления в течение дня. С помощью дешевой ночной (подпиковой)

электроэнергии уже отапливают сельскохозяйственные объекты в Прибалтийских республиках, правда, в небольших количествах. Применение тепловых насосов позволит расширить масштабы применения подпиковой электроэнергии в том регионе, где органическое топливо очень дорого.

Нестандартно, гибко, с учетом всех местных условий должна определяться энергетическая тактика и стратегия для разных районов страны. У меня перед глазами – Якутия и Магаданская область, где совсем недавно я побывал в служебной командировке. Пришлось как раз разбираться с одним из вопросов энергоснабжения.

В этом регионе много полезных ископаемых. По всей территории рассеяны горнодобывающие предприятия.

Наиболее интенсивная работа у них летом, когда легче справиться с вечной мерзлотой. Такие районы часто имеют вывернутый график нагрузок: летом электроэнергии потребляется больше, чем зимой.

Сотни мелких котельных дымят всю долгую зиму, обеспечивая отопление жилых домов. Котельные невелики по размерам, и обслуживающего персонала требуется предостаточно – ведь в качестве топлива используется уголь, смерзающийся зимой в твердые глыбы. Более того, уголь нужно доставлять автомашинами по горным трактам иногда за многие сотни километров. И снова нужны автоводители и служащие автопредприятий, а обустройство каждого нового человека на Севере стоит очень дорого и влечет, в свою очередь, дополнительные затраты энергии. Кроме того, автотранспорт нуждается в дизельном топливе, а он здесь особенно дорог. Видите, какая длинная энергодорогостоящая цепочка вытянулась для спасения от зимней стужи. Нет ли способа дешевле?

Ответ напрашивается сам собой – тепловые насосы.

И здесь мы сталкиваемся с парадоксальной ситуацией.

Руководители, отвечающие за электроснабжение, почти ритуально и с негодованием твердят о "термодинамическом безобразии" использования электроэнергии для отопления.

Но обратите внимание, ведь электроэнергия в этом случае нужна для обогрева ночью, когда она в избытко, а не днем; зимой, а не летом, когда ее потребление возрастает. И дальше: ведь можно будет отказаться при таком (электрическом) способе отопления от части автотранспорта, расхода дизельного топлива, уменьшить количество обслуживающего персонала.

Бернард Шоу сделал правильное наблюдение: "Как только захочется поверить во что-нибудь, сразу видишь все аргументы за и становишься слеп ко всем аргументам против". Не хотелось бы выглядеть слишком увлеченным.

Но пусть и оппоненты проявят объективность. Наверное, если бы они ведали не только электроэнергией, но отвечали бы и за тепло, их точка зрения не страдала бы ведомственной ограниченностью.

Как же обстоят дела с тепловыми насосами в нашей стране?

В сущности, они есть сейчас почти в каждой квартире – ведь это наши домашние холодильники. Они перекачивают тепло из одной среды в другую за счет электроэнергии, оплачиваемой по 4 копейки за 1 киловатт-час.

Они поднимают температуру в комнатах и понижают в морозильной и холодильной камерах. Отбор тепла из холодильника происходит через теплообменники, расположенные на его задней стенке, поэтому их не всегда и замечают.

Если эти теплообменники холодильника вынести из квартиры и разместить за стеной дома, а через холодильную камеру прокачивать воздух, то получим кондиционер. На изготовлении тепловых насосов подобного типа специализируется Бакинский завод кондиционеров. Их часто можно видеть в окнах домов, особенно в южных районах страны.

Теперь сделаем еще одну операцию – развернем кондиционер наоборот. Тогда охлажденный в камере воздух будет нагреваться не в квартире, а за стенами дома. Наш кондиционер будет отбирать тепло у атмосферы и направлять его в комнату. Конечно, охладить воздух за окнами кондиционеру не удастся – его слишком много.

Что же, мы получили тепловой насос? Не совсем. Настоящий экономичный насос должен быть совершеннее.

Бытовой холодильник не обязан иметь высокий КПД – его мощность относительно невелика. Но кондиционеры и тем более тепловые насосы должны поддерживать температурный режим не в маленьких холодильных камерах, а в просторных квартирах и производственных помещениях. Им надо больше мощности, выше КПД.

Установки теряют простоту холодильников, становятся дороже и сложнее в эксплуатации. Это несколько приостанавливает нашествие тепловых насосов.

У нас в стране теплонасосные установки начали распространяться в наиболее выигрышном для них районе.

В крымско-кавказской курортной зоне даже в осенне-зимние месяцы имеется безграничный источник тепла – восьмиградусная вода Черного моря. Благодаря тепловым насосам жители Черноморского побережья могут пользоваться дешевой горячей водой.

Для обогрева и получения горячей воды можно приспособить также громадное количество холодильных установок, работающих на фермах, овощехранилищах, хладокомбинатах, в столовых, магазинах. Как же не выбрасывать, а использовать тепло, вырабатываемое в этих тепловых насосах? Требуется лишь некоторая реконструкция. Над ее оптимальными вариантами сейчас и бьются специалисты ГДР, Франции, нашей страны.

Для себя или для внуков!

Мало изобрести и создать устройства для эффективного использования различных видов энергии в промышленности, транспорте, сельском хозяйстве. Нужно еще оценить, а выгодны ли они обществу? На помощь приходит экономический анализ. Именно он позволяет определить целесообразность создания той или иной машины, масштабы внедрения новой техники, развития какоголибо направления энергетики.

Известен афоризм, приписываемый Б. Франклину:

"Я не так богат, чтобы покупать дешевые вещи". В быту мы часто руководствуемся этим принципом. Иногда предпочтем дорогую вещь, ибо она, как правило, служит дольше. Правда, приобретаем мы и дешевые вещи наподобие рабочей одежды или чего-нибудь модного. Так или иначе, интуитивно или по определенным правилам мы распределяем свой бюджет. Однако, если речь идет об очень дорогостоящей покупке, которая и служить тоже должна очень долго, решение принять непросто. Вот одна из задач с "энергетическим" уклоном.

Вам предлагают для обогрева индивидуального дома два типа отопительных установок: одна стоит 1000 рублей, а ежегодная эксплуатация будет обходиться в 50 рублей, у другой эти показатели равны соответственно 500 и 100 рублям. Какую выбрать?

Ответить сразу трудно. Учтем затраты за первые пять лет эксплуатации.

Для первой установки они составят:

1000 рублей + 50 рублей в год X 5 лет = 1250 рублей.

Для второй:

500 рублей + 100 рублей в год X 5 лет = 1000 рублей.

Значит, выбираем вторую? Не будем спешить. Выясним, а как будут выглядеть затраты через 15 лет?

Оказывается, что для первой установки полные затраты – 1750, а для второй – 2000 рублей. В этом случае нужно было бы выбрать первую, а не вторую установку.

Выбирая более дешевую, мы экономим в первоначальных затратах, но затем в будущем нашим детям и внукам придется нести больше расходов на ее эксплуатацию.

Для дорогой установки ситуация обратная. Вот откуда появилось название этого раздела: "Для себя или для внуков?"

Нет одинакового рецепта для разных экономических проблем, возникающих в нашем быту. Каждый решает эти вопросы по-своему.

В энергетике же без таких рецептов не обойтись. Всю важность выбора наиболее выгодного варианта осознала еще комиссия по разработке плана ГОЭЛРО. Вот что записано в одном из ее протоколов: "Очень важно для будущей работы ГОЭЛРО раз и навсегда определить, что нам выгоднее: большие первоначальные затраты и дешевая эксплуатация станции или меньшие капиталовложения и дорогая эксплуатация".

Многочисленные исследования, проведенные энергетиками и экономистами, позволили выработать такую рекомендацию: капиталовложения нужно соизмерять с ежегодными эксплуатационными затратами с помощью специального коэффициента эффективности капиталовложений. Используя его, мы получим так называемые приведенные затраты.

Для новой техники коэффициент эффективности равен 0,15. Тогда задача, поставленная нами в начале э ого раздела, решается следующим образом.

Приведенные затраты для первой устань ки составят:

1000 X 0,15 + 50 = 200 рублей.

Для второй – меньше – 500 X 0,15 + 100 = 175 рублей.

Значит, вторую и нужно выбирать.

Вроде бы просто и понятно, но откуда мы взяли 0,15 – коэффициент эффективности капиталовложений?

Теоретически он должен вытекать из оптимального плана развития народного хозяйства на длительный период. Однако на самом деле его приходится определять экспериментальным путем на основе опыта создания, эксплуатации и проектирования энергетических объектов и оценки той роли, которую они играют в народном хозяйстве.

Нагляднее обратная величина этого коэффициента – срок окупаемости капиталовложений. Значение 0,15 – соответствует примерно 6 годам. Пока еще нет единой точки зрения, каковы должны быть сроки окупаемости для разных отраслей. По мнению одних экономистов, он один и тот же для всех отраслей, другие же допускают разброс от 4 до 12 лет. Сравнение экономической эффективности различных вариантов энергетических установок и стратегий страдает и от других недостатков, и поэтому привлекаются сопоставления также по величине трудовых затрат, по воздействию на окружающую среду, по необходимым масштабам развития производства в смежных областях и т. п.

В последние годы развивается еще один метод сравнения, который получил название энергетический неттоанализ. Он позволяет определить, сколько энергии должно быть затрачено на создание вещей, оборудования, домов. Подсчитывая энергетические затраты при возведении, например, энергетической станции, мы выявляем с помощью нетто-анализа, сколько чистой энергии будет в результате направлено в народное хозяйство. Для этого из всей затраченной энергии вычитаются энергетические расходы на строительство станции, изготовление оборудования и материалов, последующую эксплуатацию станции.

Вот мы и начали выяснять, куда исчезает или где используется энергия, производимая различными энергетическими установками.

Очень часто в научно-технической литературе по экономике встречаются такие фразы: "Доля энергетических затрат составляет 20 процентов". А что входит в оставшуюся энергетическую долю? Это – сырье, материалы и оборудование, поступившее на предприятие со стороны.

Это и труд людей.

Например, при изготовлении автомобиля тратится электроэнергия на привод станков и транспортеров, на сварку, электронагрев и компрессоры, вырабатывающие сжатый воздух. Тепло разного потенциала расходуется в кузнечных термических цехах, при отоплении и вентиляции. Все остальное прибывает со стороны. Так, тонколистовой металл привозят с металлургического завода, и потому в энергетических затратах на создание автомобиля он не учитывается.

А ведь на самом деле и этот лист металла – "сплошная" энергия. Проследим путь его создания. На прокатном стане из толстолистового металла был получен тонкий лист, а еще раньше на другом стане стальную заготовку прокатали в толстый лист. При этом тратилась энергия на двигатели прокатного стана, подогрев заготовок, общецеховое освещение, вентиляцию. Стальная заготовка пришла из мартеновского цеха, где в печи расходовалась электроэнергия, кислород для переплавки чугуна. Энергия тратилась и на этапах, предшествовавших загрузке руды в доменную печь, начиная с добычи исходного сырья, которая тоже не обошлась без энергоемких взрывных и экскаваторных работ.

А ведь мы пренебрегли такими боковыми ответвлениями энергетической цепочки, как прокатные станы, транспорт для перевозки, мартеновские и доменные печи, шахты, экскаваторы, которые внесли свой "вклад" в создание тонкого металлического листа для автомобиля.

Проследим, как создавалось любое оборудование от экскаватора до мартена и доменной печи, и убедимся, аналогично случаю с тонколистовым материалом, что источником всего является энергия.

Значит, любой изготовленный нами предмет – это как бы "материализованная" энергия. Конечно, для создания вещи нужен также физический труд человека и, главное, его интеллект. Но поскольку доля физического труда в настоящее время очень мала, то любые созданные людьми вещи и материалы можно измерять в энергетических единицах, потраченных на их производство.

По-видимому, именно этот факт дал основание экологу Говарду Одуму дать своей книге название "Энергетический базис человека и природы". Во введении к ней он пишет: "Энергия – всеобщая основа, источник и средство управления всеми природными ресурсами, базис культуры и всей деятельности человека... Тема этой книги – роль энергии в управлении нашей жизни, экономикой, международными отношениями, нормами жизни и ценностями культуры". Согласно Одуму даже эмоции и эстетические ценности во многом связаны с характером энергетических процессов, с наличием или отсутствием энергии.

Не впадая в крайности, к которым склонен иногда Г. Одум, нельзя не признать, что ценность каждой вещи можно измерять не только в денежных, но и в энергетических единицах. Во многих случаях такой "энергетический" счет оказывается очень полезным.

В среднем энергетическая ценность продукции промышленности СССР равна около 10 тысяч килокалорий на рубль. Понятно, что для разных отраслей эта величина может отличаться в десятки раз: в легкой промышленности она всего 1500 килокалорий на рубль товаров, а в черной металлургии – до 30-40 тысяч килокалорий.

Да и внутри отрасли для каждого вида продукции величина энергетической ценности может быть совсем разной.

Существуют обширные таблицы, в которых приводится энергетическая ценность различных продуктов.

Знакомясь с этими таблицами, наглядно осознаешь, что для сбережения энергии необходимо в равной степени экономить как тепло, электроэнергию, бензин, дрова, так и металлы, пластмассы, удобрения или просто струйку воды, текущей из крана. Ведь часто всего один потерянный килограмм какого-либо вещества означает потерю не одного, а нескольких килограммов топлива. Так, на производство килограмма химических волокон или пластмасс нужно истратить 5-10 килограммов топлива.

Умение сопоставить каждой единице оборудования, винтику, кубометру бетона, метру кабеля свою величину энергетической ценности помогает совершенствовать проектируемую энергетическую или технологическую установку и выбирать наилучший вариант.

Предположим, нужно сконструировать газотурбинную установку с наиболее высоким энергетическим КПД.

Обычно с помощью термодинамических расчетов выявляют, при каком сочетании параметров (температура, давление, степень сжатия газа) КПД принимает наибольшее значение.

КПД во многом зависит от площади поверхности регенеративного теплообменника – чем она больше, тем выше КПД. Где же остановиться? Ведь чем выше КПД, тем больше размер теплообменника, а значит, и его стоимость. Сейчас в большинстве таких случаев переходят от термодинамического анализа к денежному, стоимостному.

К сожалению, из-за многочисленных и порой серьезных недостатков в ценообразовании это не всегда приводит к выбору действительно лучшего варианта. Полный же энергетический анализ надежнее. Он служит хорошим дополнением к денежному. Зная энергетическую ценность оборудования, можно уточнить термодинамическую оценку КПД, которую нужно только дополнять по мере введения в схему нового оборудования или изменения его размеров.

Энергетическому анализу может быть подвергнута в.я электростанция, включая здания, технические сооружения, дороги, теплотрассы, различные смазочные, химические материалы. Такой анализ сейчас проводится очень редко, но нет сомнения в его возможностях и широкол!

распространении в будущем.

Прошли времена бездумного преклонения перед новой техникой. Она настолько глубоко и широко внедряется в нашу жизнь, что нужно каждый раз очень тщательно соизмерять приносимую ею пользу с возможным врздом. Правда, наносимый техникой вред почти всегда заметнее пользы. И именно этой стороне часто больше внимания уделяют общественность, медицина, санитария.

Значительная доля материальных затрат на развитие энергетики связана с обеспечением безопасности как профессиональных работников, так и населения. Новые системы защиты, многочисленные очистные и шумопоглощающие сооружения требуют все больше средств. Где предел?

Имеющийся опыт говорит о том, что очень во многих случаях невозможно обеспечить "абсолютную" безопасность. Нельзя исключить разного рода аварии в авиации, наземном транспорте, промышленности и в энергетике, где иногда происходят и взрывы котлов, и выбросы радиоактивных веществ, и т. п.

Каков же оптимум противоаварийных мер?

Проблема эта очень сложная, пути ее решения разнообразны, и пока среди специалистов нет единой точки зрения. Мне кажется логичным и разумным подход, развиваемый коллегами из Института атомной энергии имени И. В. Курчатова, доктором технических наук Я. Шевелевым и кандидатом физико-математических наук В. Деминым.

Надо ли стремиться установить уровень опасности техники настолько низким, насколько это возможно? Вроде бы заманчиво, но на самом деле иллюзорно. Более того, з конечном счете это приведет даже к возрастанию опасности, а не к ее уменьшению.

Дело в том, что, помимо прямого риска, создаваемого какой-либо установкой или технологией, существует еще и косвенный риск. Он обусловлен строительными работами, изготовлением оборудования для защитных систем и сооружений. С ростом расходов на безопасность прямой риск падает, а косвенный – постепенно возрастает.

Начиная с некоторого уровня расходов, полный риск уже неизбежно увеличивается. Значит, существует оптимум в создании средств защиты!

Есть еще одна сторона вопроса. Практически при установлении уровня приемлемого риска исходят из одного критерия – добиться увеличения продолжительности жизни человека. Однако такой подход тоже не оптимален.

Благодаря цивилизации, в том числе и энергетике, человек стал жить дольше. Цивилизация сделала жизнь комфортнее и приятнее, облегчила ее и украсила. Недаром уровень жизни определяется не только здоровьем и долголетием, но и благосостоянием, качеством жизни. Люди соизмеряют комфорт, удовольствия, привычки с риском для здоровья и жизни. Ради скорости и удобства мы пользуемся более опасными видами транспорта. Многие занимаются туризмом, альпинизмом и другими небезопасными видами спорта. Некоторые избирают рискованные занятия, профессии, получая материальную компенсацию.

Обе стороны уровня жизни связаны друг с другом самым непосредственным образом.

Наше общество обладает определенным количеством материальных средств национальным доходом. Очевидно, затраты на защитные мероприятия отвлекают средства из других областей, в том числе обеспечивающих качество жизни и здоровье людей. Например, если выделить больше средств, чтобы очищать дымовые газы на электростанциях или повысить безопасность транспорта, то меньше материальных ресурсов останется на строительство новых больниц, также обеспечивающих здоровье людей, или на создание еще одной теплоэлектроцентрали, дающей тепло в наши жилища. Другими словами, к проблемам жизнеобеспечения человека нужно относиться комплексно. Методы же комплексной оптимизации еще не выработаны. Предстоит совместная работа экономистов, социологов, экологов, специалистов промышленности.

Учтем еще один "экономический срез". Как и во всем народном хозяйстве, в энергетике ускоренное движение вперед невозможно без разработки и быстрого освоения новой техники, а это процесс по природе своей вероятностный. Создание новейших установок в большинстве случаев связано с риском. Удастся ли обеспечить их работоспособность, получить лучшие характеристики – выяснится только после апробации новой технологии, на что уйдет несколько лет. А средства, материальные ресурсы нужны сейчас.

Неохотно идут на освоение новой техники многие администраторы, руководители промышленных предприятий, финансисты. Зачем рисковать, рассуждают они, ведь можно двигаться вперед и медленнее, но надежнее, увереннее. Действительно, можно, но тогда неизбежно научно-техническое отставание.

Где же выход?

Некоторые экономисты предлагают создать так называемый фонд риска и отчислять в него не менее одного процента национального дохода. Думаю, норму нужно увеличить вдвое, а то и втрое. Главное, чтобы новое успело победить старое прежде, чем устареет.

Поручение Совета Министров

В начале 1980 года по поручению Совета Министров Государственный комитет СССР по науке и технике постановил: "Организовать группы ученых и специалистов для обследования заводов и разработки конкретных мероприятий, направленных на сокращение расхода топливноэнергетических ресурсов".

Череповецкий металлургический завод, Новокраматорский машиностроительный завод имени В. И. Ленина, Полоцкий нефтеперерабатывающий завод, северодонецкое производственное объединение "Азот" – вот места, в которые отправились из Москвы специалисты. В составе группы, выехавшей на северодонецкое производственное объединение "Азот", был и автор этих строк.

Здесь зарождалась азотная промышленность страны.

В начале века недалеко от Северодонецка, в Юзовке (теперь Донецк), был построен первый в России цех но производству азотной кислоты из аммиака с производительностью всего 8 тысяч тонн в год. Вся его продукция шла тогда на военные нужды.

Этот цех сейчас просто затерялся бы на территории объединения. Первое, что поражает на этом предприятии, – масштабы потребления. "Азот" забирает у народного хозяйства почти одну пятисотую всех производимых топливных ресурсов! Это даже трудно себе представить:

всего пятьсот таких предприятий, как "Азот", могут поглотить всю энергию страны.

Объединение выпускает аммиак, метанол, азотную и уксусную кислоты, минеральные удобрения, а также десятки видов другой продукции, включая товары широкого потребления: чемоданы-"дипломаты", клей, стиральные порошки. Комиссии пришлось поработать, чтобы выявить причины потерь в разнообразных технологических цепочках, наметить возможные пути экономии энергии.

Главный потребитель энергии в объединении – аммиачное производство. Одна установка вырабатывает в год несколько сотен тысяч тонн аммиака и расходует сотни миллионов кубометров природного газа. Чем меньше газа тратится, тем экономичнее установка. Существуют агрегаты, потребляющие от 800 до 1200, а иногда даже до 1500 кубометров газа для производства одной тонны аммиака. Причин неоправданно высокого расхода достаточно много. Одна из них – недостаток электричества.

Мы уже говорили, что энергия потребляется неравномерно. Самый радостный и самый трудный день для энергетиков – 22 декабря. Это их профессиональный праздник. И в этот же самый короткий день в году расходуется максимальное количество энергии, что дает возможность оценить максимально необходимые мощности электроэнергетики. Резко меняется потребление и на протяжении недели – самая низкая нагрузка падает на воскресную ночь, самая высокая на утро и вечер рабочих дней недели.

Мощностей электростанций для покрытия пиковых потребностей пока не хватает. При перегрузках, а также при авариях диспетчеры вынуждены отключать часть потребителей, снижать нагрузку энергосистемы, иначе начинает падать частота тока, а допускать этого никак нельзя. При нестандартной частоте резко возрастают энергетические потери у ряда потребителей, отказывает автоматика, портится оборудование.

Ежегодные потери от несоблюдения стандарта по частоте оцениваются в 2 миллиарда рублей. Много это или мало? Себестоимость электроэнергии примерно 1,5 копойки за киловатт-час. Электростанции страны вырабатывают 1400 миллиардов киловатт-часов, на сумму 20 миллиардов рублей. Значит, по крайней мере 10 процентов произведенного электричества пропадает впустую.

Перерыв в электроснабжении так называемых потребителей первой категории наподобие птицефабрик, животноводческих ферм, доменных печей, холодильников и ряда других технологических производств приводит к авариям, порче продукции и оборудования.

Конечно, остановка аммиачного агрегата не приводит к аварии, но вызывает очень большие потери природного газа. Для вторичного запуска после остановки может понадобиться несколько суток. В течение всего этого срока химики вынуждены сжигать природный газ зря, так как технологический процесс требует точного соблюдения состава газовых потоков, их температуры, давления. А после остановки все параметры нарушаются, установка начинает расхолаживаться. При запуске же норма восстанавливается очень медленно, а пока этого не произошло, смесь газов не годится для получения аммиака и ее приходится выбрасывать "на ветер".

Казалось бы, какой можно дать рецепт химикам-производственникам при таком "пиковом положении"? Конечно, тут главную роль должны сыграть энергетики, создавая необходимые электрические мощности, в том числе и пиковые.

Такие пиковые станции работают от 500 до 1500 часов в году. Не предъявляя к ним очень высоких требований по КПД и ресурсу, нетр_удно сделать их гораздо более дешевыми, чем несущие основную постоянную нагрузку базисные станции. Лучшей пиковой электроэнергетической установкой в настоящее время является газотурбинный генератор, похожий на газотурбинный авиадвига-"

тель. Установку эту можно быстро запустить и остановить.

И технически и энергетически подобное решение является разумным. Однако более равномерное потребление энергии самим производством способно ослабить требования к энергетикам. К оптимальному нужно двигаться с двух сторон – так будет быстрее и выгоднее.

Действительно, стоимость пиковой электроэнергии составляет около 30 рублей за киловатт установленной мощности, в то время как на предприятиях для уменьшения потребления электроэнергии в периоды максималы и погрузки нужно затратить всего 2-3 рубля на киловатт ликвидируемой мощности.

Иногда на предприятиях можно наблюдать такую картину: в разгар вечерней рабочей смены рабочие останавливают станки, убирают рабочие места. Цех пустеет, выключается свет. Это и есть плановая остановка из-за нехватки энергии. Подобных потерь можно иногда избежать, соответствующим образом планируя смены или организуя ночную работу.

Рабочие получат больше вознаграждения за работу в ночную смену, а предприятиям целесообразно предоставить пониженный тариф за пользование ночной электроэнергией. Необходимы соответствующие автоматизированные системы учета и контроля, которые уже сами по себе помогли бы выравнивать суточные графики электронагрузок.

Так и поступают специалисты объединения "Азот".

Вместе с энергетиками Донбассэнерго они внимательно изучили характер графиков нагрузки в критические периоды, нашли технические и организационные возможности для отключения одних и более позднего включения других потребителей.

Каждая аварийная остановка необязательно связана только с отключением электроэнергии. К ней приводит отказ какого-либо измерительного или регулирующего прибора, и остановка насоса, и поломки вентилятора теплообменника. Другими словами, экономия энергии переплетается с соблюдением технической дисциплины, профилактики и различных видов ремонта, что подразумевает наличие хороших диагностических приборов или систем, а также просто запасных частей.

За две недели работы комиссии на объединении "Азот" пришлось еще раз убедиться, как важно тесное единство науки с производством.

Один из философов сказал: "Знания – это круг.

За его границей – незнание. Расширение знания – площади круга одновременно увеличивает границу с неизведанным".

Чем больше мы узнавали о деятельности объединения, тем лучше понимали его проблемы и способы их решения.

Важной оказалась еще одна причина повышенного расхода природного газа. Известно, что сера в угле, нефти, газе – одна из самых главных причин загрязнения атмосферы. Но из-за нее, оказывается, существенно растет также расход энергии. Сера портит катэлизаторы, широко используемые в технологических процессах. Чтобы удержать работу агрегатов в нужном режиме, приходится повышать температуру в зоне катализа и для регенерации катализатора увеличивать число продувок обратным ходом газа.

Рост серосодержания с предельно допустимых 80 миллиграммов на кубометр газа до 220 привел на объединении "Азот" к увеличению расхода газа с 1100 кубометров газа на тонну метанола до 1200 кубометров, то есть почти на 10 процентов! К тому же возросли расходы электроэнергии на 5 процентов, а кислорода – на 10.

Так стремление газодобытчиков дать стране больше газа ценой иногда некоторого ухудшения его качества в конечном счете приводит к противоположному результату. Газ тоже должен удовлетворять определенному стандарту. Соответственно наша комиссия записала в своих рекомендациях: "Госстандарту совместно с заинтересованными министерствами разработать и утвердить в 1982 году ГОСТ на природный газ, используемый в качестве сырья на промышленных предприятиях".

Перспективный путь в энергосбережении – оптимизация обмена энергией в течение технологического процесса. Химики одни из первых стали создавать эффективные энерготехнологические установки. Ведутся эти работы в Государственном институте азотной промышленности, созданном в 1931 году.

Упрощенно задача выглядит так. Процесс преобразования метана в водород – паровая конверсия – происходит при температуре 800-900 градусов. Газ охлаждается, и затем в другом реакторе при синтезе водорода и азота образуется аммиак. Ключевые слова здесь – "газ охлаждается". Куда же отдается тепло при охлаждении?

Раньше, в первых технологиях 30-х годов, оно практически выбрасывалось в атмосферу, поэтому затраты энергии были очень большие. Еще в 60-е годы расход электроэнергии на тонну аммиака составлял около 750 киловатт-часов. Сейчас в современных агрегатах он уменьшился в 8 раз благодаря энерготехнологической схеме, в которой тепло не выбрасывается, а используется последовательно на разных этапах технологического цикла для получения пара, вращения турбин, подогрева газа и воды.


    Ваша оценка произведения:

Популярные книги за неделю