Текст книги "Подводный флот специального назначения"
Автор книги: Александр Новиков
Соавторы: Олег Прокофьев,Виталий Максимов
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 4 (всего у книги 6 страниц)
В качестве движителей применены два трехлопастных гребных винта, которые позволяют батискафу развивать скорость хода 0,25 уз в течение 16 ч. Гребные винты, установленные на палубе несущего корпуса, работают только под водой; в надводном положении батискаф надо буксировать.
Электродвигатели гребных винтов сообщаются с забортной водой посредством специальной изолирующей среды – триолина, представляющего собой жидкость тяжелее воды. Это позволило обойтись без обычного уплотнения места выхода вала электродвигателя.
На батискафе «Триест» имеется уравновешивающая цепь весом 250 кг, которая крепится к прочной сфере и отдается с помощью электромагнитного устройства. Остальное оборудование батискафа «Триест» в основном сходно с оборудованием батискафа ФНРС-2.
В 1958 и в 1961 г. батискаф «Триест» прошел модернизации в США, в результате которых глубина его погружения была увеличена до максимальных глубин Мирового океана, а автономность стала равна 24 ч.
На батискаф была поставлена новая прочная сфера с толщиной стенок 120 мм и толщиной металла в районах вырезов 180 мм вместо 150 мм. Мощность аккумуляторной батареи возросла с 33 до 60 квт, что позволило повысить скорость хода до 1 уз. Усовершенствование электродвигателей, установка руля и трех дополнительных гребных винтов для движения в вертикальной и горизонтальной плоскостях значительно улучшили также и мореходные качества батискафа. В связи с модернизацией длина несущего корпуса увеличилась до 17,7 м, а объем принимаемого бензина до 113,3 м3. Резко возрос и удельный вес научно-исследовательской аппаратуры, установленной на батискафе. Если в 1958 г. он составлял 226 кг, то в 1961 г. он уже равнялся 700 кг. В 1961 г. на «Триесте» были установлены манипуляторы грузоподъемностью 22,6 кг.
Наряду с улучшением ходовых качеств «Триеста» была создана также специальная система, обеспечивающая нулевую плавучесть батискафа при движении возле грунта. Эта система представляет собой трос из нержавеющей стали, опущенный на 2,2 м ниже прочной сферы, к нижнему концу которого прикреплен шар весом около 70 кг. Во время движения батискафа вблизи грунта шар перемещается непосредственно по морскому дну, что значительно уменьшает вероятность повреждения прочной сферы.
Батискаф «Архимед», построенный в 1961 г. во Франции инженером П. Вильмом, предназначен для проведения комплексных океанографических исследований на предельных глубинах Мирового океана (рис. 18).
Рис. 18. Батискаф «Архимед».
Батискаф имеет следующие основные тактико-технические элементы:
– длина наибольшая 21,3 м;
– ширина наибольшая 4,0 м;
– высота наибольшая 7,8 м;
– осадка в надводном положении 5,2 м;
– вес без бензина 60,5 т;
– полное подводное водоизмещение 198,8 м3;
– максимальная скорость хода 3 уз;
– мощность гребного электродвигателя 30 л. с.
Кроме основного электродвигателя и гребного винта, обеспечивающих движение в горизонтальном направлении, установлены два электродвигателя мощностью по 5 л. с. каждый и соответственно два гребных винта для обеспечения движения батискафа в вертикальном и поперечном направлениях.
Для поворотов батискафа применен винт, поскольку на малых скоростях хода обычные рули обладают низкой эффективностью.
Питание гребных электродвигателей и остальных потребителей электроэнергии обеспечивает установленная вне прочного корпуса аккумуляторная батарея, состоящая из двух групп: напряжением 110 в для питания гребных электродвигателей и напряжением 24 в для питания бортовой аппаратуры.
Для обеспечения погружений и всплытий на батискафе имеется 19 т балласта в виде дроби, удерживаемой, как и на «Триесте», с помощью электромагнитов.
В несущем корпусе батискафа, помимо бензиновых цистерн, размещены балластные цистерны, все три электродвигателя (каждый в своей выгородке) и прочее оборудование.
В целях улучшения мореходности батискафа в надводном положении над его несущим корпусом установлена надстройка для прохода экипажа и имеется легкое ограждение рубки высотой в 1900 мм.
Прочная сфера наружным диаметром 2100 мм и толщиной стенок 150 мм изготовлена из специальной никельхромомолибденовой стали с пределом текучести 10 500 кг/см2, что при принятой конструкции корпуса обеспечивает глубину погружения до наибольших глубин Мирового океана. Сфера имеет вырез для входного люка диаметром 450 мм и три выреза под иллюминаторы из плексигласа диаметром 100 мм каждый. Два иллюминатора размещены побортно и один в носовой части сферы. Внутри прочной сферы могут разместиться два человека и находиться в ней в течение 20 ч.
Батискаф оборудован специальной аппаратурой для производства замеров и регистрации изменений температуры, солености, радиоактивности и содержания кислорода в воде, распространения ультразвуковых волн, изучения характера придонных течений. На батискафе смонтированы две фотосъемочные лампы мощностью по 1000 вт каждая. Кроме того, имеются специальные насосы и фильтры для отбора планктона и 22 размещенных снаружи металлических сосуда для взятия проб воды.
В остальном оборудование, системы и устройства батискафа «Архимед» ничем не отличаются от тех, что были установлены на батискафах ФНРС-3 и «Триест».
К настоящему времени батискаф «Архимед» совершил десятки погружений. В 1962 г. на нем была достигнута глубина 9400 м в районе Японской впадины.
Батискаф «Сетасе» был спроектирован в 1959 г. в США и рассчитан на глубину погружения 6000 м. Его водоизмещение 53 т, длина 13 м, высота борта 5 м.
Для надводного плавания на батискафе установлены два дизеля, позволяющие развивать скорость хода до 10 уз. Запас топлива для дизелей рассчитан на дальность плавания более 3000 км. Для движения под водой используются два гребных электродвигателя с питанием от аккумуляторной батареи. Подводная скорость хода батискафа 7 уз, дальность плавания 40 миль. Экипаж батискафа состоит из пяти человек, в том числе из двух кинооператоров.
Батискаф фирмы «Дуглас» (рис. 19), проект которого разработан в США в 1961 г., рассчитан на погружения на максимальные глубины Мирового океана.
Рис. 19. Батискаф фирмы «Дуглас»: 1 – прочная сфера; 2 – аккумуляторная батарея; 3 – устройство для покладки на грунт; 4 – электродвигатель; 5 – бункер с дробью; 6 – телевизионная камера; 7 – устройство для взятия проб грунта; 8 – подводный телеграф; 9 – гидроакустическая станция.
Основные тактико-технические данные батискафа:
– длина 20,3 м;
– диаметр поплавка 3,05 м;
– высота батискафа 5,0 м;
– вес 33–45 т;
– скорость хода 5 уз;
– дальность плавания 100 миль;
– автономность плавания 36 ч;
– экипаж 2 человека.
Прочную сферу батискафа предполагается выполнить сварной, что, по мнению проектировщиков, позволит значительно увеличить надежность конструкции и снизить ее вес за счет отказа от больших утолщений в районе входного люка и иллюминаторов. Относительный вес сферы (отношение веса сферы к объему вытесняемой ею воды) должен снизиться с 4 до 2 при незначительном уменьшении запаса прочности, равного 2 вместо 2,2 для батискафов прежних конструкций. Изготовление поплавка из сваривающегося алюминиевого сплава заметно уменьшит его вес при сохранении большого объема легкой жидкости (150 м3).
Для увеличения свободного объема прочной сферы батискафа и уменьшения ее отрицательной плавучести аккумуляторная батарея и электродвигатели батискафа фирмы «Дуглас» выносятся в поплавок, причем они будут размещены в специальных контейнерах, заполненных трансформаторным маслом. В контейнерах на всех глубинах должно поддерживаться постоянное избыточное давление, создаваемое специальным многоступенчатым насосом.
Приборы управления и контроля должны монтироваться в прочной сфере с таким расчетом, чтобы каждый член экипажа в любой момент мог взять на себя управление батискафом.
Впервые предусматривается установка на батискаф системы кондиционирования воздуха весом 14,5 кг и потребляемой мощностью 1 квт, которая позволит вместе с системой регенерации поддерживать нормальные условия обитаемости экипажа в течение 36 ч.
Для уменьшения сопротивления воды при плавании в подводном положении и улучшения пропульсивных качеств поплавку батискафа придается обтекаемая форма, напоминающая обводы корпуса современной подводной лодки. Большая часть прочной сферы должна находиться внутри поплавка, и лишь ее незначительная часть будет выступать за килевую линию.
Предусматривается прикрытие шахты входного люка легким ограждением обтекаемой формы.
Для увеличения маневренности и надежности эксплуатации батискафа на нем проектируют установить двухвальную энергетическую установку. Каждая линия вала состоит из свинцово-кислотной батареи, электродвигателя постоянного тока мощностью 10 л. с., редуктора и винта в насадке.
Применение телевизионной аппаратуры позволит расширить район наблюдения и проводить выборочные наблюдения в отдельных узких секторах. Для автоматической регистрации замеров будет использована разнообразная современная аппаратура.
В нижней части конструкции батискафа предполагается установить специальные полозья для безопасной покладки камеры на морское дно. Среди аварийно-спасательных средств предусмотрен радиобуй, который отделяется от камеры и всплывает на поверхность воды при аварии.
Использование батискафа предполагается со специального судна-дока (рис. 20), которое сможет одновременно перевозить в трюме до десяти батискафов и обеспечивать проведение всех необходимых работ по их обслуживанию.
Рис. 20. Судно – носитель батискафов фирмы «Дуглас».
Фирма «Дуглас Эйркрафт» выдвинула идею создания флотилии из десяти батискафов. Полагают, что такая флотилия батискафов, базирующихся на судно-док, будет способна не только выполнять обычные океанографические исследования, но и обслуживать глубоководные установки и устройства, используемые в системах противолодочной обороны ВМС США.
Батискаф ДРВ, проект которого разработан на испытательной станции Чайна-Лейк в штате Калифорния (США), предполагается использовать для проведения океанографических работ на глубине 6500 м.
По форме он напоминает торпеду диаметром 2,8 м. Его водоизмещение 80 т, экипаж 3 человека, скорость хода 6 уз, дальность плавания 200 миль. Двигатель мощностью 40 л. с., размещенный вне прочного корпуса, питается от химической серебряно-кадмиевой батареи, рассчитанной на работу в течение 48 ч. Для смягчения возможных ударов батисферы о грунт предусматривается тормозная цепь.
Батискаф ДРВ должен обладать рядом преимуществ по сравнению с батискафом «Триест»; он будет иметь в два раза большую полезную площадь прочной сферы, легко передвигаться как самостоятельно, так и при буксировке, иметь более эффективную систему балласта.
В отличие от существующих батискафов в батискафе ДРВ вместо дроби в качестве основного твердого балласта проектируется использовать обыкновенную соль, а вместо бензина, играющего роль жидкого балласта, – водный раствор аммония (70 %), который на глубине сжимается в меньшей степени, чем бензин. Для компенсации положительной плавучести аммония, потерянной при сжатии, будет применена растворяющаяся в морской воде соль.
Батискаф конструктора В. Потапова (рис. 21), созданный в лаборатории Клайпедского института Гипрорыбфлота, предназначен для наблюдения за новыми конструкциями тралов, за поведением промысловых рыб в зоне траления и выполнения океанографических исследований.
Рис. 21. Батискаф лаборатории Клайпедского института Гипрорыбфлота перед спуском на воду.
Вес подводной камеры около 2 т, глубина погружения до 200 м. Она обладает положительной плавучестью и в случае аварии самостоятельно всплывает на поверхность. В небольшой кабине прочного корпуса батискафа размещается один человек, который управляет камерой, ведет наблюдение через иллюминаторы и производит фотокиносъемку.
Батискаф успешно прошел серию производственных испытаний в Балтийском море и в Атлантическом океане.
Мезоскафы
Мезоскаф О. Пикара, проект которого был предложен в 1954 г., рассчитывался на глубину погружения 2000 м (рис. 22).
Рис. 22. Огюст Пикар рисует внешний вид своего мезоскафа.
Согласно проекту мезоскаф в подводном положении должен обладать положительной плавучестью. Для его погружения предполагается использовать вращение гребного винта; всплытие же должно происходить сразу после выключения двигателя вертикального хода.
Для горизонтального маневрирования мезоскафа, а также с целью устранения его вращения под влиянием реакции винта предусматривалась установка двух пар боковых уравновешенных винтов, насаженных на горизонтальные оси и вращающихся в противоположных друг другу направлениях. Обе пары винтов Пикар предлагал сбалансировать с одним большим винтом, аналогично тому, как это делается у вертолетов.
Для уменьшения скорости погружения мезоскафа (например, при подходе к грунту) предусматривалось отделение небольшого количества балласта; при экстренном всплытии сбрасывался весь балласт.
Полностью готовый к погружениям мезоскаф должен был весить не более 5 т, что, по замыслу автора проекта, облегчало его спуск, подъем и транспортировку судном-носителем.
Прочную сферу предполагалось изготовлять из стали или легкого сплава алюминия с магнием. Пикар рекомендовал также изготовить всю прочную сферу из плексигласа. Он считал, что при удельном весе плексигласа 1,19 г/см3 сфера будет обладать большей подъемной силой, чем стальная сфера той же прочности и диаметра, а следовательно, сможет нести более мощные электродвигатели и аккумуляторную батарею. Кроме того, плексиглас прозрачен, и наблюдателю не нужно будет смотреть в маленький глазок иллюминатора – перед ним откроется вся панорама вокруг мезоскафа.
Следует заметить, что интересный по замыслу проект О. Пикара так и не был осуществлен.
Мезоскаф Гартунга (рис. 23), спроектированный в 1961–1962 гг. в ФРГ, рассчитан на глубину погружения до 7000 м.
Рис. 23. Мезоскаф Гартунга.
На этом мезоскафе проектом предусматривается пустотелый поплавок, заполненный бензином, что должно придать ему нулевую плавучесть.
Для горизонтального перемещения мезоскафа предполагается использовать гребной винт, установленный на горизонтальной оси, а для всплытия и погружения – ринты на вертикальных осях.
Для аварийного всплытия мезоскаф будет снабжен аварийным балластом в виде специальных быстро отдающихся блоков.
Мезоскаф Гартунга, оборудованный манипуляторами, должен использоваться для поиска и подъема затонувших судов и самолетов. Кроме того, считают, что он сможет принять широкое участие в проведении сверхглубинного бурения и в океанографических работах.
Научно-исследовательские подводные лодки
Идея использования подводных лодок для изучения глубин океанов и морей зародилась у ученых давно. Действительно, подводные лодки могут удаляться от баз на большие расстояния и находиться длительное время под водой, проводя исследования как при хороших, так и при неблагоприятных гидрометеорологических условиях (шторм, ледовый покров), когда использование надводных судов затруднено, а иногда и невозможно.
Кроме того, на подводных лодках может быть размещен более обширный комплекс научно-исследовательской аппаратуры, чем. на небольших подводных камерах.
Естественно, подводные лодки с атомными энергетическими установками дают еще более широкие возможности для проведения исследований, чем обычные дизель-электрические. Практически они могут неограниченное время находиться под водой и проходить десятки тысяч миль без пополнения запасов горючего.
Об огромных возможностях атомных подводных лодок ярко свидетельствует поход советской атомной подводной лодки «Ленинский комсомол» подо льдами Северного полюса.
Научно-исследовательская подводная лодка «Наутилус». В 1931 г. американский исследователь Хьюберт Уилкинс сделал первую попытку использовать подводную лодку в научно-исследовательских целях для плавания подо льдами Арктики к Северному полюсу. Его подводная лодка «Наутилус» была переоборудована из старой боевой американской подводной лодки. В экспедиции X. Уилкинса принял участие известный норвежский океанограф Харальд Свердруп.
19 августа 1931 г. «Наутилус» вошел в паковые льды. При осмотре корпуса лодки экипаж обнаружил, что льдом срезаны кормовые горизонтальные рули, а погружаться без них было немыслимо. Все попытки Уилкинса и Свердрупа пробиться через льды в подводном положении ни к чему не привели; «Наутилус» возвратился в Норвегию.
Так закончилась первая попытка использовать подводную лодку для научных исследований. Только спустя 26 лет мечта многих поколений исследователей глубин была осуществлена в нашей стране, когда Советское правительство приняло решение о переоборудовании одной из новых боевых подводных лодок Северного флота в подводную научно-исследовательскую лабораторию.
Научно-исследовательская подводная лодка «Северянка» была создана по инициативе Всесоюзного научно-исследовательского института рыбного хозяйства и океанографии (рис. 24).
Рис. 24. «Северянка» выходит в море.
Проблема увеличения улова рыбы, неразрывно связанная с определением районов нереста, откорма и скопления рыб, с изучением поведения рыб в различные времена года и суток, а также с возможностями создания новых методов и средств лова, – вот что интересовало наших ученых в первую очередь.
14 декабря 1958 г. «Северянка» вышла в свой первый поход.
Подводная лодка состоит из двух корпусов: наружного– легкого и внутреннего – прочного, рассчитанного на большую глубину погружения (рис. 25).
Рис. 25. Продольный разрез подводной лодки «Северянка»-1 – телевизионная камера с прожектором; 2—верхний эхолот; 3 – койки, 4 – второй отсек; 5 – рубка; 6—ходовой мостик; 7– четвертый отсек; 8 – камбуз; 9 – шестой отсек; 10– седьмой отсек; 11 – пятый отсек; 12—аккумуляторная батарея; 13 – центральный пост; 14 – аккумуляторная батарея; 15—устройство для взятия проб грунта; 16 —первый (научный) отсек; 17 – нижний эхолот, 18 – гидролокатор.
Между легким и прочным корпусами располагаются цистерны главного балласта. Заполненные водой во время погружения, они придают подводной лодке плавучесть, близкую к нулевой.
Прочный корпус «Северянки» разделен поперечными переборками на семь отсеков, сообщающихся между собой герметически закрывающимися дверями. Собственно исследовательским отсеком является первый отсек, где размещены основные приборы, устройства и механизмы для научной работы. Для зрительного наблюдения за подводным миром и производства фото– и киносъемок с каждого борта этого отсека и на его подволоке имеется по одному иллюминатору, освещающемуся снаружи мощными прожекторами (рис. 26).
Рис. 26. Киносъемка подводного мира через верхний иллюминатор «Северянки».
При включенных прожекторах через иллюминаторы можно увидеть рыбу на расстоянии до 15 м, однако при плавании лодки в мутной воде прожекторы дальности видимости не увеличивают, и поэтому с правого борта первого отсека установлена четырехметровая откидывающаяся стрела со светильником мощностью 1000 вт.
В носу лодки расположена камера подводного телевизора, освещающаяся собственным прожектором. В носовой части установлен гидролокатор, который посылает сигналы в горизонтальной плоскости и дает возможность обнаруживать косяки рыб на большом расстоянии. Для этой же цели служат и эхолоты, посылающие сигналы вверх и вниз.
В первом отсеке размещены термосолемер для определения температуры и солености воды, фотометр для определения освещенности среды, измерители подводных течений, содержания растворенного в морской воде кислорода, видимости предметов под водой, радиоактивности воды и многие другие приборы. На подводной лодке имеются устройства для взятия проб забортной воды и грунта.
В нижней части второго и четвертого отсеков «Северянки» размещены источники электроэнергии – кислотные аккумуляторы; верхняя часть этих отсеков используется как жилые помещения для экипажа. Во втором отсеке находятся также радиорубка и каюта командира, а в четвертом отсеке камбуз с электрической плитой. Здесь же расположен компрессор для пополнения баллонов сжатым воздухом высокого давления, который необходим для продувания цистерн главного балласта при всплытии, для запуска двигателей надводного хода и работы многих механизмов, устройств и систем подводной лодки.
Управление подводной лодкой осуществляется из центрального поста, которым является третий отсек. Тут определяют курс и скорость корабля, отсюда руководят его погружением и всплытием, управляют горизонтальными и вертикальным рулями.
В пятом отсеке расположены двигатели надводного хода – два мощных дизеля и обслуживающие их механизмы.
Двигатели подводного хода – электромоторы, питающиеся от аккумуляторных батарей, находятся в шестом отсеке. В этом же отсеке с линиями валов соединены менее мощные электромоторы экономического хода, которые обеспечивают движение лодки под водой с малой скоростью, но в течение длительного времени.
В седьмом отсеке размещены вспомогательные механизмы.
За первые шесть экспедиций (три в Баренцево море и три в Северную Атлантику) «Северянка» находилась в плавании 118 дней, прошла свыше 14,5 тысяч миль, произвела 130 специальных погружений на глубины от 70 до 170 м. Ее вклад в решение важнейшей задачи увеличения добычи рыбы очень велик. Многие загадки морских глубин, интересующие рыбаков и ученых, решены, многие ждут своего разрешения с помощью первой исследовательской подводной лодки «Северянка».
Советские ученые и конструкторы накопили немалый опыт использования подводной лодки в научно-исследовательских целях и ныне думают о создании более совершенной научно-исследовательской подводной лодки. Какой же она должна быть, по их мнению?
Полагают, научно-исследовательская подводная лодка должна совмещать в себе и некоторые функции надводного судна, чтобы в надводном положении с нее можно было спускать трал, брать пробы грунта и планктона, вылавливать рыб и морских животных. Глубина погружения новой подводной лаборатории достигнет 600 м. Для того чтобы человек побывал на еще больших глубинах, с лодки, находящейся в подводном положении, можно будет спускать гидростат. Иллюминаторы в отсеках лодки позволят видеть широкую панораму подводного мира, а устройства, аналогичные перископу, создадут лучшие условия для наблюдения из разных отсеков за движущимися в воде предметами и морским дном. Мощные прожекторы осветят воду в районе иллюминаторов; совершенные гидроакустические приборы позволят обнаруживать на больших расстояниях косяки рыб и преграды, быстро и точно определять дистанцию до грунта и до поверхности воды. Установка шлюзовой камеры обеспечит выход и возвращение внутрь лодки членов ее экипажа с аквалангами.
Подводная лодка будет оснащена новейшей научно-исследовательской аппаратурой. На ней сможет отправиться в дальние экспедиции большее число научных работников.
Научно-исследовательская подводная лодка ГА-2000, спроектированная коллективом общественного конструкторского бюро Государственного проектного института рыбопромыслового флота, рассчитана на глубину погружения 2000 м, дальность плавания 50 миль и автономность 24 ч (рис. 27).
Рис. 27. Внешний вид подводной лодки ГА-2000.
Ее главные размерения: длина 6,5 м, ширина 1,8 м, высота 3,0 м. Размеры прочного стального корпуса: длина 4,5 м, диаметр 1,5 м.
В соответствии с проектом подводная лодка должна состоять из прочного корпуса – стального цилиндра, помещенного внутрь легкого корпуса, изготовленного из стеклопластика. В средней части прочного корпуса имеется рубка цилиндрической формы с входным люком, крышка которого открывается специальным приводом как снаружи, так и изнутри прочного корпуса. Рядом с люком располагается верхний рубочный иллюминатор, немного ниже – иллюминатор штурмана для навигационных целей. В носовой части прочного корпуса имеются еще два обзорных иллюминатора, один из которых направлен вперед, а другой вперед и вниз.
В наружном корпусе из стеклопластика предполагается установить гидронасос, работающий от электродвигателя. Насос подает струю воды в гидродвигатель и тем самым приводит во вращение винты горизонтального и вертикального хода. В легком корпусе должны быть размещены ловушка для рыб и морских животных, гарпунная пушка для охоты на крупных зверей и пружинное ружье для боя рыб. В корпусе из стеклопластика будет находиться также постоянный балласт, состоящий из твердой дроби, и аварийный балласт в виде отдаваемого стального киля весом 350 кг.
По обоим бортам прочного стального корпуса расположены балластные цистерны. Для всплытия они продуваются сжатым воздухом, при погружении заполняются забортной водой.
Для сбора проб с грунта предусмотрены два манипулятора, управляемые с помощью электромагнитных золотников. Собранные манипуляторами образцы складываются в специальный ящик, укрепленный с правого борта ГА-2000.
Управляют подводной лодкой штурман и наблюдатель, сидящие в удобных самолетных креслах. Для лучшего обзора через нижнюю группу иллюминаторов наблюдатель может лечь, сложив свое кресло, возле которого находятся киноаппарат и кнопки управления манипуляторами, прожекторами и лампой-вспышкой. Кроме того, здесь же предполагается разместить эхограф, телефон подводной связи, указатели скорости хода, репитер гирокомпаса и другие приборы. В прочном корпусе будет находиться также аккумуляторная батарея, являющаяся источником тока для освещения и питания двигателей мощностью по 1,5 квт каждый.
Научно-исследовательская подводная лодка «Алюминот» строится фирмой «Рейнолдс Метал Компани» (США) (рис. 28).
Рис. 28. Модель подводной лодки «Алюминот».
Ее основные данные: полное подводное водоизмещение 63 м3, рабочая глубина погружения 4580 м, наибольшая длина 15,4 м, наибольшая ширина 2,44 м (без боковых килей), внутренний диаметр прочного корпуса 2,14 м, внутренний объем прочного корпуса 40 м3, вес корпусных конструкций 43,7 т, время нахождения подводной лодки в подводном положении: рабочее 36 ч, в аварийных случаях 72 ч, максимальная скорость подводного хода 5 уз, радиус действия около 100 миль. Доставка подводной лодки к месту погружения осуществляется на обеспечивающем судне или буксировкой со скоростью до 10 уз при волнении моря не более 4 баллов. Экипаж «Алюминот» – два наблюдателя и штурман-рулевой.
Прочный корпус подводной лодки изготовляется из листов стали толщиной 150 мм в форме цилиндра со сферическими концевыми переборками. Отдельные секции корпуса соединяются болтами; для обеспечения непроницаемости стыки секций склеиваются специальным клеем. В целях исключения коррозии на стальные конструкции корпуса наносится тонкий слой специального алюминиевого сплава, затем их поверхности грунтуют и окрашивают.
Для уменьшения поперечной качки на подводной лодке устанавливаются боковые кили. Маневрирование в вертикальной плоскости будет осуществляться с помощью кормовых горизонтальных рулей.
В качестве движителей «Алюминот» используются три винта: два горизонтальных и один вертикальный. Последний служит для регулирования скорости всплытия и погружения, а также для обеспечения остановки подводной лодки на любой промежуточной глубине (рис. 29).
Рис. 29. Продольный разрез подводной лодки «Алюминот»: 1 – съемное ограждение над кормовым люком; 2 – надувной спасательный плот; 3 – баллоны со сжатым воздухом; 4 – поглотитель углекислоты; 5 – винт для удержания глубины; 6 – научное оборудование; 7 – иллюминаторы; 8 – носовая дифферентная цистерна; 9 – научное оборудование; 10 – кормовая дифферентная цистерна; 11 – ввод кабеля; 12 – кормовая секция с гребным электродвигателем; 13 – гребной винт; 14 – сбрасываемый свинцовый киль; 15 – рундуки; 16 – кислородные баллоны; 17 – аккумуляторная батарея; 18 – уравнительная цистерна; 19 – распределительный щит; 20 – центральный пост; 21 – гидроакустическая станция; 22 – трюмная помпа; 23 – зарядный щит; 24 – рабочий стол.
Приводами к винтам являются три электродвигателя мощностью по 5 л. с., размещенные вне прочного корпуса в специальных контейнерах, заполненных кремнийорганической жидкостью. Через расширительную цистерну контейнеры постоянно сообщаются с забортной водой. Расположение гребных электродвигателей вне прочного корпуса дает возможность сократить его объем и избавляет от необходимости обеспечивать уплотнение в местах прохода гребных валов. В качестве источника электроэнергии намечается использовать серебряно-цинковую батарею, состоящую из двух групп по 154 элемента в каждой, общим весом около 2,8 т.
«Алюминот» имеет три вида балласта: водяной (1,35 т), принимаемый в килевую часть легкого корпуса; твердый в виде стальной дроби (1,8 т), находящийся в бортовых цистернах, и сбрасываемый свинцовый киль (3,2 т). Продувание водяного балласта рационально только на глубинах менее 1450 м. Поэтому для всплытия с больших глубин используется вертикальный винт, сбрасывается дробь, удерживаемая электромагнитом, и в аварийных случаях для обеспечения экстренного всплытия отдается свинцовый киль. Время аварийного всплытия с глубины 4580 м 22 мин.
Для наблюдения прямо по курсу подводной лодки и вниз имеются иллюминаторы. Предусмотрена также установка гидролокатора с излучателями, направленными вперед, вверх и вниз, подводного телевизора, мощных осветительных ламп, средств надводной и подводной связи и различного научного оборудования общим весом около 2 т. Для взятия проб грунта и производства подводных работ устанавливается манипулятор.
Экспериментальная подводная лодка «Долфин», постройка которой начата в 1962 г. в Портсмуте (США), предназначается для участия в работах, связанных с созданием боевых глубоководных подводных лодок, выполнения океанографических исследований и использования в качестве движущейся цели при проведении противолодочных учений.
Длина «Долфин» 61 м, диаметр корпуса 5,5 м, предполагаемая глубина погружения не менее 1200 м. Корпус подводной лодки цилиндрической формы со сферическими концевыми переборками, изготовляется из стали с пределом текучести 7000–7700 кг/см2. Для движения «Долфин» предполагается использовать обычную дизель-электрическую энергетическую установку.
По данным зарубежной печати, постройка подводной лодки должна быть закончена в 1964 г.
Научно-исследовательская подводная лодка «Олвин» строится компанией «Дженерал Милз» (США) по заказу океанографического института в Вудс-Холле (рис. 30).
Рис. 30. Научно-исследовательская подводная лодка «Олвин».
Длина подводной лодки 6,1 м, вес около 10 т, максимальная скорость хода 6 уз, радиус действия 30 миль, автономность 24 ч, предполагаемая глубина погружения не менее 1850 м, экипаж 2 человека, вес научно-исследовательской аппаратуры более 500 кг.