Текст книги "Искусство правильно мыслить"
Автор книги: Александр Ивин
Жанр:
Философия
сообщить о нарушении
Текущая страница: 2 (всего у книги 20 страниц)
СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ
Вот два примера дедуктивных выводов из рассказа русского юмориста начала века В. Билибина.
«Если бы на свете не существовало солнца, то пришлось бы постоянно жечь свечи и керосин.
Если бы пришлось постоянно жечь свечи и керосин, то чиновникам не хватало бы их жалованья и они брали бы взятки.
Следовательно, чиновники не берут взяток потому, что на свете существует солнце».
«Если бы быки и куры ходили зажаренными, то не нужно было бы разводить печи и, значит, было бы меньше пожаров.
Если бы было меньше пожаров, страховые общества не повысили бы так жестоко страховую премию.
Следовательно, страховые общества повысили так жестоко страховую премию потому, что быки и куры не ходят зажаренными».
Эти рассуждения пародировали обычные когда-то наивные объяснения того, почему чиновники берут взятки, а страховые компании завышают страховой процент.
Понятно, что оба эти рассуждения логически несостоятельны. Их заключения не вытекают из принятых посылок. Поэтому если бы даже посылки являлись истинными, это не означало бы, что и заключения верны.
Основной задачей логики является отделение правильных способов рассуждения (вывода, умозаключения) от неправильных. Правильные выводы называются также обоснованными или логичными.
Своеобразие формальной логики в подходе к анализу правильности рассуждения связано с ее основным принципом, в соответствии с которым правильность рассуждения зависит только от его формы, или схемы. Самым общим образом форму рассуждения можно определить как способ связи входящих в него содержательных частей.
В правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.
Логические законы лежат, таким образом, в основе логически совершенного мышления, составляя тот невидимый железный каркас, на котором держится всякое последовательное рассуждение. Рассуждать логически правильно – значит рассуждать в соответствии с законами логики. Отсюда понятна вся важность данных законов.
Схем правильного рассуждения (логических законов) бесконечное число. Многие из них известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном умозаключении мы используем тот или иной логический закон.
Вот некоторые из наиболее часто используемых схем.
«Если есть первое, то есть второе; есть первое, следовательно, есть второе». Эта схема позволяет от утверждения условного высказывания и утверждения его основания, перейти к утверждению следствия. Для логически правильного перехода конкретное содержание посылок и заключения не имеет значения, важен только способ их связи. Поэтому в схеме вместо высказываний с определенным содержанием используются «бессодержательные» обороты «есть первое» и «есть второе». По рассматриваемой схеме протекает, в частности, рассуждение: «Если лед нагревается, он тает; лед нагревается; значит, он тает».
Это логически корректное движение мысли иногда путается со сходным, но логически неправильным ее движением от утверждения следствия условного высказывания к утверждению его основания: «если есть первое, то есть второе, есть второе; значит, есть первое». Последняя схема не является логическим законом, от истинных посылок она может привести к ложному заключению. Скажем, идущее по этой схеме рассуждение «Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура» ведет к ошибочному заключению, что болезнь протекает всегда с повышением температуры.
«Если есть первое, то есть второе; но второго нет; значит, нет первого». Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания. Например: «Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил». Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: «если есть первое, то есть второе; но первого нет; значит, нет и второго» («Если у человека повышенная температура, он болен; но у него нет повышенной температуры; значит, он не болен»).
Возвращаясь к двум рассуждениям о чиновниках, не берущих взятки, потому что светит солнце, и о страховых компаниях, завышающих страховой процент из-за того, что быки и куры не ходят зажаренными, можно отметить, что в основе этих рассуждений лежит данная неправильная схема.
«Если первое влечет второе, то если второе влечет третье, то первое влечет третье». Эта схема, кажущаяся на первый взгляд громоздкой, часто и без затруднений применяется в самых разнообразных рассуждениях. Например: «Если дело обстоит так, что с ростом знаний о человеке возрастает способность защитить его от болезней, то если с возрастанием этой способности растет средняя продолжительность человеческой жизни, то с ростом знаний о человеке растет средняя продолжительность его жизни».
«Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого». Эта схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания «Если есть следствие, есть также причина» получается высказывание «Если нет причины, нет и следствия».
«Есть по меньшей мере первое или второе; но первого нет; значит, есть второе». Например: «Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день».
«Либо имеет место первое, либо второе; есть первое; значит, нет второго». Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них имеется налицо, осуществляется переход к отрицанию другой альтернативы. Например: «Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» можно услышать следующее великолепное разделение человеческих ролей. Бандит говорит: «Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на рассматриваемую схему.
«Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго»; «есть первое или есть второе; значит, неверно, что нет первого и нет второго». Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот. Используя данные схемы, от утверждения «Неверно, что изучение логики трудно н бесполезно» можно перейти к утверждению «Изучение логики не является трудным или же оно не бесполезно» н от утверждения «Амундсен или Скотт был первым на Южном полюсе» перейти к утверждению «Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе».
Таковы некоторые из бесконечного множества имеющихся в нашем распоряжении схем правильного рассуждения.
ХАРАКТЕРНАЯ ОШИБКА
Обычно мы применяем логические законы, не задумываясь о них, нередко не подозревая о самом их существовании. Но бывает, что использование даже простой схемы сталкивается с известными трудностями.
Эксперименты, проводившиеся психологами с целью сопоставления мышления людей разных культур, наглядно показывают, что чаще всего причина трудностей в том, что схема рассуждения, его форма не выделяется в чистом виде. Для решения вопроса о правильности рассуждения вместо этого привлекаются какие-то не относящиеся к делу содержательные соображения. Обычно они связаны с конкретной ситуацией, описываемой в рассуждении.
Вот как описывают ход одного из экспериментов, проводившихся в Африке, М.Коул и С.Скрибнер в книге «Культура и мышление».
Экспериментатор.
Однажды паук пошел на праздничный обед. Но ему сказали, что прежде чем приступить к еде, он должен ответить на один вопрос. Вопрос такой: «Паук и черный олень всегда вместе едят. Паук ест. Ест ли олень?»
Испытуемый. Они были в лесу?
Экспериментатор. Да.
Испытуемый. Они вместе ели?
Экспериментатор. Паук и олень всегда вместе едят. Паук ест. Ест ли олень?
Испытуемый. Но меня там не было. Как я могу ответить на такой вопрос?
Экспериментатор. Не можете ответить? Даже если вас там не было, вы можете ответить на этот вопрос. (Повторяет вопрос.)
Испытуемый. Да, да, черный олень ест.
Экспериментатор. Почему вы говорите. что черный олень ест?
Испытуемый. Потому что черный олень всегда весь день ходит по лесу и ест зеленые листья. Потом он немного отдыхает и снова встает, чтобы поесть.
Здесь очевидная ошибка. У испытуемого нет общего представления о логической правильности вывода. Чтобы дать ответ, он стремится опереться на какие-то факты, а когда экспериментатор отказывается помочь ему в поисках таких фактов, он сам придумывает их.
Еще пример из этого же исследования.
Экспериментатор. Если Флюмо или Йакпало пьют сок тростника, староста деревни сердится. Флюмо не пьет сока тростника. Йакпало пьет сок тростника. Сердится ли староста деревни?
Испытуемый. Люди не сердятся на других людей.
Экспериментатор повторяет задачу.
Испытуемый. Староста деревни в тот день не сердился.
Экспериментатор. Староста деревни не сердился? Почему?
Испытуемый. Потому что он не любит Флюмо.
Экспериментатор. Он не любит Флюмо? Скажи почему?
Испытуемый. Потому что когда Флюмо пьет сок тростника, это плохо. Поэтому староста деревни сердится, когда Флюмо так делает. А когда Йакпало иногда пьет сок тростника, он ничего плохого не делает людям. Он идет и ложится спать. Поэтому люди на него не сердятся. Но тех, кто напьется сока тростника и начинает драться, – староста не может терпеть их в деревне».
Испытуемый имеет в виду скорее всего каких-то конкретных людей или просто выдумал их. Первую посылку задачи он отбросил и заменил ее другим утверждением: люди не сердятся на других людей. Затем он ввел в задачу новые данные, касающиеся поведения Флюмо и Йакпало. Ответ испытуемого на экспериментальную задачу был неправилен. Но он был результатом вполне логичных рассуждений на основе новых посылок.
Для анализа задачи, поставленной в первом эксперименте, переформулируем ее так, чтобы были выявлены логические связи утверждений: «Если ест паук, то ест также олень; если ест олень, то ест и паук; паук ест; следовательно, олень тоже ест». Здесь три посылки. Вытекает ли из двух из них: «Если ест паук, олень также ест» и «Паук ест» заключение «Олень ест»? Конечно. Рассуждение идет по упоминавшейся уже схеме: «если есть первое, то есть второе; есть первое; значит, есть второе». Она представляет собой логический закон. Правильность этого рассуждения не зависит, разумеется, от того, происходит ли все в лесу, присутствовал ли при этом испытуемый и т. п.
Несколько сложнее схема, по которой идет рассуждение во второй задаче: «Если Флюмо или Йакпало пьют сок тростника, староста деревни сердится. Флюмо не пьет сок тростника. Йакпало пьет сок тростника. Сердится ли староста деревни?» Отвлекаясь от конкретного содержания, выявляем схему рассуждения: «если есть первое или второе, то есть третье; первого нет, но есть второе; следовательно, есть третье». Эта схема является логическим законом, н, значит, рассуждение правильно. Схема близка указанной ранее схеме «если есть первое, то есть второе; есть первое; следовательно, есть второе». Различие только в том, что в качестве «первого» в более сложном рассуждении указываются две альтернативы, одна из которых тут же исключается.
УБЕДИТЕЛЬНЫЕ ОСНОВАНИЯ
«Боясь... собственной тени и собственного невежества, не расставайся с надежным и верным основанием».
Платон
«Не следует требовать от оратора научных доказательств, точно так же как от математика не следует требовать эмоционального убеждения».
Аристотель
«Доказательства ценятся по качеству, а не по количеству».
Латинская пословица
«Доводы, до которых человек додумывается сам, обычно убеждают его больше, нежели те, которые пришли в голову другим».
Б. Паскаль
«Только тот, кто ничего не смыслит в машинах, попытается ехать без бензина; только тот, кто ничего не смыслит в разуме, попытается размышлять без твердой, неоспоримой основы».
Г. Д. Честертон
ПРИНЦИП ДОСТАТОЧНОГО ОСНОВАНИЯ
Логическая культура, являющаяся важной составной частью общей культуры человека, включает многие компоненты. Но наиболее важным из них, соединяющим, как в оптическом фокусе, все другие компоненты, является умение рассуждать обоснованно.
Особую роль требование обоснованности знания играет в науке. В каждой конкретной научной дисциплине исторически складывается свой уровень точности и доказательности. Математическое доказательство не спутаешь с рассуждением историка, философа или психолога. Но к какой бы отрасли знания ни относилось то или иное положение, всегда предполагается, что имеются достаточные основания, в силу которых оно принимается и считается истинным.
Требование обоснованности относится и к нашему повседневному знанию. При всей неточности и аморфности последнего, оно также должно опираться на определенные, достаточно надежные основания. Пренебрежительное отношение к обоснованности высказываемых утверждений, фразерство и декларативность недопустимы не только в науке, но и в других областях.
Требование обоснованности знания обычно называют принципом достаточного основания. Впервые этот принцип в явном виде сформулировал немецкий философ и математик Г.Лейбниц. «Все существующее, – писал он, – имеет достаточные основания для своего существования», в силу чего ни одно явление не может считаться действительным, ни одно утверждение истинным или справедливым без указания его основания.
В самом общем смысле обосновать некоторое утверждение – значит привести те убедительные или достаточные основания, в силу которых оно должно быть принято. Обоснование теоретических положений является, как правило, сложным процессом, не сводимым к построению отдельного умозаключения или проведению одноактной эмпирической, опытной проверки. Обоснование обычно включает целую серию процедур, касающихся не только самого рассматриваемого положения, но и той системы утверждений, той теории, составным элементом которой оно является. Существенную роль в механизме обоснования играют дедуктивные умозаключения, хотя, как уже сказано, лишь в редких случаях процесс обоснования удается свести к умозаключению или цепочке умозаключений.
Все многообразные способы обоснования, обеспечивающие в конечном счете «достаточные основания» для принятия утверждения, можно разделить на эмпирические и теоретические. Первые опираются по преимуществу на опыт, вторые – на рассуждение. Различие между ними является, конечно, относительным, как относительна сама граница между эмпирическим и теоретическим знанием.
ПРЯМОЕ ПОДТВЕРЖДЕНИЕ
Эмпирические способы обоснования называются также подтверждением или верификацией (от лат. verus – истинный и facere – делать).
Прямое подтверждение – это непосредственное наблюдение тех явлений, о которых говорится в утверждении.
Хорошим примером такого подтверждения служит доказательство гипотезы о существовании планеты Нептун: вскоре после выдвижения гипотезы эту планету удалось увидеть в телескоп.
Французский астроном Ж. Леверье на основе изучения возмущений в орбите Урана теоретически предсказал существование Нептуна и указал, куда надо направить телескопы, чтобы увидеть новую планету. Когда самому Леверье предложили посмотреть в телескоп на найденную на «кончике пера» планету, он отказался: «Это меня не интересует, я и так точно знаю, что Нептун находится именно там, где и должен находиться, судя по вычислениям».
Это была, конечно, неоправданная самоуверенность. Как бы ни были точны вычисления Леверье, утверждение о существовании Нептуна оставалось до наблюдения этой планеты пусть высоковероятным, но только предположением, а не достоверным фактом. Могло оказаться, что возмущения в орбите Урана вызываются не неизвестной пока планетой, а какими-то иными факторами. Именно так и оказалось при исследовании возмущений в орбите другой планеты – Меркурия.
Иногда для подтверждения утверждения путем непосредственного наблюдения его нужно определенным образом «расшифровать» или «перевести». Если, к примеру, кто-то сказал: «She is tall and nice-looking», мы, не зная английского языка, не можем сказать, истинно это предложение или нет. После перевода («Она высокая и привлекательная») мы способны, конечно, определить, так это или нет. Некоторые утверждения, и в частности те, которые включают определения и математические формулы, благодаря «переводу» могут оказываться описаниями наблюдений.
Чувственный опыт человека – его ощущения и восприятия – источник знания, связывающий его с миром. Обоснование путем ссылки на опыт дает уверенность в истинности таких утверждений, как «Эта роза красная», «Холодно» и т. п.
Нетрудно, однако, заметить, что даже в таких простых констатациях нет «чистого» чувственного созерцания. У человека оно всегда пронизано мышлением, без понятий и без примеси рассуждения он не способен выразить даже самые простые свои наблюдения, зафиксировать самые очевидные факты.
Мы говорим, например, «Этот дом голубой», когда видим дом при нормальном освещении и наши чувства не расстроены. Но мы скажем «Этот дом кажется голубым», если мало света или мы сомневаемся в нашей способности наблюдения. К восприятию, к чувственным «данным» мы примешиваем определенное представление о том, какими видятся предметы в обычных условиях и каковы эти предметы в других обстоятельствах, в случае, когда наши чувства способны нас обмануть. «Даже наш опыт, получаемый из экспериментов и наблюдений, – пишет философ К.Поппер, – не состоит из «данных». Скорее он состоит из сплетения догадок-предположений, ожиданий, гипотез и т. п., с которыми связаны принятые нами традиционные научные и ненаучные знания и предрассудки. Такого явления, как чистый опыт, полученный в результате эксперимента или наблюдения, просто не существует».
«Твердость» чувственного опыта, фактов является, таким образом, относительной. Нередки случаи, когда факты, представляющиеся поначалу достоверными, приходится – при их теоретическом переосмыслении – пересматривать, уточнять, а то и вовсе отбрасывать. На это обращал внимание русский биолог К.А.Тимирязев. «Иногда говорят, – писал он, – что гипотеза должна быть в согласии со всеми известными фактами; правильнее было бы сказать – или быть в состоянии обнаружить несостоятельность того, что неверно признается за факты и находится в противоречии с нею».
Кажется, например, несомненным, что если между экраном и точечным источником света поместить непрозрачный диск, то на экране образуется сплошной темный круг тени, отбрасываемый этим диском. Во всяком случае в начале прошлого века это представлялось очевидным фактом. Французский физик О.Френель выдвинул гипотезу, что свет – не поток частиц, а движение волн. Из гипотезы следовало, что в центре тени должно быть небольшое светлое пятно, поскольку волны, в отличие от частиц, способны огибать края диска. Получалось явное противоречие между гипотезой и фактом. В дальнейшем более тщательно поставленные опыты показали, что в центре тени действительно образуется светлое пятно. В итоге отброшенной оказалась не гипотеза Френеля, а казавшийся очевидным факт.
Особенно сложно обстоит дело с фактами в науках о человеке и обществе. Проблема не только в том, что некоторые факты могут оказаться сомнительными, а то и просто несостоятельными. Она еще и в том, что полное значение факта и его конкретный смысл могут быть поняты только в определенном теоретическом контексте, при рассмотрении факта с какой-то общей точки зрения. Эту особую зависимость фактов гуманитарных наук от теорий, в рамках которых они устанавливаются и интерпретируются, не раз подчеркивал известный философ и филолог А.Ф.Лосев. В заметке «Реальность общего» он, в частности, писал: «Меня, как и всех, всегда учили: факты, факты, факты; самое главное – факты. От фактов – ни на шаг. Но жизнь меня научила другому. Я слишком часто убеждался, что все так называемые факты всегда случайны, неожиданны, текучи и ненадежны, часто непонятны. Поэтому мне волей-неволей часто приходилось не только иметь дело с фактами, но еще более того с теми общностями, без которых нельзя было понять и самих фактов».
Прямое подтверждение возможно лишь в случае утверждений о единичных объектах или ограниченных их совокупностях. Теоретические же положения обычно касаются неограниченных множеств вещей. Факты, используемые при таком подтверждении, далеко не всегда надежны и во многом зависят от общих, теоретических соображений. Нет ничего странного поэтому, что сфера приложения прямого наблюдения является довольно узкой.
Широко распространено убеждение, что в обосновании и опровержении утверждений главную н решающую роль играют факты, непосредственное наблюдение исследуемых объектов. Это убеждение нуждается, однако, в существенном уточнении. Приведение верных и неоспоримых фактов – надежный и успешный способ обоснования. Противопоставление таких фактов ложным или сомнительным положениям – хороший метод опровержения. Действительное явление, событие, не согласующееся со следствиями какого-то универсального положения, опровергает не только эти следствия, но и само положение. Факты, как известно, упрямая вещь. При подтверждении утверждений, относящихся к ограниченному кругу объектов, и опровержении ошибочных, оторванных от реальности, спекулятивных конструкций «упрямство фактов» проявляется особенно ярко.
И тем не менее факты, даже в этом узком своем применении, не обладают абсолютной твердостью. Они не составляют, даже взятые в совокупности, совершенно надежного, незыблемого фундамента для опирающегося на них знания. Факты значат много, но далеко не все. Как говорит французская пословица, к которой любил прибегать К.Маркс, «даже самая красивая девушка Франции может дать только то, что она имеет».