Текст книги "Диалоги (апрель 2003 г.)"
Автор книги: Александр Гордон
сообщить о нарушении
Текущая страница: 2 (всего у книги 17 страниц)
Наблюдения показывают, что нет пустоты. В том смысле, в котором она понималась в 19-м веке: Вселенная есть пустота, заполненная энергией. И последние открытия, они, по-видимому, оставляют открытым и вопрос о том, так прав был Мах или нет? Вот такая ситуация сейчас с этим делом.
А.П. В связи с этим «лямбда-членом» остаётся проблема. Ведь квантовая теория предсказывает, что он должен быть очень большим, верно? А на самом деле то, что наблюдается, очень малая величина. Почему это происходит? Это остаётся открытым вопросом.
В.Л. Вот прекрасное замечание. Да, есть противоречия на современном уровне. Как мы теперь понимаем, впервые пустоту начал заполнять Эйнштейн, который хотел объяснить инерцию кривым пространством-временем. Есть работы, где он просто пытался из кривизны пространства-времени получить массу и инерцию, они были безуспешными. Но потом появилась новая наука, которая тоже начала заполнять пустоту, она появилась позже, это наука – квантовая механика. И известная идея Дирака о существование виртуальных частиц, о том, что вакуум не пуст – там есть виртуальные частицы, – это, на самом деле, есть воплощение идеи о том, что в пустоте должна быть энергия.
И смотрите, что получается. С одной стороны, современная квантовая теория даёт огромную энергию этого вакуума. Примерно на сто порядков больше, чем ту, которую мы сейчас наблюдаем во Вселенной.
Но мы знаем, что наука развивается сложным образом. Возможно, там происходит компенсация. Ведь нет теории квантовой гравитации, поэтому нет ответа на вопрос. Для меня кажется более важным следующее, что открытие энергии пустоты вакуума поднимает теорию относительности на более высокую величину.
Геометрическая теория Эйнштейна, она была создана таким образом, как будто бы она знала, что пустота не может быть пустой. Вот что удивительно. И в этом смысле общая теория относительности где-то уже приближается к самой загадочной из всех наук – к термодинамике. Все теории, созданные в ХХ веке, должны были оглядываться на законы сохранения энергии. Неизвестно, почему они должны работать – это принимается как постулат термодинамики. И в этом смысле «лямбда-член» Эйнштейна – это и есть некое совершенно удивительное предсказание одного из главных следствий квантовой механики – энергии вакуума. И на это хотелось бы обратить особое внимание. Но, конечно есть проблемы очень большие.
А.П. Возвращаясь, вернее, оставаясь в рассуждении о «лямбда-члене», на самом деле к нему подходят с разных точек зрения. Можно подойти с помощью некоего небольшого изменения самой геометрической теории. В теории Эйнштейна «лямбда-член» задаётся с самого начала, изначально. А можно немножко изменить построение теории, которое приведёт к каким-то уравнениям. Потом можно их решать, и в процессе этого решения «лямбда-член» возникнет как константа интегрирования. Уже на этом уровне мы опять будем иметь уравнение Эйнштейна с «лямбда-членом», но он может быть каким угодно – просто постоянной величиной. На основании этого происходят разные спекуляции. Вот, мол, как понять, почему «лямбда-член» действительно мал сейчас…
В.Л. Я перебью. В начале мы говорили о каких-то классических вещах. Александр Николаевич и я, мы стоим на классических позициях в смысле понимания гравитации и так далее. Но вот сейчас мы начинаем говорить уже о неких гипотезах, поскольку «лямбда-член», его значение в современной физике, или, говоря современным языком, просто энергия вакуума космического, энергия пустоты, отсутствие пустоты в природе – это сейчас только начинает осмысливаться в связи со старыми геометрическими идеями. И вот то, что сейчас Александр Николаевич говорит, он обращает внимание на то, что в последние годы появилось… Ведь смотрите, если «лямбда-член» есть, то возникает вопрос: вообще откуда он берётся? В теории относительности это просто константа, которую она допускает просто геометрически, умозрительно. Эйнштейну не нужен был эксперимент. Он пользовался простыми мысленными экспериментами. И он пришёл к идее общей теории относительности, внутри которой была заложена идея отсутствия пустоты, энергии пустоты. И то, что мы сейчас возвращаемся из очень простых принципов к идее отсутствия пустоты, сейчас заставляет нас уже ставить новый вопрос: а почему «лямбда-член» таков, каким мы его сейчас видим? И вот здесь ряд очень новых, интересных идей может быть.
А.П. Я продолжу. Итак, оказывается, что «лямбда-член» может быть другим. И если мы попытаемся перейти от классической теории к квантовой (вот что это такое – различия), то оказывается, что как бы можно построить много-много Вселенных с различными «лямбда». И можно построить некую функцию, которая описывает вероятность с какой возникнет Вселенная с данной «лямбда», и так для всего непрерывного спектра, скажем, от минуса до плюса. И окажется, что более всего вероятно возникновение Вселенных как раз с «лямбда» очень близкой к нулю. То есть примерно с той, которая наблюдается сейчас. Хотя не будет точно указано, что она точно равна нулю, что мы, в общем-то, сейчас и наблюдаем.
В.Л. Я только уточню, что речь идёт о неких новых теориях, которые не являются, на самом деле, сильно отличными от теории гравитации. Но всё-таки они выводятся немножко по-другому. И удивительным образом в этой теории константа, которую мы называем энергией пустоты, или «лямбда-членом», как мы интерпретируем её сейчас, она получается в результате неких начальных условий. Она не задаётся, как в теории Эйнштейна, и мы потом гадаем, почему она такая, а не другая. А, оказывается, сейчас возникают новые теории, в которых эта константа получается как результат начала. Как всегда в космологии, попытки уйти от начала, уйти от вопроса начала, конечно, кончаются рано или поздно каким-то тупиком. Это начало всегда возникает и возникает, естественно, понятие конца.
А.П. Это опять была энергия. Но может, вернёмся снова к определению энергии в общей теории относительности, поскольку я немного не договорил. Дело в том, что в общей теории относительности, как мы уже сказали, энергия не локализуется. Так, самым современным и очень энергично развивающимся направлением является определение не локальных величин, а квазилокальных величин. С чем это связано? Это связано с тем, что можно ограничить гравитирующую систему некой сферой и уже рассматривать не локальную энергию, а энергию внутри этой сферы. И самым замечательным образом оказывается, что мы не должны знать, что там внутри расположено, а для нас будет достаточно знать только потенциалы гравитационного поля на поверхности этой сферы. Зная их, мы можем определить энергию, импульсы и всё, что внутри сферы расположено. Ну и рассматривать взаимодействие таких объектов уже совершенно нормально, как в обычной физической теории, а не геометрической.
В данном случае, конечно, возникает ещё один интересный момент. Владимир Михайлович говорил об электродинамике. Так вот, оказывается, что условия на поверхности сферы могут тоже задаваться различным образом. А в зависимости от этих, как в электродинамике, от этих граничных условий будет определяться энергия внутри этой сферы. Это тоже такой интересный момент. Полевой подход, он тоже к таким квазилокальным величинам приводит. И к ним приводят многие другие подходы. Теория одна, а подходы разные. Подходы математические могут быть совершенно разными. То есть, может быть, специалист в одном подходе и не специалист в другом, а всё равно рано или поздно, если всё делается правильно, человек приходит именно к квазилокальным величинам. То есть к энергии, которая определяется внутри некоторого объёма и для этого определяется потенциал на поверхности.
Один из важных подходов – подход Брауна-Йорка. Он заключается в следующем. Чтобы правильно определить сохраняющиеся величины уже не во всём пространстве-времени, а внутри этой поверхности, необходимо только в её окрестности ввести плоское фоновое пространство. Так вот подход Брауна-Йорка, он замечателен тем, что геометрия этой сферы, она сама задаёт однозначным образом это плоское фоновое пространство. И благодаря этому определение энергии в этом случае и в других сохраняющихся величин, оно оказывается однозначно определённым. И этот подход является одним из самых предпочтительных сейчас.
В.Л. Но всё-таки вопрос об энергии, попытка локализовать энергию гравитационного поля даже частично внутри некой сферы, квазилокальный подход так называемый, является ли это всё-таки приближением?
А.П. Нет, это, конечно, должно быть приближением для некоторых моделей типа островной модели.
В.Л. И в идеологическом смысле, на самом деле, это, может быть, просто технический приём. Но всё-таки мир наш кривой или плоский?
А.П. Мир наш кривой.
В.Л. Мир наш кривой.
А.Г. То есть космологические выводы мы делаем всё-таки в пользу…
А.П. Космологические выводы не могут делаться в таких приближениях, это глобальные…
В.Л. Да, если речь идёт уже о самых глобальных вопросах, то, конечно, их невозможно решить на плоском фоне, его нет. Нет места, где его расположить на бесконечности, мы живём в кривой вселенной.
А.П. Нельзя задать граничных условий однозначно.
А.Г. Спасибо огромное.
Ископаемые ящеры
02.04.03
(хр.00:50:06)
Участники:
Алифанов Владимир Рудольфович – кандидат биологических наук, сотрудник Института и музея Палеонтологии РАН
Лопатин Алексей Владимирович – кандидат геолого-минералогических наук, сотрудник Института и музея Палеонтологии РАН
Александр Гордон: Сначала давайте мы начнём с исчезновения, то есть с критики этой гипотезы… Потому как нам здесь не обязательно в хронологическом порядке идти – от первой найденной кости или первого упоминания и до новейших теорий. Вот первый вопрос, который у меня возник. Как же так красиво всё получилось: упал метеорит, причём очень подробно описано, что должно было произойти, если он такого размера или такого, куда упал? В Мексике нашли кратер, там нашли кратер. Вот пошла эта волна, ядерная зима. Вот всё замечательно. Взяли и вымерли.
Вы говорите: «Нет, скорее всего, это было не так». Почему?
Владимир Алифанов: Причин довольно много. Во-первых, представление о том, что падение метеорита привело к всеобщей глобальной катастрофе, – оно явно преувеличено. Мы знаем большое количество групп, которые существовали до этого события и благополучно существуют после этого события. Во-вторых, метеорит должен был оставить после себя следы.
Некоторыми специалистами по этому вопросу считается, что таким явным отчётливым следом является иридиевый слой. Иридиевый слой был впервые открыт где-то около 1980-го года в северной Италии. Занимался этим вопросом такой учёный Альварес. В тонких довольно глинистых прослоях был найден иридий. Иридий – металл платиновой группы; считается, что на земле он достаточно редок. Но его много в космическом веществе, веществе метеоритов.
И была предложена гипотеза, что этот иридий космического происхождения. Стали проверять наличие иридия в других районах: в Америке, в разных странах Европы. Фактически по всему миру он прослеживается, этот иридий, в пограничных мел-палеогеновых породах, с одной стороны.
Ну, а с другой стороны, через некоторое время выяснилось, что жертвы предполагаемой катастрофы, динозавры, могли вымереть или исчезнуть в данном случае до появления иридиевого слоя.
А.Г. То есть даже если метеорит был, то он упал уже на землю без динозавров?
В.А. Без динозавров. В других случаях кости динозавров находятся выше иридиевого слоя. Таким образом, если катастрофа была, то динозавры её благополучно пережили. И не только, как мы знаем, динозавры, но и другие крокодилы, ящерицы, змеи, черепахи. Поэтому эта гипотеза, как минимум, по этим причинам не проходит. Кстати, интерес к иридиевым прослоям показал, что иридий накапливался в породах и более древнего возраста. Недавно были сообщения в американской печати о том, что найден иридий раннеюрского возраста. Ну, и учёные, которые увлекаются этим вопросом и ещё привязывают к нему исчезновение динозавров, сделали следующий вывод, что предполагаемый упавший метеорит привёл к тому, что древние животные, составлявшие конкуренцию динозаврам, исчезли. И таким образом, катастрофа очистила арену жизни для динозавров, и динозавров в течение большей части, остальной части мезозойской эры, оставались господствующей группой.
А.Г. А потом ещё один метеорит…
В.А. Да, ещё один метеорит. И ещё одно. Метеориты падали, по-видимому, всегда. И раньше, и в мезозое, и в кайнозое, и некоторые метеориты хорошо датированы, известны. Вот известен таймырский метеорит под названием Попигай. Его возраст поздний олигоцен. Значит, он упал около 30 миллионов лет тому назад. Олигоцен – это кайнозой, эпоха расцвета млекопитающих. Он упал в тот момент, когда фауна млекопитающих испытала кризис по вполне земным причинам. Метеорит тут был совершенно не при чём. Просто на земле сложились условия, которые привели к довольно резкому похолоданию. И опять метеорит оказывается ни при чём. Я бы так кратко ответил на этот вопрос. Может, Алексей Владимирович что-то добавит…
Алексей Лопатин: Да, я бы добавил, что есть ведь ещё геологические свидетельства того, что иридиевый слой не одновозрастен в разных местах. Эта диахронность доказывается тем, что он имеет разную намагниченность, прямую и обратную полярность.
Это очень верное свидетельство того, что он в разное время накапливался. Скажем, в Дании, скажем в Испании, в Северной Америке и других местах. Его стали связывать с земными причинами, а именно с трапповым магматизмом, который возникает в эпохи, когда с большей скоростью, чем обычно, движутся литосферные плиты, то есть перестраивается вся система суша-море. Таким образом, трансформируются все сообщества, которые и на суше, и в море располагаются.
Что же было по представлениям палеонтологов вот в этот период? На самом деле, в мелу было, по крайней мере, ещё два кризиса, по своим масштабам не уступающих кампан-маастрихтскому кризису. Так называемые коньякский и коньяк-сантонский кризисы. Когда, скажем, морская фауна испытала не менее катастрофичное обеднение.
Но всё это довольно длительные процессы, которые видимым образом как бы укорачиваются, и что происходит? Например, у нас существует пять или пятьдесят видов, которые вымирают на разных уровнях своего эволюционного развития. Вот, кончики фаланг – это конец времени существования каждого вида.
Но если мы в разрезе не имеем вот этой части, все они вымирают одновременно, как нам кажется. То есть это фоновое вымирание превращается в массовое. И этот эффект в конце маастрихта вполне нагляден.
У нас очень мало морских разрезов, где нет этого перерыва хотя бы длительностью в 1-2 миллиона лет.
Поэтому нам не кажется, что вымирание носило такой уж массовый характер. Те же разрезы, где эта полнота более или менее очевидна, не содержат остатков макрофауны, то есть, там нет ни двустворчатых моллюсков, ни аммонитов. Там присутствуют в основном остатки фитопланктона, остатки фораминифер.
И вот там мы видим достаточно быстрое исчезновение ряда эволюционных линий. И видимо, это угасание связано с катастрофой, но опять-таки очень длительной по своему течению катастрофой экосистемы. То есть полтора-два миллиона лет – это называется катастрофой. Но, наверное, именно с точки зрения теории систем, когда у нас кризис – это такое событие в истории системы, когда стресс угрожает целостности системы. И существованию её главных, основных структур. Но кризис выдерживается системой за счёт того, что распределяется по подсистемам и как бы нивелируется. А вот катастрофа – это когда система разваливается. Но подсистемы сохраняются. И затем опять собираются…
А.Г. В уже другую систему.
А.Л. Да, совершенно верно.
А.Г. У меня вот какой вопрос. Когда вымерли динозавры? И неужели невозможно по тем находкам, которые уже сделаны, понять, было ли это массовым вымиранием, то есть на протяжении жизни одного поколения? Или всё-таки это был процесс, растянутый во времени, как вы говорите, на полтора-два миллиона лет?
В.А. Я бы так ответил на этот вопрос. Динозавры стали вымирать с момента их появления. Ну, во-первых, вообще вымирание это другая сторонам медали. Вымирание-появление – это взаимосвязанные вещи.
Первые динозавровые роды, которые достоверны, которые мы обнаруживаем в летописи, это, допустим, поздний триас.
А.Г. Это сколько миллионов лет?
В.А. Это примерно 220 миллионов лет. Поздний триас Африки и Южной Америки. Их уже нет в последующие эпохи.
А.Г. Благополучно вымерли…
В.А. Благополучно вымерли… Правда, существуют, например, семейства, которые они представляют, которые существуют какое-то время, а потом исчезают.
Эта иллюзия, которую поддерживают некоторые люди, назовём их катастрофистами. Это иллюзия, что все динозавры, появившись, просуществовали в течение мезозоя до самого конца. Динозавры появились, потом идёт какое-то развитие группы, адаптивная радиация, появление новых форм, новых приспособлений, эволюционных изобретений. Но это всё сменяется в истории мезозоя следующим образом: одни группы исчезают, на их место приходят новые.
Например, взять хищных динозавров. Самый ранний крупный хищный динозавр – мегалозавр, он обитал в ранней юре Европы. Это были крупные двуногие большеголовые ящеры, из которых вот конкретно мегалозавр не дожил до конца юрского периода. В конце юрского периода существует в Северной Америке огромный, тяжеловесный, крупноголовый цератозавр. Он принадлежит немножко другой группе, которая не известна в меловое время.
В меловое время эстафету крупноголовых хищников принимают так называемые всем известные тираннозавры, которые существуют достаточно долго. Кстати говоря, они существуют на территории Северной Америки и Азии.
А.Г. До общего вымирания или чуть раньше?…
В.А. Они существуют до общего вымирания, но по некоторым данным, именно тираннозавры существуют даже после предполагаемого вымирания.
А.Г. Хищники?
В.А. Хищники. Говорят о двух группах, которые пережили границы мела и палеогена и жили немножко в самом начале кайнозоя в Дании. Это трицератопс и тираннозавр это в Северной Америке. Есть данные о раннепалеогеновых или раннекайнозойских динозаврах в Индии.
Так что катастрофическая картина – она не всё точно и детально обрисовывает. Хотя, конечно, люди, которые это всё придумывают и используют, понятно, направляют это на массовое сознание. А людям часто бывает интересно, с одной стороны, но ломать голову над такими сложными деталям и конкретными мелочами довольно сложно. Проще объяснить всё таким вот образом. Один раз устроить катастрофу – и больше не возвращаться к этому вопросу.
А.Г. Давайте в качестве модели массового сознания возьмём хорошо всем известный фильм «Парк Юрского периода».
Потому что я абсолютно не специалист ни по флоре, ни по фауне того времени, но когда я смотрел этот фильм, я замечал некоторые противоречия. Я, например, вспоминал и понял, что индейцы Северной Америки, то есть Канады и северных территорий нынешних США, обитали в тех же лиственных лесах, в каких обитали наши крестьяне. Я имею в виду, что это смешанный лес: берёза, осина, там клён, а это как-то не вяжется с картиной прерий, по которым эти индейцы непременно должны скакать.
Вот так же у меня возник вопрос, когда я смотрел «Парк юрского периода»: хвощи и папоротники, по-моему, это несколько другая эпоха. Здесь-то уже дубы и, если не ошибаюсь, те же самые клёны. Нет?
А.Л. Почти так. То есть хвощи и папоротники – это, конечно, каменноугольный период, то есть, скажем так, на 200, на 150, ну, на 100 миллионов лет древнее.
А.Г. Чуть-чуть такая ошибочка.
А.Л. Да, ошибка небольшая.
В.А. Но хвощи и папоротники, надо сказать, и сейчас существуют.
А.Л. Ну, конечно, но древовидные… Да, эпоха динозавров – это в растительном смысле эпоха господства голосеменных растений. А потом с середины мела уже покрытосеменные. И как раз, возможно, покрытосеменные сыграли свою роль в том, что исчезли вот эти биотопы, в которых обитали динозавры. То есть просто сообщество, в котором доминировали голосеменные и динозавры, сменилось сообществами, в которых доминировали покрытосеменные, птицы, насекомые и млекопитающие. Возможно, так и было. Но в оправдание млекопитающих скажем, что они всё-таки появляются в том разнообразии, которое мы можем себе представить, – это 30 приблизительно видов, может быть, и 60, это в основном мультитуберкуляты и плюс 20 видов плацентарных млекопитающих, – так вот, они появляются уже тогда, когда динозавры сходят на нет.
Хотя те семь, наверное, видов динозавров, которые встречаются выше иридиевого слоя в Северной Америке, они уже сосуществуют с разнообразной фауной млекопитающих. И, видимо, в тех условиях, когда господствовали покрытосеменные.
Вообще, весь мир менялся с геологической точки зрения весьма стремительно, исчезли эпиконтинентальные моря. Соответственно, изменилась морская биота, которая там пышно развивалась до этого времени. Изменился климат: он стал более сезонным.
В.А. Было похолодание.
А.Л. Да, было похолодание. Динозаврам приходилось в срочном порядке в геологическом смысле менять стратегию своего биологического существования.
А.Г. Да, от кладки яиц до, в общем, жертв…
В.А. Представим себе такую простую картину, видимо, очень характерную для конца мезозоя, если отбросить всякие катастрофические гипотезы. Что происходило реально? Допустим, на территории Азии, которая нам более близка. Что показано реальными научными работами и, в частности, палеоботаническими работами?
В течение позднего мела идёт постепенное угасание голосеменных растений. Разнообразие гилкговых падает в самом начале мелового периода: меловой период он длинный, он 70 миллионов лет практически длился. Итак, угасание гилкговых растений. Какие-то пики хвойных, видимо, в периоды похолоданий. Какие-то ещё растения исчезают, которые существовали до этого. Но при всём при этом в течение позднего мела, особенно второй его половины, стремительно, по экспоненте, растёт разнообразие покрытосеменных растений, то есть растений, которые окружают нас сейчас.
Для динозавров покрытосеменные растения – это элемент новизны, с которым они столкнулись вот как раз в конце мезозойской эры. Динозавры появляются тогда, когда на планете повсеместно расселяются растения, как говорят, мезофитные, в основном это голосеменные. Это не только хвойные, это гилкговые, цикадовые они были очень разные. Некоторые на низкорослые пальмы похожи. И, по-видимому, они составляли какую-то важную часть биотопов, в которых динозавры обитали, где они отыскивали себе пропитание, где они могли спрятаться, где могли репетироваться какие-то приспособления, адаптации и так далее.
Таким образом, мир, когда появились динозавры и когда динозавры исчезли, совершенно изменился. Правда, некоторые динозавры попытались к этой новой обстановке приспособиться. В меньшей степени это можно сказать о хищниках, потому что хищники среди динозавров, завязаны на жертве; им всё равно какие, но для крупных хищников лучше крупные жертвы. Кстати говоря, крупные жертвы – это некий способ защиты от крупных хищников. Но это отдельная история.
Но теперь что касается растительноядных динозавров. Таких было довольно много целая группа выделяется так называемых птицетазовых динозавров, у которых была склонность к потреблению растительного корма. В меловом периоде процветают две группы орнитоподы и рогатые динозавры, зубная система которых приспособлена очевидным образом для потребления растительного корма. Это многочисленные батареи, которые обеспечивают ножницеобразный укус, а таким укусом можно резать какую-то флору. Возможно, это была водная растительность или береговая растительность. Точно про это сказать пока не можем, но то, что они пытались приспособиться к питанию, наверное, покрытосеменными растениями – это факт очевидный.
Я бы ещё хотел сказать, что в биологии динозавров есть очень важный момент: динозавры не просто ходят и что-то едят, у динозавров своя жизнь, они должны развиваться. И динозавры в этом смысле ведут себя, как птицы. Они откладывают кладки с яйцами. Динозавры не птицы, современные особенно; они не могут взлететь на дерево и свить там гнездо. Кладки откладывались, как правило, на земле, в песке, это мы знаем точно, например, по данным из Америки, из Монголии, из Китая. Иногда они охранялись. Иногда кладки затенялись, иногда открывались. В общем, это была целая история.
А теперь представьте, что в конце мезозоя в Азии, например, похолодало. Голосеменные растения, не хвойные, а гилкговые и цикадовые, постепенно оттесняются на юг расширением ареала широколиственных лесов покрытосеменных. Не только леса, но и трава, например. Значит, происходит задерновывание пляжей, задерновывание мест, удобных для гнездования динозавров. Это оказалось очень слабым таким элементом в биологии динозавров.
Здесь, кстати, они, динозавры, могли вступить в конкуренцию с млекопитающими, которые, по-видимому, в приличном количестве пришли с новыми типами лесов. С большими динозаврами им справиться было сложно, и, может быть, им сложно было ломать яйца динозавров. Известное дело, что яйца динозавров имеют довольно плотную скорлуповую оболочку. А вот, скажем, вылупившихся динозаврят, пока они ещё маленькие, хищные млекопитающие могли употреблять в пищу. И не только млекопитающие.
В течение конца мелового периода и в начале кайнозоя неожиданно начинают процветать крокодилы современного облика. Появляются ящерицы современного типа, в том числе и варановые, которые способны обирать всё, что угодно, в том числе и питаться яйцами…
А.Г. Которые не вымирают, несмотря ни на какие…
В.А. Таким образом, как себе можно это всё представить? Удобные зоны обитания динозавров в конце мезозоя постепенно-постепенно сокращаются. Причём сокращаются не только площади обитания, площади пастбищ, но и места, удобные для гнездований. И потихонечку они как бы прижимаются, опрокидываются либо к морю, либо к горам. К Азии в конце мелового периода с юга подъехала Индия. И там обнаружатся формы складчатости, и вулканизм известен, довольно интенсивный, кстати говоря. Поэтому лес мог прижать динозавров к каким-то возвышенностям. В горы они, например, могли и не пойти.
В Северной Америке немножко было по-другому. В Северной Америке было Срединное море, которое, кстати говоря, подсохло, поскольку в течение мезозоя и кайнозоя Северная Америка, как и Азия, они немного поднимались, и вода стекала. Динозавры могли быть прижаты просто к побережью моря, где полоса, удобная для их жизни, оказалась очень узкой. Наверное, где-то там какие-то рифугиумы ещё существовали. Но, в общем-то, будильник был заведён, и он должен был вот-вот позвонить…
А.Г. Но исчезновение морских форм динозавров ведь не объясняется наступлением покрытосеменных лесов?
В.А. Да, совершенно справедливо. Только я бы хотел поправить, морские формы – это не динозавры. Динозавры – это обязательно наземные существа. Динозавры, как правило, двуногие.
А.Г. Ихтиозавры.
В.А. Вот, это уже другое дело. Ихтиозавры – это отдельный отряд ископаемых рептилий, вымерших, которые до современности не дожили, которые появились в триасе, в условиях довольно тёплых, жарких эпиконтинентальных морей, достаточно кормных. Так, они появляются в триасе, но пик расцвета ихтиозавра приходится на юрский период. В течение мела ихтиозавры ещё существовали. Но до конца мела доживает количество видов, которое на пальцах можно пересчитать.
А.Л. По-моему, всего один род.
В.А. По другим данным, четыре, я читал… Долгое время считалось, что один. Ну, 1 или 4 – это всё равно немного. Фактически группа уже находилась в состоянии вымирания. Потом надо иметь в виду одну такую вещь. В течение мела, по-видимому, на планете довольно резко и неоднократно менялся климат. Хотя меловой период считается одним из самых тёплых в течение мезозоя. Но, тем не менее, колебания существовали. В течение позднего мела отмечаются палеоклиматологами три максимума палеотемператур. Вот Алексей Владимирович про это говорил. Два минимума.
А.Г. Если сравнивать с современным состоянием климата – что было?
В.А. Что означает «максимум» вы хотите спросить?
Вообще климат был в мезозое, в целом, на 10-15 градусов был выше, чем современный. Никаких оледенений для мезозоя не было отмечено. Это раз. Температуры были выше в тропических зонах на 4-5 градусов. В умеренных зонах на 10-15. В приполярных зонах на 20-30 теплее. В целом климат был достаточно ровным. Температура океанической воды: по-видимому, были колебания, но вот то, что удаётся отметить – температура придонного слоя в океане была около 14 градусов. Плюс 14 градусов. А поверхностные слои могли прогреваться до 30 градусов у побережья, допустим, Аляски. 30 градусов. Это парное молоко.
Но особенно жарко было перед последним похолоданием, на границе мела и палеогена. Там было похолодание, но перед этим был палеотемпературный максимум. И в это время, что вы думаете, выплывают мозазавры. Мозозавры это крупные хищные гигантские ящерицы, но хотя они крупные, они, как и мелкие ящерицы, очень зависят от температуры окружающей среды. Как у всех рептилий у них несовершенный метаболизм и температура тела прямо зависит от температуры окружающей среды или они довольно часто в какой-то степени получают энергию от солнца. Ящерицы и змеи по утрам разогреваются на солнышке. И тут в тёплую воду постоянно тёплую, во все сезоны в течение суток выплывают ящерицы. И, видимо, в какой-то момент с биологической точки зрения они становятся суперхищниками. Вот тут они могли и прижать доживающий свои последние дни слой ихтиозавров.
Но как только новый пессиум – ящерицы исчезают, больше мы их не видим. Они вымирают до начала кайнозоя. И, по-видимому, навсегда.
А.Г. Вот вы сказали о метаболизме. Я бы очень хотел узнать о биологии динозавров. Потому что для меня тоже было удивительно, как могут сосуществовать на очень небольшом пространстве огромные толпы, простите за слово «толпы», крокодилов, пока я не узнал, что у них такой метаболизм, что каждый крокодил съедает в год только половину собственного веса. Понятно, как они могут уживаться. У динозавров то же самое было? Хищники были не очень всё-таки хищными?
В.А. Ну, во-первых, на вопрос довольно сложно ответить, поскольку с крокодилами разобраться легко: мы их можем наблюдать непосредственно в природе или в зоопарке. Динозавры абсолютно ископаемая вымершая группа, поэтому все рассуждения на эту тему носят только предположительный характер.