355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Гордон » Диалоги (август 2003 г.) » Текст книги (страница 13)
Диалоги (август 2003 г.)
  • Текст добавлен: 9 сентября 2016, 21:18

Текст книги "Диалоги (август 2003 г.)"


Автор книги: Александр Гордон



сообщить о нарушении

Текущая страница: 13 (всего у книги 16 страниц)

А.П. Энергетика велика.

А.Г. Любая звезда не проходит.

Б.Ш. Но на самом деле нейтронные звёзды бывают парными. Если у нас есть две большие парные звёзды, то они могут после себя оставить парный труп, парную нейтронную звезду.

А.П. За счёт слияния.

Надо сказать, что середина 90-х годов была критической для перехода сознания учёных от галактической модели к этой, космологической. Достаточно вспомнить очень интересный диспут в 95-ом году (он был показан по публичному телевидению в США) – это диспут на тему происхождения гамма-всплесков между двумя последовательными сторонниками различных гипотез. Гипотезу галактическую представлял Дон Лемб, а Богдан Пачинский – гипотезу космологическую. Участвующие в диспуте разделились на две партии, каждая партия приводила очень интересные и аргументированные доказательства той или иной гипотезы. Победивших не было, но этот диспут показал, что космологическая модель если не начинает преобладать в умах, то занимает существенную долю на рынке гипотез о происхождении гамма-всплесков. И тогда же на некоторых симпозиумах, семинарах можно было наблюдать антинаучное действие, когда на последнем заседании конференции ведущим конференции на голосование ставился вопрос – какова природа гамма-всплесков, космологическая либо галактическая. Таким образом решалась проблема происхождения гамма-всплесков.

А.Г. Проще было кинуть монету, наверное.

А.П. Наверное.

Б.Ш. Виден был дрейф общественного мнения.

А.П. Да, постепенно происходило накопление данных с эксперимента BATSE, которые всё больше и больше убеждали людей в том, что мы живём в геометрии Вселенной, а не в геометрии галактики либо короны.

А.Г. И всё-таки рекорд десять в 54-й? В 53-ей?

Б.Ш. Рекорд – почти десять в 55-й.

А.Г. Откуда же взять такую колоссальную энергию?

Б.Ш. Взять откуда? Я сказал об одном варианте – это две нейтронные звезды. Самое интересное, что такие пары нам известны, в нашей галактике есть их три штуки, это двойные пульсары. Причём видно, как они замедляются и теряют свою орбитальную энергию за счёт излучения гравитационных волн. Это значит, что когда-нибудь они сольются и упадут друг на друга, и вот это будет фейерверк. Скажу сразу, что десять в 54-й здесь не получится, но получится всё равно много.

Здесь есть такой эффект: мы считаем эти эрги, думая, что всё это взрывается как бомба, что энергия уходит равномерно во все стороны, а это не факт. Можно сильно сэкономить, если предположить, что это направленный взрыв, как луч прожектора. Если мы попадаем в этот луч, тогда требуется меньше энергии, но тогда мы много всплесков не досчитываемся.

А.П. Видим только то, что попадает лучом на нас.

Б.Ш. Это самое драматическое время, эпоха всех этих диспутов, голосований, когда люди более или менее пришли к галактической модели. На самом деле осталось два кандидата, и в это время доминировала как раз теория слияния двух нейтронных звёзд.

Но сейчас надо сказать, что ключевым моментом утверждения космологической модели был, наверное, 97 год?

А.П. Да, был момент, когда информация по всплескам накапливалась-накапливалась, но вся эта информация происходила из гамма-диапазона. Всплески оставались гамма-всплесками, но очень хотелось посмотреть, а есть ли что-то там в оптике, в других диапазонах волн, потому что, увидев что-то в оптике, можно отождествить это с каким-то известным астрономическим объектом…

А.Г. И кроме того, это всё-таки абсолютная локализация.

А.П. Да, и кроме всего, это более точная локализация. Совершенно точно.

Б.Ш. Там градусы, здесь – секунды.

А.П. В 97-м году был запущен итало-голландский спутник «Беппо-Сакс», который имел рентгеновские телескопы, и который мог достаточно быстро навестись на область локализации гамма-всплеска. То есть если мы в гамма-диапазоне имеем точность несколько градусов, то рентгеновский телескоп может уже эту область посмотреть и определить, есть ли там источник с точностью несколько угловых минут и даже лучше – в зависимости от яркости источника.

И вот 27 февраля 97-го года после очередного всплеска «Беппо-Сакс» навелся своим рентгеновским телескопом на область локализации всплеска, и увидел послесвечение в рентгене, т.е. увидел рентгеновский источник, который затухал, достаточно точно определил его координаты, передал на Землю, и далее большие оптические телескопы стали смотреть в эту точку. И, о, счастье, мы увидели то, что называем «оптический транзиент», оптический компонент от гамма-всплеска.

Почему так уверенно определили, что это оптический компонент? Его не было ни в каких каталогах, то есть это был новый источник и он затухал. Таким образом, было открыты рентгеновское послесвечение и оптический компонент. И что самое интересное, через некоторое время, когда источник достаточно потух, в оптике на его месте увидели галактику. Это называется родительская галактика. Увидели предположительно там, где сидит этот источник всплеска. И измерили спектральные линии от этой галактики.

А.Г. Их красное смещение…

А.П. Совершенно точно, нашли красное смещение – прямое доказательство космологической природы источников.

А.Г. И как далеко располагалась эта галактика?

Б.Ш. Здесь красное смещение – единица, это примерно 10 миллиардов световых лет.

С тех пор уже известны десятки таких случаев отождествлений, найдены послесвечения, для многих измерены красные смещения. Все – на космологических расстояниях, рекорд красного смещения – 4 с половиной. Вот один из таких случаев. Его уникальность в том, что здесь было поймано прямое оптическое свечение ещё в тот момент, когда продолжался гамма-всплеск.

А.П. Это знаменитый всплеск 23 января 1999 года.

Б.Ш. Оптический телескоп-автомат успел сработать и навестись по сигналу от BATSE, когда продолжался всплеск. Так вот, это свечение, находясь на горизонте Вселенной, было 8-й звёздной величины – можно увидеть в сильный бинокль.

А.П. То есть если знать куда смотреть, можно этот источник легко увидеть.

Б.Ш. На этом снимке он уже снизил яркость в миллион раз и всё равно ярче родительской галактики. Это говорит о масштабах явления.

В тот момент, в 97-98 годах, кроме модели, о которой я рассказывал – слияние двух нейтронных звёзд – появилась другая. Она появилась на самом деле ещё в начале 90-х, Стен Вусли её вначале предложил – что, может, это какой-то необычный тип сверхновой. Обычная сверхновая – разлетается огромная масса вещества и долго светит. Если предположить, что какая-то порция энергии прорвалась через всё это вещество в открытый космос, тогда она могла и дать такой всплеск.

И, начиная с 99 года, стали появляться всё новые и новые данные, что это скорее всего гиперновая. Во-первых – гамма-всплески происходят в областях, где идёт очень интенсивное звездообразование, где много вещества. В случае гиперновой всё понятно, это массивная звезда, она гибнет там же, где рождается. Если это пара нейтронных звёзд, она успевает улететь Бог знает куда.

Если проанализировать всю статистику гамма-всплесков, то получается, что источники к настоящему времени вымирают, раньше их было больше, теперь гораздо меньше.

А.Г. Ну да, мы же видим горизонт не только в пространстве, но и во времени. Всё это происходило 10 миллиардов лет назад.

Б.Ш. Совершенно верно. Но во Вселенной всё потихоньку вымирает – меньше квазаров, меньше сверхновых, меньше гамма-всплесков. Отчего, кстати сказать, в старой Вселенной жить безопасней.

А.Г. Чем ближе к нам, тем беднее картина – ближе во времени.

Б.Ш. Но ещё не вечер – звёзды типа Солнца будут рождаться ещё миллиарды лет.

А.П. Возвращаясь к истории открытий. История делается на наших глазах и отчасти нашими руками. Сейчас, кажется, наступил очередной ключевой момент в понимании природы всплесков.

29 марта этого года произошёл всплеск (они называются по дате) GRB030329. Он был уникален опять-таки курьёзом его обнаружения. Спутник НЕТЕ-2, который предназначен для быстрой передачи информации исследователям, что-то обнаружил, передал сообщение, что что-то зарегистрировано, но это точно не гамма-всплеск.

Через два часа, примерно, учёные, которые эксплуатируют спутник, пришли, посмотрели данные телеметрии и увидели, что на самом деле это ярчайший гамма-всплеск. Автоматика дала сбой – алгоритмы делаются людьми, людям свойственно ошибаться. Алгоритмам – тоже. Таким образом, примерно через два часа по миру через Интернет были распространены координаты гамма-всплеска. Они были известны с большой точностью – примерно три угловые минуты – и можно было наводить телескопы. Но в Европе и Америке была ночь, а телескопы были наведены в Австралии и Японии. И в Австралии уже через полчаса было обнаружено яркое послесвечение от всплеска.

Тут же передали по миру координаты. А мы сидели и ждали темноты. То, что мы увидели, когда настала ночь, вы видите на снимке.

А.Г. Это ваша группа делала?

А.П. Да, в Крымской обсерватории, КрАО.

А.Г. 30 марта?

А.П. 29 марта был первый снимок. И видно, как в течение 9 дней этот ярчайший объект постепенно уходит под чувствительность данного телескопа. Это не значит, что всплеск уже затух – мощные телескопы его продолжают наблюдать. Он сейчас порядка 22-й звёздной величины, что вполне наблюдаемо большими наземными телескопами. И по-видимому, его ещё долго можно будет наблюдать.

Но чем он был замечателен? Оказалось – когда на 14-й день детально измерили спектры – что эти спектры как две капли воды похожи на спектры сверхновой. Тут же в сети появилось сообщение…

Б.Ш. «Загадка всплесков решена!»

А.П. Да, решена – это сверхновая. Но не всё так просто. Всплески продолжают преподносить сюрпризы. Дело в том, что сверхновые имеют определённую кривую блеска – спадающую. А этот источник – после первоначального быстрого угасания – уже больше месяца стоит на одном месте, не падает, это первое. Второе: с большой долей уверенности можно говорить, что он меняет свою звёздную величину примерно на половину звёздной величины на протяжении суток, что никак не похоже на поведение кривой блеска сверхновой.

Б.Ш. Подмигивает и ухмыляется – я бы так сказал.

А.П. Поэтому рано говорить, что проблема источников всплесков уже решена.

А.Г. А какой объект может быть кандидатом на роль гиперновой?

А.П. Очень массивная звезда.

А.Г. Во сколько раз массивнее Солнца?

А.П. В 50, в 100 – ну, может быть, в 30, не знаю.

А.Г. И сколько таких объектов в нашей галактике?

А.П. Тысячи. Много…

Б.Ш. Более того, в нашей галактике есть одна звезда, про которую думают, что она рванёт как гиперновая. Эта звезда не так далеко, называется «Эта Киля» – она уже испускает предсмертные конвульсии.

Если она лучом своим попадёт в нас – мы это переживём, но она угробит все искусственные спутники Земли, мы останемся, скорее всего, без Интернета, без связи. Но она, скорее всего, промажет.

А.П. Хотелось бы верить, что промажет.

Б.Ш. Тогда это будет великий праздник – вал данных, да и просто феерическое зрелище для невооружённого глаза. Но вряд ли всё-таки нам на этом празднике удаться попристутсвовать, потому что характерный срок жизни измеряется сотнями, тысячи лет.

А.Г. То есть «вот-вот рванёт» означает, что это может произойти через тысячу лет.

Б.Ш. На самом деле мы до сих пор занимались феноменологией, отвечали на вопросы Что? Где? Когда? На вопросы «что?» и «где?» мы точно знаем ответ – на космологических расстояниях, миллиарды световых лет и преимущественно в ранней Вселенной. К ответу на вопрос «что?» мы более-менее приблизились. Но есть ещё вопросы «как?» и «почему?» Это уже сфера теории.

В смутные времена истории гамма-всплесков была просто вакханалия теоретических предположений. Шутили, что число теорий гамма-всплесков превышает число известных гамма-всплесков.

А.П. Был такой момент…

Б.Ш. Роберт Немиров опубликовал в своей работе список ста существенно разных теорий происхождения гамма-всплесков. Нет никакой возможности сказать обо всех, скажем только о той, которая кажется наиболее перспективной – она связана с гиперновой.

Как взрывается эта массивная звезда? Её внутренности в какой-то момент теряют устойчивость и начинают проваливаться в центр с ускорением свободного падения. В центре они, в конце концов, формируют чёрную дыру. Но не сразу – мешает момент вращения. И в какой-то момент в центре образуется аккреционный диск. Такой же плотный и такой же массивный, как нейтронная звезда – только плоский и с громадным магнитным полем. И эта штука вращается со скоростью порядка тысячи оборотов в секунду. Это чудовищное магнитное динамо. Это динамо генерирует две струи энергии вдоль оси вращения, вверх и вниз.

Уже делали численные расчёты, которым можно верить. Эти струи за считанные секунды прожигают миллионы километров тела звезды и вырываются в открытый космос. Вот там они и могут излучить эти гамма-кванты. Причём, это происходит со скоростью, близкой к скорости света. Они могут излучать гамма-кванты часами. Но из-за того, что источник движется почти со скоростью света, эти часы (а может быть, дни) сжимаются для нас в секунды. И мы видим эти секундные всплески.

Здесь остаётся масса вопросов. Вообще, модель, может быть, кажется фантастической…

А.Г. После этого звезда всё-таки должна рвануть…

Б.Ш. Рванёт, и как раз рассчитывали, что мы и увидели эту оболочку, если бы была оболочка.

Модель кажется фантастической, на самом деле она взята из жизни. Если можно, следующий рисунок с Галактикой М-87. Я уже говорил про квазары. Вот это маленький, слабенький квазар, в эллиптической галактике М-87, довольно близкой. Там в центре яркое пятно – это сверхмассивная чёрная дыра. Вокруг неё есть аккреционный диск. И работает эта же самая машина, только других масштабов. И видно, что она испускает эту струю. Это светят электроны больших энергий, но там же есть и гамма-квантики, вполне приличные потоки…

А.Г. То есть поглощается огромное количество материи, создаётся тот самый аккреционный диск…

Б.Ш. …являющийся генератором этой струи. Но остаётся масса вопросов. То есть мы просто не знаем массы вещей, не знаем, как они происходят. Мы не знаем, что генерирует эти странные кривые блеска. Мы не знаем, сколько работает эта центральная машина. Мы не знаем, как происходит взаимодействие струи с окружающим веществом, и вообще, что там играет главную роль. И всё время поступают новые, осложняющие ситуацию, так сказать, данные. Буквально месяц назад опубликовано сообщение об открытии сильной линейной поляризации прямых гамма-квантов. Как это интерпретировать, никто не знает.

А.П. То есть во время всплеска GRB021206 была измерена линейная поляризация в гамма-диапазоне.

Б.Ш. Теперь немножко об уроках истории изучения гамма-всплесков. Эта история, конечно, очень богата, и она много показала.

Во-первых, она показала, чего не надо делать. Показала, насколько легко люди становятся рабами своих взглядов, своих моделей, перестают верить в экспериментальные данные. То есть показала, столько было упёртых людей. Или, наоборот, тех, кто видит в данных то, чего в них нет. Видели спектральные линии, которые подтверждают теорию нейтронных звёзд. Видели повторяемость гамма-всплесков, которой тоже нет. Видели якобы концентрацию галактической плоскости. Видели корреляцию с крупномасштабной структурой Вселенной, чего нет. Это, в целом, общая болезнь. На научном языке это называется «завышенная оценка статистической значимости». Ею, к сожалению, очень многие болеют.

Гамма-всплески нам всё время подкидывают какие-то вещи, сажая учёных в лужу. Как будто повторяя: ты занимаешься расследованием, а не продвижением своих взглядов. Ты должен быть беспристрастным. Это прекрасный урок, я считаю. Кроме того, эта история продемонстрировала как надо. Это больше касается организации исследований. Раньше данные экспериментов были закрыты. Если ты не принадлежишь к экспериментальной команде, то чтобы получить доступ к этим данным, надо было вступить в некий торг. Одно из блестящих решений НАСА – данные открыты, поскольку они получены на деньги налогоплательщиков, пусть это будет общим достоянием.

А.П. Но это не решение – это политика НАСА.

Б.Ш. Да, но когда-то ей предшествовало решение. Теперь, работая с этими данными, любой человек, любой исследователь в мире может порыться в них и сделать открытие. Я говорю это не просто так, а потому что я сам обнаружил там вещь, которую не ожидал найти. Это гигантские всплески нашего, так сказать, домашнего галактического квазарчика «Лебедь-Х-1». Искал гамма-всплески, нашёл это. Потом другие люди посмотрели свои данные и нашли то же – это просто пример.

Кроме того, эта история учит нас кооперации – Алексей является участником этой кооперации.

А.П. Действительно, исследовать всплески без кооперации тяжело, потому что мы только что видели на примере оптический наблюдений, что когда в Америке ночь – в России день, и наоборот. То есть надо объединяться в какие-то группы, в какие-то коллективы для того, чтобы эффективно искать, эффективно получать данные. Это с одной стороны.

С другой стороны, всплески хорошо ловить на орбите. Потому что когда есть всенаправленные детекторы, когда всё время ночь, когда нет засветки, легко этот всплеск поймать. Но в оптическом диапазоне всё совсем не так. Проходит время, пока на Землю будут переданы координаты. Пока эти координаты дойдут до исследователей, пока даже автоматические телескопы, которые мгновенно могут разворачиваться, наведутся туда, куда надо, пройдёт то самое драгоценное время, и мы потеряем возможность наблюдать, а что же там было в момент самого события в других диапазонах.

Очень интересно заглянуть в оптическом диапазоне в машину, которая там работает во время всплеска. Это даст нам неоценимые данные для того, чтобы понять детали развиваемых моделей.

Б.Ш. Подписываюсь, как теоретик.

А.П. И для этого создана международная сеть поиска оптических всплесков. Не только по оповещениям, т.е. когда сигнал о всплеске приходит с орбиты, но и просто совместных наблюдений. Если удастся показать картинку, будет очень здорово. Эти наблюдения состоят в том, что поле зрения космического телескопа, в данном случае рентгеновского телескопа НЕТЕ-2, мы смотрим синхронно нашей оптической камерой, которая покрывает это поле. И таким образом, если произойдёт всплеск, мы не потеряем ни грамма ценной информации. Мы увидим на этой картинке не только то, что было в оптическом диапазоне во время всплеска, но также и то, что, возможно, предшествовало этому всплеску. А есть такие модели, которые предсказывают мощное оптическое излучение до всплеска.

Таким образом, если бы у нас был этот прибор, когда произошёл всплеск, тот, о котором мы говорили, 23-го января 99-го года, то здесь, на этой картинке, он бы был ярчайшей звездой. Восьмая с половиной величина – это много, это была бы очень яркая звёздочка. Так что интернационализация – в природе исследования гамма-всплесков, никуда не деться без Интернета и без совместных исследований этой проблемы.

А.Г. А какое количество наземных телескопов в состоянии сделать то, о чём вы сейчас говорите?

А.П. Нужны специализированные телескопы. Дело вот в чём. По так называемым оповещениям могут работать только узкопольные телескопы. И этих узкопольных телескопов много – во время последнего всплеска было, я думаю, до сотни сообщений от разных групп наблюдателей, которые смотрели этот всплеск. Но специализированных широкопольных камер – единицы. Это достаточно дорогое, достаточно сложное удовольствие – сделать телескоп с хорошей чувствительностью и широким полем зрения.

А.Г. А какой здесь сейчас сектор?

А.П. 20 на 20 градусов. Предельная величина здесь – 12-я звёздная величина. Вообще роботизированных телескопов, порядка семи штук во всём мире, сейчас работает по программе поиска послесвечения всплесков. И ещё строятся такие широкопольные камеры, чтобы искать гамма-всплески совместно с бортовыми космическими телескопами, и искать оптическое излучение, непосредственно сопровождающее гамма-всплески. Можно сразу сказать, что пока ничего не найдено. Но должно пройти некоторое время, чтобы накопилась статистика, потому что эти телескопы только-только начинают работать.

А.Г. И потом – вероятность такого события, она всё-таки, наверное, невелика…

А.П. В общем, да. То есть если из поля в 4 они приходят раз в день, то из поля зрения 20 на 20 градусов нужно подождать год.

Но ожидание окупится. Потому что если мы увидим оптику и с хорошим временным разрешением исследуем её, то мы дадим пищу теоретикам.

Б.Ш. Есть интересная аналогия. Квазары сравнивают с маяками Вселенной. Кроме того что они интересны сами по себе, они просвечивают всё пространство на луче зрения с больших красных смещений, и мы видим, что там происходит. Гамма-всплеск в этом плане можно называть осветительной ракетой Вселенной, ракетой, которая ярче любых маяков. Его просто надо успеть поймать. И тогда гамма-всплеск просветит всё, что было во Вселенной после первых сотен миллионов лет. Практически все. Даст ответы просто на массу вопросов.


    Ваша оценка произведения:

Популярные книги за неделю