355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Краснов » Волчок и применение его свойств » Текст книги (страница 2)
Волчок и применение его свойств
  • Текст добавлен: 3 января 2018, 13:00

Текст книги "Волчок и применение его свойств"


Автор книги: Александр Краснов



сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

Искусственный горизонт

Беспредельны морские и воздушные просторы. Плавая в океанах и морях, можно неделями не встретить какого-либо ориентира, по которому можно было бы определить свое местоположение. Лишь Солнце и звезды, да волны вокруг.

А безопасное плавание, своевременное прибытие к месту назначения возможны лишь в том случае, когда мореплаватель точно знает свое местоположение.

Летая над сплошными облаками или морем, пилот не видит ориентиров и не может определить своего местонахождения. Местоположение можно определить специальным прибором – секстаном, измерив высоту над горизонтом одного из небесных светил. Но горизонт часто оказывается затянутым дымкой, туманом, мглой. Значит, нужен искусственный «горизонт». Казалось бы, с этой целью можно использовать сосуд с водой. Ведь ее поверхность в спокойном состоянии всегда горизонтальна. Указателем горизонта мог бы служить также специальный инструмент, так называемый уровень (ватерпас), с воздушным пузырьком в жидкости, помещенной в стеклянную трубочку, или, еще проще, подвешенный шнурок с грузом. Шнурок с грузом будет направлен к центру Земли, или, как говорят, по истинной вертикали. А она всегда перпендикулярна к плоскости горизонта.

На стоянке корабля и самолета все эти приборы будут действовать безошибочно. Но на движущемся корабле или самолете они не покажут истинного горизонта. Определение высоты светила с помощью таких устройств окажется неправильным. Для этого необходимо более совершенное устройство искусственного горизонта.

И вот возникла идея использовать для создания искусственного горизонта волчок. Эту идею высказали уже в середине XVIII столетия.

Рассказывают, что первую удачную конструкцию искусственного горизонта предложил в 1742–1743 гг. английский механик Серсон. Основой этого прибора являлся волчок в виде большого отполированного диска с заострением в центре. Верхняя поверхность диска была тщательно отполирована до такой степени, что предметы отражались в ней, как в зеркале. Волчок Серсона запускался от руки. Поэтому продолжительность его вращения оказалась небольшой. К тому же он не выдерживал качки.

Существенное усовершенствование в это изобретение внес английский механик Дж. Грехем, предложив запускать волчок раскручиванием намотанного на его ось шнурка. Уже одно это сделало прибор Серсона более пригодным для пользования.

Вначале Адмиралтейство отказывалось испытывать искусственный горизонт Серсона, усовершенствованный Дж. Грехемом. Но затем в том же 1743 г. его подвергли всесторонним испытаниям при плавании яхты в Ламанше. Испытания оказались успешными. Предложенная конструкция искусственного горизонта получила одобрение.

Вслед за этим Адмиралтейство отправило изобретателя Серсона в плавание на корабле «Виктория» для дальнейших детальных испытаний. К сожалению, результаты их остались неизвестными. Корабль со всем экипажем и изобретателем искусственного горизонта погиб во время шторма. Считали, что это произошло по вине испытывавшегося прибора.

Происшедшая катастрофа создала непреодолимые затруднения для Дж. Грехема, создавшего новый вариант искусственного горизонта.

Практическое использование этой, по существу верной, идеи стало реальным лишь почти через сто пятьдесят лет, в 1886 г., когда француз Флерие предложил очень компактный искусственный горизонт.

В то время во Франции за изобретения и открытия, способствующие успехам мореплавания, была установлена специальная премия. Флерие за созданный им искусственный горизонт получил премию удвоенных размеров. Предложенная им конструкция действительно заслуживала этого, будучи очень удобной и прекрасно действующей в условиях качки.

Прибор Флерие несложен. Устройство его нетрудно понять, обратившись к рисунку 18.

Рис. 18. Схема устройства искусственного горизонта, применяемого в секстане. 1 – светило, видимое в окуляре секстана на линии искусственного горизонта; 2 – линия искусственного горизонта (штрих, нанесенный на линзах).

Волчок запускается струей сжатого воздуха и вращается со скоростью десять тысяч оборотов в минуту. На диске волчка укреплены две плоско-выпуклые линзы, отстоящие одна от другой на их фокусном расстоянии.

На плоской поверхности каждой линзы нанесено по тонкому горизонтальному штриху. Когда плоскость быстро вращающегося волчка совпадает с истинным горизонтом, штрихи на линзах наблюдатель видит слившимися в одну линию. Чтобы определить широту места, надо, перемещая лимб[1]1
  Круг с градусными делениями.


[Закрыть]
особой подзорной трубы секстана, привести отражение наблюдаемого светила в соприкосновение с этой линией. Тогда на секстане окажется зафиксированной высота светила (рис. 18).

При несовпадении поверхности волчка с истинным горизонтом наблюдатель видит в трубе секстана штрихи то наклонными, то горизонтальными, но не совпадающими.

«А все-таки она вертится!»

Вопрос о том, обращаются ли планеты и Солнце вокруг Земли или, наоборот, Земля вращается вокруг своей оси и вокруг Солнца, занимал многих ученых на протяжении ряда столетий.

Спорившие основывались только на наблюдениях окружающего мира и на предположениях. Много было различных предположений, гипотез, теорий. Из них заслуживают внимания две: теория Птолемея и теория Коперника.

Теория Птолемея заслуживает внимания потому, что хотя она и была неверной, но долгое время являлась почти общепризнанной. Птолемей утверждал, что все светила, все планеты обращаются вокруг Земли. Земля – центр мироздания. Поэтому теорию Птолемея называли геоцентрической. Церковники поддерживали теорию Птолемея: ведь по библейской легенде о сотворении мира якобы бог создал все светила для того, чтобы они светили и обогревали Землю и живущих на ней.

В корне неверную теорию Птолемея опровергла теория, созданная позднее Коперником. По его теории центр мира – Солнце. Вокруг него обращаются планеты, в том числе и наша Земля. Каждая из планет, кроме того, вращается вокруг собственной оси, направление которой в пространстве практически сохраняется неизменным. Поскольку по теории Коперника центром мира является Солнце, она называется гелиоцентрической.

Многие ученые, поддерживавшие теорию Коперника, подвергались гонениям, преследованиям со стороны церкви. Джордано Бруно, например, был сожжен на костре в Риме за свои якобы еретические мысли. Галилео Галилей почти всю жизнь подвергался преследованиям со стороны инквизиции. Галилею якобы принадлежит фраза «а все-таки она вертится», сказанная им в ответ на требование инквизиторов признать ошибочность его взглядов.

Современная наука подтверждает, что Земля вращается вокруг своей оси со скоростью одного оборота в сутки, то есть за двадцать четыре часа. Эта, сейчас уже неоспоримая истина долгое время оставалась основанной лишь на умозаключениях и астрономических наблюдениях.

Ученые издавна стремились доказать вращение Земли путем какого-либо лабораторного опыта. Первой вполне удачной попыткой такого доказательства был общеизвестный опыт знаменитого французского ученого Леона Фуко с маятником, осуществленный в Парижском Пантеоне в 1851 г. Этот опыт можно наблюдать и у нас в Исаакиевском соборе в Ленинграде.

Знаменитый физик, однако, не ограничился одним опытом. В 1852 г. он докладывает Парижской Академии наук о новых опытах и демонстрирует прибор гироскоп, что означает «указатель вращения». Очевидно, Фуко имел в виду вращение Земли. Гироскоп в переводе с греческого означает: гирос – круг, кольцо; скопео – наблюдаю, смотрю. Кроме этого, Л. Фуко открыл и сформулировал основные свойства гироскопа, которые широко используются в современной технике. В гироскопе Л. Фуко имелся своеобразный волчок – ротор, ось которого могла вращаться на двух подшипниках, закрепленных в кольце. Это кольцо в свою очередь вращалось на подшипниках во втором, внешнем кольце. Последнее было подвешено на тонкой незакрученной нити к специальной станине (рис. 19).

Рис. 19. Гироскоп Леона Фуко. 1 – ротор гироскопа во внутреннем кольце; 2 – наружное кольцо гироскопа.

При быстром вращении ротор этого гироскопа обнаруживал замечательные свойства: его ось сохраняла неизменным свое положение в пространстве; будучи направлена на какую-либо звезду, она как бы следила за ее перемещением, «двигалась» вместе с нею. Конечно, на самом деле перемещалась не звезда и не ось гироскопа, а Земля. Так Л. Фуко использовал замечательное свойство гироскопа как одно из доказательств вращения Земли.

Однако в гироскопе Л. Фуко ось ротора не точно следовала за какой-либо звездой, поэтому нельзя было уверенно утверждать о бесспорной удаче опыта.

Причина неудачи крылась не в принципиальной ошибке, совершенной ученым, а в конструктивных недостатках его гироскопа. Дело в том, что ротор приводили в действие с помощью шнура, накрученного на его ось. А это не позволяло получить достаточно большое число оборотов ротора в продолжение длительного времени. Вращение не могло быть строго равномерным из-за недостаточной уравновешенности ротора и значительного трения в подшипниках.

Опыт Л. Фуко более успешно проделал ученый А. Феппль, устроив гироскоп с двумя электромоторами, развивающими 2400 оборотов в минуту.

В современном, широком понятии гироскопом называют устройство, в котором используются своеобразные, так называемые «гироскопические» свойства быстро вращающегося ротора.

Современный гироскоп конструктивно во многом отличается от волчка. Он состоит из ротора, опирающегося концами оси на внутреннее кольцо. Наружное кольцо, находясь в специальной опоре, может поворачиваться вокруг вертикальной оси; внутреннее кольцо покоится в наружном и свободно поворачивается вокруг горизонтальной оси, а ротор, опирающийся своей осью на внутреннее кольцо, может свободно вращаться вокруг оси (рис. 20).

Рис. 20. Гироскоп с тремя степенями свободы.

Гироскоп, как мы видим, способен совершать движение в трех направлениях. Поэтому его называют гироскопом с тремя степенями свободы. Если закрепить одно из колец, то получится гироскоп, способный совершать движение в двух направлениях. Такое устройство называют гироскопом с двумя степенями свободы.

Хотя конструктивно гироскоп отличается от обычного волчка, сходство их свойств настолько велико, что в технике гироскоп часто называют волчком и, наоборот, волчок – гироскопом. Ведь гироскоп – тоже твердое тело, которое вращается вокруг оси симметрии, имеющей неподвижную точку.

Быстро вращающийся ротор гироскопа, как и волчок, обладает способностью устойчиво сохранять свое положение в пространстве, «уходить» под прямым углом к действующей на него силе, совершать прецессию и т. п.

Возьмем, например, гироскоп с быстро вращающимся ротором, представленный на рис. 21.

Рис. 21. Примеры устойчивости гироскопа.

Он обнаруживает удивительные, невероятные на первый взгляд свойства.

Его ось проявляет необычную устойчивость, сохраняя свое положение, например, опираясь регулировочным штифтом о край стакана или на туго натянутый шнур.

Попытавшись свалить его, казалось бы, из неустойчивого положения, мы потерпим неудачу. Слегка качнувшись, гироскоп сохранит приданное ему ранее положение, заметно сопротивляясь прилагаемым усилиям. Но вот ротор прекратил вращение. И как по мановению волшебной палочки, гироскоп теряет устойчивость, превращается в безжизненный кусок металла.

О том, как используют замечательные свойства гироскопа в технике, мы сейчас и расскажем.

Волчок в космосе

Недалек день, когда межпланетные корабли устремятся на штурм вселенной. О полетах на Луну, Марс, Венеру и другие планеты сейчас не только мечтают. Это дело ближайших лет. Немало самых различных машин, механизмов и приборов потребуется создать для осуществления этой многовековой мечты человечества.

Среди них, безусловно, займет почетное место и гироскоп. Его можно будет использовать, например, чтобы определять положение межпланетного корабля.

Мы уже знаем замечательную способность гироскопа сохранять направление своей оси неизменным. Установив в момент отлета ось по направлению Солнца, космонавты оставят гироскоп в таком положении. Теперь, чтобы определить курс межпланетного корабля, потребуется лишь измерить угол между направлением оси гироскопа и направлением на Солнце в момент наблюдения.

Снаряд-гироскоп

Продолговатый снаряд, выпущенный из гладкоствольной пушки, летит, опрокидываясь и кувыркаясь. Это резко уменьшает дальность его полета, снижает меткость попадания (рис. 22, А).

Рис. 22. Траектории полета снаряда.

Другое дело, когда стрельба ведется из пушки с нарезным стволом. Снаряд, выпущенный из нее, вращается вокруг оси с довольно большой скоростью, совершая несколько сот оборотов в секунду.

«Поведение» такого снаряда зависит от среды, в которой совершается полет. На высоте более двадцати километров, где сопротивление воздуха из-за его малой плотности ничтожно, снаряд ведет себя подобно быстро вращающемуся гироскопу, стремящемуся точно сохранить направление своей оси (рис. 22, Б).

В обычных же атмосферных условиях снаряд летит головной частью вперед, точно описывая центром тяжести траекторию (рис. 22, В). Такому полету вращающегося снаряда в описываемом случае способствует сопротивление воздуха.

В общем вращающийся снаряд приобретает большую устойчивость, что повышает точность стрельбы. При одинаковом весе заряда, длине ствола и т. п. дальнобойность нарезной пушки значительно выше, чем гладкоствольной.

Торпеда и гироскоп

Наиболее грозный современный подводный снаряд – самодвижущаяся торпеда. Создал ее известный русский изобретатель Иван Федорович Александровский. Впервые в мире торпеда прошла успешные испытания в 1857 г. вблизи Кронштадта. Торпеда, созданная Александровским, несмотря на успешные испытания, к сожалению, не привлекла внимания военных чиновников, признававших только «заграничное». Для русского флота за огромные деньги приобрели «секрет» торпеды у английского промышленника Уайтхеда.

Торпеда, выпущенная с корабля, двигалась к цели – судну противника, в которое производился выстрел. Однако торпеда очень часто сбивалась с заданного направления волной или течением. Этот недостаток торпеды был устранен лишь в 1898 г., когда австрийский офицер Обри предложил применить гироскоп для автоматического управления ее вертикальными рулями.

Принцип действия устройства, предложенного Обри, несложен. В момент выстрела ось гироскопа автоматически устанавливается по ходу торпеды, а струя сжатого воздуха, попадая в лункообразные углубления на окружности ротора, приводит его в быстрое вращение (рис. 23, 1).

Рис. 23. Схема действия гироскопа в торпеде. 1 – торпеда идет на цель; 2 – торпеда отклонилась от заданного курса; 3 – торпеда снова легла на прежний курс.

Кольцо гироскопа связано с клапаном – золотником, через который подается воздух к механизму управления вертикальным рулем. В тот момент, когда торпеда под влиянием внешних сил, изменив направление, как бы поворачивается вокруг гироскопа, сохранившего свое первоначальное положение (рис. 23, 2), в механизм управления вертикальным рулем поступает сжатый воздух. Под влиянием его вертикальный руль устанавливается таким образом, чтобы торпеда «возвратилась» на установленный курс. Когда торпеда начинает двигаться в прежнем направлении, руль возвращается в нейтральное положение (рис. 23, 2 и 3). На таком принципе основаны и другие, более сложные устройства, например так называемый гирорулевой, осуществляющий автоматическое управление кораблем.

Замечательное свойство быстро вращающегося гироскопа сохранять неизменным свое положение в пространстве широко применяется и в авиации.

Слепой полет

Пройти по прямой линии с завязанными глазами невозможно. Идущий постепенно заворачивает в сторону. На одном большом аэродроме в 1926 г. летчики пытались с завязанными глазами управлять автомобилем. Совершив в пути несколько поворотов, автомобиль начинал двигаться по спирали.

Разумеется, никто всерьез не станет управлять автомобилем или самолетом с завязанными глазами. Но представим себе полет в тумане, в сплошной облачности, когда самолет словно погружен в молоко или окутан непроницаемой пеленой. Чем отличается такой полет от путешествия человека с завязанными глазами? Полет в тумане, сплошной облачности недаром называют слепым полетом.

Даже птицы не могут летать, не видя Земли. Они не обладают какими-то особыми «летными качествами». Выпущенная в полет с завязанными глазами или в сплошном тумане, птица немедленно переходит в штопор либо беспорядочно падает.

Что же получится, если самолет встретит на своем пути сплошную облачность или туман и будет вынужден в таких условиях продолжать полет? Отличается ли человек от птицы, оказавшись в таких условиях? Может ли он руководствоваться своими ощущениями?

Чтобы получить ответ на эти вопросы, обратимся к нескольким примерам.

В некоторых парках культуры и отдыха имеется аттракцион «вертящаяся комната». Любители острых ощущений, входя в такую комнату, садятся на качели. Качели слегка раскачиваются, после чего включается двигатель, вращающий стены комнаты. Сидящим в качелях кажется, что вращаются не стены, а они сами и что в некоторые моменты времени качели занимают положение Б, показанное на рисунке 24.

Рис. 24. Вращающаяся комната.

На самом деле посетители не совершают головокружительного переворота ногами к потолку, а спокойно сидят в почти неподвижных качелях. Просто комната расположилась иначе, чем было до этого (положение В на рис. 24).

Еще более сильное ощущение можно испытать в непрозрачном вращающемся шаре. Предположим, что в нем находятся два человека, как изображено на рис. 25, А.

Рис. 25. Что происходит в действительности и что кажется людям в закрытом вертящемся шаре.

К немалому изумлению находящихся в шаре, каждому кажется, что его сосед прилип где-то на вертикальной стене, словно муха (рис. 25, Б).

Приведенные примеры наглядно показывают, что доверять ощущениям нельзя. Но, может быть, к летчикам это не относится?

Обратимся к рассказу одного американского летчика о том, что случилось с ним при полете в облаках.

«Оторвавшись от аэродрома, мы поднялись на высоту тысяча восемьсот футов (550 м), где вошли в грозовые тучи, сквозь которые я намеревался пройти вверх. Я попытался это сделать и, поднявшись приблизительно в пять минут на высоту около трех тысяч восьмисот футов (1160 м), считал, что нахожусь примерно над Голливудскими холмами. В это время я почувствовал струю воздуха на левой щеке, что означало для меня, что я скольжу на левое крыло. Посмотрев на указатель крена и поворота, я, к своему изумлению, увидел, что стрелка и шарик переместились направо; другими словами, прибор показывал, что правое крыло опущено и что самолет делает поворот направо. Так как мой компас указывал правильный курс, а этого, как мне казалось, быть не могло, что подтверждалось и струей воздуха, ударяющей в мою левую щеку, то я немедленно попытался выровнять самолет, подняв левое крыло, но безуспешно. Тогда, думая, что самолет потерял скорость и потому не слушается рулей, я немедленно дал ручку от себя, чтобы увеличить скорость. В это время мне показалось, что я скольжу на хвост влево; я выключил мотор и попытался перевести самолет в нормальное планирование. Когда же и это не удалось, я крикнул своему спутнику: „Выбрасывайся!“ и выпрыгнул сам».

Доверять ощущениям в слепом полете ни в коем случае нельзя. Единственное средство для успешного слепого полета – специальные приборы.

Безошибочно совершать полеты в любую погоду, уверенно управлять самолетом в любой обстановке, точно знать положение самолета в пространстве помогают многие приборы. Принцип действия большинства из них основан на замечательных свойствах гироскопа. Одним из таких приборов является авиагоризонт. Без него даже в ясную ночь, когда видна Земля, недопустим полет на скоростном самолете. Этот прибор совершеннее обычного искусственного горизонта и устроен несколько иначе.

Мы уже говорили, что применять на самолете отвес с грузом невозможно.

На стоянке шнурок с отвесом будет, вообще говоря, направлен к центру Земли, то есть по направлению истинной вертикали, которая всегда перпендикулярна плоскости горизонта. В полете же отвес может занимать относительно плоскости горизонта самые различные положения. Человек, находящийся в самолете, ощущает действие силы тяжести примерно в том же направлении, что и отвес (рис. 26).

Рис. 26. Направление кажущейся вертикали на самолете, совершающем вираж. 1 – направление силы тяжести на Земле – направление истинной вертикали, 2 – направление силы тяжести, ощущаемой человеком, и направление отвеса в полете при вираже – направление кажущейся вертикали.

Такое направление называют кажущейся вертикалью.

Ясно, что наши ощущения и даже простейшие устройства, вроде отвеса, совершенно непригодны для определения истинной вертикали и горизонта на летящем самолете. Эта задача легко разрешима при помощи гироскопа. Ось гироскопа, как мы знаем, может располагаться по линии истинной вертикали – к центру Земли (рис. 27).

Рис. 27. Положение оси ротора гироскопа в авиагоризонте самолета. 1 – направление истинной вертикали указано стрелкой; 2 – независимо от крена самолета ось гироскопа в авиагоризонте всегда направлена по линии истинной вертикали к центру Земли; 3 – центр Земли.

Такой гироскоп и применяется в авиагоризонте (рис. 28).

Рис. 28. Схема авиагоризонта.

Корпус прибора жестко крепится к приборной доске самолета. Круглое отверстие в передней стенке корпуса закрыто стеклом. На стекле нарисован горизонтальный силуэт самолета, летящего вперед от смотрящего на прибор. За стеклом находится круглый диск. Верхняя половина диска окрашена в голубой или белый цвет, а нижняя – в серый или черный. Горизонтальная линия, разделяющая верхнюю и нижнюю половины, представляет линию горизонта.

Диск авиагоризонта насажен на удлиненную ось, идущую от внутреннего кольца гироскопа. Внутри этого кольца расположен вертикально ротор гироскопа, вращающийся со скоростью свыше десяти тысяч оборотов в минуту. Весит ротор всего около четырехсот граммов. Приводится он во вращение струей воздуха, падающей на лункообразные углубления, имеющиеся по окружности ротора. Внешнее кольцо гироскопа покоится в подшипниках корпуса прибора.

В горизонтальном полете силуэт самолета на стекле прибора совпадает с горизонтальной линией, делящей диск на две половины (рис. 29).

Рис. 29. Различные положения самолета и показания авиагоризонта.

При кренах, снижении или наборе высоты ось гироскопа неизменно направлена к центру Земли. Весь самолет как бы поворачивается вокруг оси ротора. Диск, насаженный на удлиненной оси внутреннего кольца гироскопа, тоже сохраняет свое положение в пространстве неизменным, а силуэт на стекле, поворачиваясь вместе с самолетом, занимает такое положение относительно линии на диске, какое самолет занимает относительно горизонта (рис. 29). Таким образом, пилот видит положение своего самолета относительно горизонта как бы со стороны.

Не меньшую роль играет в полете указатель поворотов. Этот прибор показывает угол поворота самолета вокруг вертикальной оси.

В основе указателя поворотов мы снова обнаруживаем гироскоп. Он находится в свободно подвешенной рамке. Прибор устроен таким образом, что ось гироскопа постоянно удерживается специальными пружинами в положении равновесия (рис. 30).

Рис. 30. Схема авиационного указателя поворотов.

Быстро вращающийся ротор гироскопа, стремясь сохранить свое первоначальное положение, перемещает стрелку, указывающую степень поворота самолета.

Нередко указатель поворотов совмещают в одном приборе с авиагоризонтом. Авиагоризонт с указателем поворотов – лишь один из важнейших гироскопических приборов, необходимых для совершения слепых полетов.


    Ваша оценка произведения:

Популярные книги за неделю