355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Гордон » Диалоги (август 2003 г.) » Текст книги (страница 12)
Диалоги (август 2003 г.)
  • Текст добавлен: 9 сентября 2016, 21:18

Текст книги "Диалоги (август 2003 г.)"


Автор книги: Александр Гордон



сообщить о нарушении

Текущая страница: 12 (всего у книги 16 страниц)

Но давайте посмотрим, как ведут себя отклонения. Вот за день произошли отклонения, скажем, на 1% или 2%, или 3, а вот как распределены эти отклонения. Видно, сколько раз у нас возникали дневные отклонения на 0,2%, сколько на 0,3%. Пожалуйста, 14-й график.

Вот распределения этих трех компаний: «Газпром», «РАО ЕЭС», «Лукойл», они разными цветами изображены. А по середине, наиболее узкое распределение – это…

А.Г. Доу Джонс.

А.Б. Да, распределение дневных отклонений индекса Доу Джонса. Оно здесь показано просто для того, чтобы понять, что наша биржа имеет флуктуации существенно большие, чем у них. Правда, вообще говоря, каждая отдельная акция всегда имеет большие флуктуации, чем биржевой индекс.

А.Г. То есть индекс Доу Джонса ведёт себя здесь, на этом графике, приблизительно как погода на экваторе.

А.Б. В общем, да, правильное сравнение. Но в данный момент я хотел бы обратить внимание на форму этой кривой, она тоже не Гауссова, по форме это не колокол получается, а как бы сглаженный треугольник. Но важно, что форма очень близка к погодному распределению. Правда, и для погоды, и здесь, этот треугольник снизу немного загибается вверх – это уже не экспоненциальное падение, а степенное поведение. Но точность графика на очень больших отклонениях невелика, вы видите, как он сильно флуктуирует. Точность уже не настолько большая, чтобы этот график как-то уверенно аппроксимировать. Поэтому в первом приближении, на взгляд, это распределение очень похоже на погодные отклонения.

Можно сказать и о том, что, конечно, уже меньше относится к науке. Это просто наблюдение подобия, но, тем не менее, отсюда можно сделать и конкретные выводы. Опять же, как и в случае погоды, в представлении большинства людей поведение биржи происходит нормальным образом, то есть всем кажется, что большие отклонения настолько маловероятны (как в гауссовом нормальном случае), что можно их и не принимать во внимание. Однако, именно те, кто чувствует, что отклонения изредка могут быть большими, они – скажем так, и выигрывают больше. Это так же, как и в случае погоды: если вы имеете представление о том, что катастрофа не так уж маловероятна, то её можно, если не предчувствовать, то по крайней мере, иметь в виду. Скажем, вы рассчитываете высоту плотин, дамб, предохраняющих от наводнения. Вы должны закладываться не на те наблюдения, которые прошли за сто лет, за период наблюдений, а должны заложить ещё немного и даже ещё порядочно, чтобы предупредить то наводнение, которого, может быть, не было за эти сто лет, но вероятность которого, тем не менее, существенна.

А.Г. И чтобы не случилось как в Голландии, когда дамбы рассчитаны были как раз, наверное, исходя из гауссовой вероятности, а затопило полстраны.

А.Б. Да, да. Но давайте вернёмся к поведению нашей биржи. 13-ю картинку, пожалуйста. Это к вопросу о том, можно ли вообще предсказать что-то конкретное. Вот, посмотрите, интересные есть места: вот у нас 2000 год. К сожалению, тут надо бы показать его в более крупном масштабе, но тем не менее…

А.Г. Но падение очевидно, да.

А.Б. Нет, нет, в сам 2000-й год…

А.Г. Ах, 2000 год…

А.Б. Перед 2000-м годом…

А.Г. Падение, да.

А.Б. Было падение, но перед началом 2000 года – рост. Вот это момент отречения Ельцина – а за ним пик. Момент президентских выборов – ещё более резкий пик. А потом – падение. У нас на носу ещё одни президентские выборы…

А.Г. Это значит, что биржа будет расти.

А.Б. Я бы так сказал: с большей вероятностью будет расти, чем падать. Потому что никакое точное предсказание насчёт биржи делать нельзя, это опасно.

А.Г. Ну да, «знал бы прикуп, жил бы в Сочи».

А.Б. Но, тем не менее, что-то сказать можно.

Теперь я хотел бы вернуться опять к научной части нашей дискуссии, потому что поведение игроков на бирже во многом определяется психологией, а чувствовать её – искусство. А научная составляющая там невелика. Хотя финансовая наука существует, то, о чём я говорил – это отнюдь не я изобрёл. Есть многотомные исследования биржи. Надеюсь, что после нашей программы будет ссылка на них на сайте. Но давайте вернёмся к погоде и посмотрим на график 9-а.

Вот те флуктуации температуры, о которых я говорил, которые прошли за 120 лет. Это случайная функция, и есть несколько способов анализа случайных функций и извлечения из них разной информации. То, о чём я говорил до этого, были распределения вариаций температуры. А это Фурье-анализ этих отклонений. То есть вопрос стоит так: колебания есть частые, есть редкие, спросим, есть ли характерные частоты в этих колебаниях? По графику, когда на него просто смотришь, очень трудно уловить глазом характерные колебания, потому что они присутствуют в любой продолжительности. А Фурье-анализ, или вейвлет-анализ, позволяет это сделать более точно. Делается следующее. Выбирается изменяющийся временной отрезок, постоянный по длине, который пробегает все наши измерения. Внутри каждого такого отрезка (обычно берётся треть длины, значит, если 120 лет – то 40-летний отрезок) проводится Фурье-анализ, то есть выделяются характерные частоты. И они откладываются на графике. Чем больше пик колебаний на данной частоте, тем более тёмным цветом она закрашена. Но почему этот вопрос интересен с теоретической точки зрения?

Вы уже знаете, что погода у нас определяется Солнцем. А на Солнце, как вы тоже знаете, есть 11-летние колебания. И поэтому вполне логична мысль и впервые её высказал Чижевский (её, по-видимому, многие высказывали, но он очень отчётливо её сформулировал), что раз на Солнце есть 11-летние колебания, то они должны проявляться и в земной атмосфере. Так вот оказалось, что как раз 11-летних колебаний мы здесь и не видим. А есть колебания пяти-шестилетние, которые, удваиваясь, дают нечто похожее на 11-летние колебания. Эти 6-летние колебания, в свою очередь, есть следствия явления Эль-Ниньо. В Тихом океане, раз в 6 лет – примерно с таким периодом – возникает прогрев океанской массы, и это наиболее крупная флуктуация погоды на Земле.

Интересно, что она связана с колебаниями земной оси. Земная ось имеет так называемые Чандлеровские колебания полиса с близким периодом. И связи этих колебаний отчётливо прослеживаются. Кроме того, здесь на графике отчётливо виден ещё годичный период, но на него не стоит обращать внимания, это как бы порок неточного выделения средней, климатической составляющей. Мы же вычли сезонный ход температуры: зима, лето, весна, осень. Здесь мы говорим только о её колебаниях над общим сезонным ходом.

Очень интересно, что на этих графиках, как оказалось, тоже обнаруживается явление Эль-Ниньо. Самые зачернённые области как раз и соответствуют этому явлению. Так что погода – вещь, конечно, очень сложная и плохо предсказуемая. Но статистика позволяет с ней немножко как бы разобраться. И если не справиться с конкретным предсказанием, то понять, чего, в принципе, можно ожидать от погоды – и от биржи.

А.Г. Эль-Ниньо, в последние годы, если мне не изменяет память и если я прочёл верную информацию, тоже ведёт себя странно. Там как бы флуктуация внутри этой гигантской флуктуации происходит.

А.Б. Это общая картина на Земле, когда большой циклон разбивается на маленькие и ещё меньшие, и существует весь спектр. И Эль-Ниньо, хотя мы и говорим о его периодичности, но одно вовсе не похоже на другое. Каждый раз оно проявляет себя по-своему. В этом смысле оно тоже трудно прогнозируемо. Но интересно, что колебания в Тихом океане, который географически очень далёк, скажем, от Европы, задают ритм всем земным колебаниям. И от него как бы волнами разбегаются следствия, прежде всего, на Америку, которая ближе, но даже и на Европу.

Кроме того, существуют другие колебания. В Атлантическом океане тоже происходят температурные колебания между севером и югом. Это второе по своей амплитуде, по значимости глобальное колебание погоды. У него нет своего характерного периода, оно как бы вторично. Но тоже с продолжительностью в несколько лет.

А.Г. А чем объясняется наличие на Земле неких зон возле, скажем, Южной Калифорнии, где круглогодичная температура подвергается наименьшим флуктуациям, наверное, во всей Северной Америке. То же самое можно сказать и о выпадении осадков в каком-нибудь Сан-Франциско или Сан-Диего – 25 градусов круглый год, безоблачное небо.

А.Б. Есть, наоборот, места на Земле, где дождь почти не прекращается, это, например, Исландия. Да, климатически им повезло. Но, вообще, если вернуться ко второму рисунку, то у нас на Земле есть зоны, где присутствует постоянный антициклон, где сверху воздух поднимается над экватором, образует облака, часто идут дожди. А там, где воздух опускается на широте 25-30 градусов, там ясная погода. Но это небольшое счастье, потому что эта широта как раз соответствует поясу пустынь на Земле. Все величайшие пустыни расположены именно на этих широтах в Северном полушарии. И в Южном тоже есть, но там просто суши поменьше. А жизнь в пустыне – это хорошо для Калифорнии, где вы имеете постоянное водоснабжение. Но вообще, жизнь в пустыне не подарок, там же и Долина смерти находится, совсем рядом.

А.Г. Совсем рядом, да.

А.Б. Да, так что проблема воды на Земле, и особенно в пустынных районах, это ещё одна большая глубокая тема, которую я очень рекомендую вам как-нибудь обсудить.

А.Г. Непременно. Возвращаясь к бирже. Если мы проводим аналог между поведением погоды и поведением биржевого индекса, то нельзя ли попробовать определить (я понимаю, что мы, наверное, выходим за рамки научного знания, но всё-таки, если уж мы начали размышлять об этом), какие конвекционные потоки вызывают похожие изменения на бирже?

А.Б. Вы знаете, тут вы, по-видимому, интуитивно угадали, и я об этом тоже хотел сказать, но всё это пока в области догадок. Есть схожесть конвекции потоков тепла и денег. Возьмём конкретный пример: ввели евро, и сперва оно никому особенно не было нужно – пока было безналичной валютой. Потом оно появилось в наличном виде. Потом оно понадобилось большему числу банков, и, в конце концов, простых людей (не европейцев), в результате пошёл поток перетекания денежных средств от доллара к евро, что и привело к тому, что евро стало расти, а доллар падать. Именно эта тенденция сейчас настолько острая, что она во многом определяет поток денег. Он внутри разбивается на меньшие конвекционные потоки, и всё более и более дробится. Схожесть конвекции и денежных потоков на рынках, я думаю, стоит проанализировать более подробно. Но для этого уже недостаточно иметь только информацию о биржевых индексах.

А.Г. К слову об информации. Мне представляется, что поскольку информация оказывает главное влияние на поведение биржи, – информация доступная всем и каждому, на основе которой каждый и все принимают решения – мне кажется, здесь тоже есть какое-то конвекционное движение, в обмене информации…

А.Б. Во-первых, одновременно она не бывает доступной каждому, информация идёт как бы волной распространения. Даже если посредством Интернета она моментально становится всем доступной, – скажем, Алан Гринспен выступает, а все слушают его речь, – это, действительно, общая информация…

А.Г. Или Сорос говорит, что он обрушит доллар.

А.Б. Но, тем не менее, и Сороса ещё надо внимательно прочесть, надо найти в Интернете это место, прочитать. Но особенность этой всеобщей информации в том, что её каждый понимает по-своему. Поэтому она и не приводит к однонаправленному движению. И тому же Соросу – одни люди верят, а другие думают, что это он говорит нарочно.

А.Г. Даже на уровне терминологии получаются смешные параллели, потому что, когда индекс любого рынка высок, говорят, что «рынок разогрет».

А.Б. И это тоже не слишком хорошо.

А.Г. Да, я просто в контексте нашего разговора отмечаю, что «разогретый рынок» – это ещё одна параллель климатическим процессам…

А.Б. Ну, нам до разогретости ещё достаточно далеко.

А.Г. Вы имеете в виду наш рынок?

А.Б. Сперва разогреемся как следует, а потом уж будем об этом печалиться.

А.Г. Сперва оттаять нужно, а потом уже разогреваться.

А вы сами-то играете на бирже, нет?

А.Б. Свободного времени не так много, но я всё-таки принимаю участие, да.

А.Г. И пользуясь вашими знаниями, вы в плюсе или в минусе?

А.Б. Ну, в общем, получается…

Гамма-всплески

26.08.03
(хр.00:50:14)

Участники:

Борис Евгеньевич Штерн – кандидат физико-математических наук

Алексей Степанович Позаненко – кандидат физико-математических наук

Борис Штерн: 60-е годы были славными и для астрофизики. Самыми урожайными на великие открытия. Навскидку можно назвать, по крайней мере, 4 таких великих открытия.

Алексей Позаненко: Астрофизических открытия.

Б.Ш. Да, я говорю про астрофизику. Первое – это знаменитое открытие реликтового излучения. Реликтовое излучение – это свет, который остался во вселенной с самых ранних времён, когда она была совсем молодой и горячей, с тех пор этот свет стал радиоволнами. И именно их в 65 году зарегистрировали Пензиас и Вильсен. Они не знали, что они открыли, но это было предсказанное открытие.

Следующее открытие – пульсары. 67-й год. Радиотелескопы нашли на небе пульсирующие источники. Причём с очень чётким периодом – в секунды. Как будто внеземные цивилизации посылают нам сигналы. Но довольно быстро и здесь нашлось рациональное объяснение, поскольку в теории уже существовал подходящий объект. Это нейтронная звезда. По происхождению нейтронная звезда – это труп обычной звезды, только больше, чем Солнце. По сути, это очень своеобразное чудо природы – это шар радиусом 10-20 километров, то есть размером с Москву, но с массой больше, чем масса Солнца. Его плотность больше плотности воды на 14-15 порядков. Кроме того, он обладает огромным магнитным полем, и вся эта конструкция вращается со скоростью иногда до 600 оборотов в секунду. Всё это работает как радиомаяк, отсюда и получаются эти импульсы. Это нам ещё понадобится – нейтронные звёзды будут персонажем нашей истории.

Следующее, а точнее, первое по хронологии, великое открытие – это квазары, они были открыты в 63 году. Наблюдали звёзды, как будто очень горячие, с совершенно непонятным спектром. И когда этот спектр расшифровали, тут и случился шок. Оказалось, что они обладают спектром известных элементов, но только смещённым в красную область – на 20 процентов, на 50 процентов, иногда даже в 2 раза. Природа красного смещения была более-менее понятна – это эффект Доплера. Объект от нас удаляется со скоростью, сравнимой со скоростью света – это соответствует модели расширяющейся вселенной. Но тогда мы должны поместить квазары на миллиарды световых лет от нас. Итак, они светят ярче галактик, в тысячи раз ярче галактик.

Мы будем использовать дальше термин «космологическое расстояние», это расстояния, сравнимые с расстоянием до горизонта вселенной. А что такое «горизонт», мы ещё скажем. Наконец, в конце 60-х годов были открыты космические гамма-всплески. С квазарами разобрались примерно за 10 лет, где-то к середине 70-х уже было более-менее понятно, что это такое – это сверхмассивные чёрные дыры в центрах галактик, которые всасывают в себя окружающее вещество, это называется аккреция, от этого они и светятся. А вот с гамма-всплесками была совершенно другая эпопея. Они водили за нос исследователей всего мира четверть века. Только в последние несколько лет завеса чуть-чуть приоткрылась. Но и сейчас мы не можем сказать, что хоть чуть-чуть приблизились к тому пониманию, которое было достигнуто для квазаров где-то уже в 70-х годах.

Начнём с открытия. Из нас двоих Алексей в большей степени наблюдатель, ему слово соответственно.

А.П. Да, экстравагантность открытия всплесков состояла в том, что были открыты не научными приборами, а спутниками-шпионами «Вела», запущенными для контроля за соблюдением договора о неиспытании ядерного оружия в средах. Таких спутников было запущено много, они имели название «Вела». В 69-м году была запущена «Вела-5». Именно эти спутники стали регистрировать вспышки, мощные вспышки гамма-излучения. Что это было такое? По кривой блеска, по количеству это не могли быть земные источники, связанные с испытанием. В то время достаточно сложно было определить направление прихода, потому что детекторы смотрят в 4 . И лишь благодаря тому, что было несколько таких космических аппаратов, то по задержке времени прихода фронта удалось определить, что, по-видимому, с большой долей вероятности, они приходят не с Земли. Ну, и количество сыграло роль. В общем, их было зарегистрировано несколько десятков, порядка 20 на этих спутниках. Такого количества испытаний просто ни одна страна не могла себе позволить.

Александр Гордон: За какой период?

А.П. С 69 по 73 год. Потом первый каталог насчитывал уже порядка 70 всплесков, потому что, когда вернулись назад, посмотрели предыдущие эксперименты на спутниках Вела-3, Вела-4, нашли всплески ещё и там.

Красивая история об открытии всплесков говорит о том, что в 73 году прошлого века эта данные рассекретили, и была опубликована первая работа. На самом деле всё было гораздо прозаичнее. Исследователь Рэй Клебесадел, разработчик этого прибора, когда было точно выяснено, что эти источники находятся не на Земле, положил эти данные в стол и лишь только в 72 году по просьбе начальства он вернулся к исследованию этих необычных явлений, необычных кривых. В 72 году он вернулся к исследованиям, а в 73 году была опубликована первая статья. И как раз в июне 73 года она была опубликована, то есть в этом году исполнилось 30 лет с тех пор, как были открыты гамма-всплески. 30 лет, и за эти 30 лет мы зарегистрировали очень много всплесков, больше 3 тысяч, во множестве космических экспериментов на различных космических аппаратах. Вот такая экстравагантная история.

А.Г. Какие приборы стояли на этих спутниках?

А.П. Это были сцинтиляционные детекторы, которые могли измерять достаточно жёсткое излучение – от 30 КэВ до 2 МэВ.

Б.Ш. Довольно небольшие по размеру, кстати.

А.П. Да, небольшого размера. Они были предназначены для того, чтобы контролировать испытания, а открыли такое замечательное явление, которым мы продолжаем заниматься уже достаточно долго. И эти всплески водят нас за нос и, по-видимому, ещё будут водить.

Б.Ш. В то время было совершенно неизвестно, откуда приходили всплески. Их наблюдали просто в виде внезапного роста темпа отсчёта гамма-квантов. Покажите следующую картинку, если можно. И эти кривые совершенно разные. На самом деле, трудно себе представить, что это всё относится к одному и тому же явлению. На самом деле, они вписываются в единую статистику, и похоже, что здесь просто работают какие-то неустойчивости, какая-то стохастика, природа играет в кости, когда генерирует эти кривые. Ко всему прочему – это очень яркий феномен. Чтобы открыть какое-то новое явление, как правило, требуются дорогие прецизионные установки. А вот это можно было открыть детектором размером с монету – будь он помещён на спутнике. По яркости это явление сравнимо с яркими солнечными вспышками – но Солнце рядом, а это неизвестно где.

А.Г. То есть их мог бы зафиксировать даже бытовой счётчик Гейгера.

А.П. Совершенно верно, но только будь он на орбите.

Б.Ш. 100 фотонов в секунду через сантиметр квадратный – вот характерная величина.

Что тогда думали по поводу этих всплесков? Думали, что это нейтронные звёзды, о которых мы говорили. Они вообще богатые на всякие неожиданные явления. Но тем временем история продолжалась…

А.П. Что только не думали, было достаточно много гипотез, мы расскажем про это, но после открытия всплесков их исследованию стали посвящать специализированные эксперименты. Таких экспериментов было достаточно много. Если мы посмотрим на следующую картинку, то увидим, сколько было экспериментов, которые исследовали космические всплески. Здесь на двух картинках перечислены эти эксперименты. Достаточно сказать о самых выдающихся, на наш взгляд.

С американской стороны это «Пионер Венера Орбитер», спутник, на котором был установлен детектор гамма-всплесков. И американский же «Солар Максимум Мишн». Но Советский Союз тоже не был в стороне от этих исследований. Это были такие эксперименты, такие как «Конус», разработанный в питерском Физтехе Евгением Павловичем Мазецем, «Снег» на космических аппаратах Венера-11-14. «Снег» был советско-французский эксперимент, а И.В. Эстулин руководил этим экспериментом в ИКИ. В общей сложности советские эксперименты зарегистрировали порядка 200 всплесков за эти годы.

А.Г. Я вижу, что по крайней мере 10 из этих экспериментов продолжаются и по сей день.

А.П. Да, да, и сейчас исследования продолжаются. И мы, наверное, пару слов попозже скажем об этом. Что же эти эксперименты дали? Они определили не направление прихода всплесков, а сам факт регистрации этих всплесков.

Б.Ш. Общую статистику.

А.П. Да, общую статистику. И направление можно было определять примерно по триангуляции – когда в пространстве расположено много спутников, то по времени задержки прихода плоского фронта можно было строить дуги, и дальше эти дуги где-то пересекались. Это называется error-box, т.е. область локализации всплеска. Они были достаточно большими. И люди пытались смотреть в эти области локализации (боксы) другими приборами, оптическими в частности. И ничего там не находили, эти боксы были пустые!

Б.Ш. Поэтому по-прежнему подозревали нейтронные звёзды. И однажды показалось, что это точно подтвердилось, что это доказано.

А.П. 5 марта 79 года случился очень мощный всплеск. Надо сказать, что он был зарегистрирован сразу же семью аппаратами, которые летали либо на орбите Земли, либо на межпланетных траекториях. Чем этот всплеск был замечателен? Он был очень мощный. Но это не всё. Удивительно, но в этом всплеске нашли период в пульсациях – порядка 8 секунд, чуть меньше 8 секунд. Что такое 8 секунд? 8 секунд это…

Б.Ш. Вращающаяся нейтронная звезда.

А.П. Да, вращающаяся нейтронная звезда. Близко по периоду к радиопульсарам, – хотя и больше, чем у них, но близко. Казалось, что проблема всплесков закрыта, по крайней мере, решена, потому что это пульсар, нейтронная звезда. В общем, радости было много, материала для исследований было много. Но в дальнейшем оказалось, что этот класс явлений, он маскировался под всплески.

Б.Ш. Это были не гамма-всплески.

А.П. Это был класс явлений, который потом получил название Софт Гамма-Репиторы (SGR).

Б.Ш. На одном из семинаров это предложили перевести как «мягкий повторитель», но мы не берём на себя такую смелость.

А.П. Да, очень трудно иногда переводить какие-то термины.

Итак, в чём оказалось его отличие от классических всплесков, о которых мы ведём речь? Оказалось, что энергетический спектр этих событий чрезвычайно мягкий. Он сильно отличается от классических всплесков, это во-первых. Во-вторых, оказалось, что они умеют повторяться. То есть если классические всплески никогда не приходят из одной точки пространства, то эти Софт Гамма-Репиторы повторялись, было найдено до сотни периодов активности этого источника. На сегодняшний день известно 5 Софт Гамма-Репиторов, которые периодически проявляют свою активность. Все, кроме одного, принадлежат нашей Галактике.

А.Г. То есть природа этих явлений совсем другая.

Б.Ш. Совсем другая и тоже очень интересная. Это другая загадка.

А.П. Сейчас это уже стало отдельно исследуемым подклассом явлений.

Б.Ш. Но, тем не менее, после некоего разочарования или, может быть, новой находки…

А.П. После ухода с этого ложного пути.

Б.Ш. Да, всё равно продолжали думать, что это нейтронные звёзды, просто какое-то другое их проявление, потому что это действительно чудо природы, богатое на разные эффекты.

Но здесь стало появляться одно смущающее обстоятельство, а именно – мы живём в плоской спиральной галактике. Вот снимок телескопа «Хаббл», на котором изображена реальная группа галактик. Это не фотомонтаж, это действительно такая группа. Та, которая снизу, видна ребром, она даёт хорошее представление о геометрии.

А.Г. И похожа на нашу Галактику…

Б.Ш. На наш Млечный Путь.

И если бы это были нейтронные звёзды, то мы должны были ожидать, что они распределены в плоскости этой галактики, там, где они рождаются. И все известные эффекты, которые связаны с нейтронными звёздами, они концентрируются в плоскости Млечного Пути. Эта плоскость нашей Галактики. Так вот, иногда удавалось определить направление, откуда пришёл гамма-всплеск. Оказывается, это направление было случайно разбросанным по небу и никуда не концентрировалось.

А.Г. То есть отовсюду. Мог отсюда, мог оттуда…

Б.Ш. Отовсюду. Тогда предложили такую идею. Хорошо, может быть, они не очень яркие и, может быть, мы их видим только с расстояния порядка толщины галактического диска? Вот мы сидим где-то здесь и видим гамма всплески вокруг себя. Так рассуждали в то время. Интересно взять «Маленькую энциклопедию космоса» издания 86 года. Там написано, что это, скорее всего, нейтронные звёзды. И там есть одна характерная фраза: «Источники гамма-всплесков обладают поразительной энергетикой. За вспышку излучается 10 в 40-ой степени эрг». Запомните эту цифру – 10 в 40-ой эрг – она ещё будет меняться. Что это такое? 10 в 40-ой эрг – Солнце столько выделяет примерно за месяц. А здесь за секунды и в гамма-диапазоне, конечно, это много и поразительно.

А.Г. Только в гамма-диапазоне?

Б.Ш. Только в гамма-диапазоне, да. Итак, было это смущающее обстоятельство. И пока так думали, комбинировали все эти геометрии, началась новая эпоха. Это начало 90-х годов. Запустили новый аппарат.

А.П. Долго ожидаемая обсерватория имени А.Комптона была посвящена исследованиям высокоэнергичных явлений в космосе. В частности, там был установлен прибор БАТСЕ (BATSE), который регистрировал всплески. Уникальность этого прибора была в том, что он был в 10 раз более чувствителен, чем работавшие прежде. Там были большие блины, большие детекторы, полуметровые, их было 8 штук, это с одной стороны. С другой стороны, его уникальность была в том, что он мог регистрировать в режиме реального времени направления прихода всплесков. С не очень большой точностью, порядка трех градусов, но этого было достаточно, чтобы построить то самое распределение и посмотреть, есть ли там концентрация к плоскости галактики или нет? Есть ли там концентрация к направлению на центр галактики или нет?

Это 91-й год, руководителем этого эксперимента был Джерри Фишман. (Кстати, эксперимент этот очень долго работал, он работал до самого затопления обсерватории в 2000 г.) После запуска, тут же стали регистрироваться всплески, с частотой примерно один раз в день. Тут все исследователи стали потирать руки – ага, пройдёт год-два, накопится достаточно статистики, построим это распределение и увидим, наконец-то, плоскость галактики. Не тут-то было.

93-й год, первый каталог BATSE, порядка трехсот всплесков, с координатами. Все стали строить распределение по небу, построили и прослезились – не было никакой концентрации ни к плоскости галактики, ни к галактическому центру!

Б.Ш. Но это ещё не всё, это ещё не самое страшное.

А.П. Была полная изотропия.

А.Г. Равномерная изотропия по всем направлениям.

Б.Ш. И это ещё не самое страшное. Обнаружилась сильная недостача слабых всплесков. Поясню. Допустим, вы получили в четыре раза более чувствительный детектор, значит, он стал видеть в два раза дальше, работает закон обратных квадратов расстояний. Но это значит, что он стал просматривать сферу в восемь раз большего объёма, и если всплески равномерно распределены в пространстве, значит, мы их должны видеть в восемь раз больше. А этого не было, было гораздо меньше. И на самом слабом конце распределения, где BASTE ещё должен прекрасно видеть всплески, он не досчитывался всплесков с фактором десятка. Что это могло означать? Изотропия и недостаток слабых – это значит, что источники гамма-всплесков образуют сферическое облако, в центре которого мы сидим, и это облако с краёв ограничено – за пределами этого облака источников мало, или их нет вообще.

Какие системы вообще имеют такую геометрию в космосе? Например, в Солнечной системе есть кометное облако Оорта, оно сферическое, мы в центре – но из комет не получишь гамма-всплесков. Хотя были и такие гипотезы, но их серьёзно не рассматривали.

Тогда придумали следующую систему. Вот у нас есть галактический диск, в нём рождаются нейтронные звёзды. Но они рождаются с большими начальными скоростями из-за взрыва сверхновой. Они вылетают из галактики и засеивают пространство вокруг неё большой короной из очень старых нейтронных звёзд. И, может быть, с этими старыми нейтронными звёздами происходят какие-то катаклизмы? Облако большое, мы хоть и смещены от центра, но не так сильно, и можем этой асимметрии не заменить. Тут возникает такая проблема, что здесь уже десятью в сороковой степени не обойдёшься, здесь нужно уже десять в 44-ой эрг, это уже тысячу лет Солнцу нужно выработать такую энергию.

А.Г. И спустить её за секунду…

Б.Ш. Тем не менее, гамма-всплески – объект богатый, и люди придумали как настричь с нейтронной звезды эти самые десять в 44-й эрг, это взрывное высвобождение магнитного потока, но не будем в это углубляться.

А.Г. При такой модели, на каком расстоянии должны были находиться эти нейтронные звёзды от нас?

А.П. Десятки килопарсек.

Б.Ш. Сотни, минимум сотни килопарсек, это триста тысяч световых лет.

Но есть ещё одна система с нужной геометрией – это вся Вселенная. Поясню. Лет 15 или больше назад знатоки из клуба «Что, где, когда?» сели в лужу, отвечая на вопрос школьника – почему ночью небо тёмное. Это мне один из знатоков рассказывал, Виктор Сиднев. Они решили, раз школьник, значит, вопрос должен быть простой, и ответили, что Земля загораживает солнечный свет – света нет, небо тёмное. Школьник был не так прост. Он имел в виду так называемый фотометрический парадокс Ольберса, а именно: если Вселенная существует вечно, если она бесконечная и однородная, небо должно сиять как поверхность Солнца – это очень простой факт, понятный в рамках школьной программы, не будем его объяснять, пусть останется домашним заданием для телезрителей. Но небо-то тёмное, а тёмное оно потому, что Вселенная расширяется и потому что она имеет горизонт.

Итак, что такое горизонт? Проще всего себе его представить таким образом. Сейчас мы знаем достаточно хорошо, что Вселенная родилась примерно 14 миллиардов лет назад. Это значит, что мы не можем видеть дальше, чем 14 миллиардов световых лет. Грубо говоря, это и есть горизонт.

Вот, что видит космический телескоп «Хаббл», глядя прямо в горизонт. Здесь суп из слабых галактик, здесь их столько, что не пересчитать, большинство из этих слабых точек – это галактики, находящиеся дальше, чем на полпути к горизонту вселенной. Там есть несколько галактик, которых «Хаббл» не видит, у них очень большое красное смещение. И если верна гипотеза, что работает эта геометрия всей вселенной, значит, большинство всплесков происходит от этих слабеньких галактик – понятно, почему этих источников не видели. Но если эта геометрия работает, это уже не десять в 44-й эрг. Цена вопроса – миллиард, это десять в 53-й эрг. Целая галактика выделяет такую энергию примерно за сто лет, а даже звезда покрупнее Солнца не высветит такой энергии никогда. И отдельная нейтронная звезда тут уже не проходит никак.


    Ваша оценка произведения:

Популярные книги за неделю