Текст книги "Звук за работой"
Автор книги: Александр Коробко-Стефанов
сообщить о нарушении
Текущая страница: 3 (всего у книги 6 страниц)
Как устроено ухо
Слуховой орган – ухо – представляет собой сложное сооружение. То, что в быту называют «ухо» – всего лишь ушная раковина.
Если углубиться внутрь ушной раковины, то обнаружится слуховой проход, закрытый круглой перепонкой, которая называется барабанной. Она похожа на конус, вершина которого втянута внутрь среднего уха. Со стороны среднего уха к середине барабанной перепонки прикреплена косточка в форме молоточка, которая другим концом сочленена с другой косточкой – наковальней. Наковальня соединена с третьей косточкой – стременем; второй конец стремени упирается в перепонку, отделяющую среднее ухо от внутреннего.
Внутреннее ухо представляет собой сложный лабиринт, заполненный жидкостью. Называют его улиткой. Внутренняя сторона лабиринта устлана эластичной пленкой, в которой располагаются кончики слуховых нервов, сообщающихся с мозгом. Кончики слуховых нервов в одной части соприкасаются с маленькими остренькими волосками, которые расположены вдоль всего лабиринта.
Кроме этого, в лабиринте есть орган, который по внешности напоминает арфу. Струнами арфы являются волокна различной длины и толщины. Волокна натянуты, и их более трех тысяч. Пока давление воздуха с обеих сторон барабанной перепонки одинаково, барабанная перепонка находится в покое.
С появлением звуковых волн атмосферное давление со стороны наружного уха изменяется, и барабанная перепонка приходит в движение.
Строение слухового аппарата человека
Раз барабанная перепонка прогнулась внутрь, воздух внутри среднего уха сжался. Если сразу за этим вследствие разрежения давление воздуха в наружном ухе уменьшилось, то упругость воздуха прогибает барабанную перепонку в противоположную сторону. Периодическое изменение величины атмосферного давления приводит к периодическим движениям барабанной перепонки. Движение барабанной перепонки передается молоточку, который прикреплен к ней одним концом. Вслед за молоточком начинают двигаться и сочлененные с ним косточки: наковальня и стремя. Стремя упирается в перепонку, которая отделяет среднее ухо от внутреннего, и при своем движении заставляет ее совершать колебания. Благодаря этому и жидкости, заполняющей лабиринт, возникают упругие волны.
Слуховые косточки и костный лабиринт
Совместно с колебанием частичек приходят в движение легкие остренькие волоски, которые передают колебание корешкам нервоз, а оттуда раздражение попадает в мозг.
Если колебания происходят в интервале 16–16 тысяч герц, мы слышим различные звуки. Конечно, этот интервал принят как средний. Ведь не у всех людей одинаковые уши. Иногда область воспринимаемых частот может быть значительно больше за счет увеличения числа колебаний, которое воспринимается ухом.
Изменение величины атмосферного давления может оказаться довольно сложным, как, например, в случае звучания оркестра, когда имеется много различных источников звука. В этом случае сложные колебания воспринимаются как единое целое всеми струнами арфы. Но каждая из них приходит в колебание только тогда, когда среди всех звуков содержится соответствующая ей частота, которую струна арфы воспринимает, совершая вынужденное колебание.
Глухой музыкант
Трагедией жизни великого немецкого композитора Бетховена, автора замечательных симфоний, концертов, сонат и других музыкальных произведений, была постепенно усиливавшаяся глухота. В последние годы своей жизни гениальный музыкант оглох окончательно.
Но, несмотря на потерю слуха, Бетховен создавал свою потрясающую музыку, будучи даже совершенно глухим!
Почему же ему это удавалось? Как мог композитор творить, не слыша звуков оркестра, не имея возможности услышать свое произведение?
Дело в том, что глухой Бетховен все-таки слышал звуки, создаваемые им. Когда композитор проигрывал музыку на рояле, он вел себя на первый взгляд очень странно: в зубах у великого музыканта находилась дирижерская палочка, и он крепко упирался ею в крышку рояля.
Так он слушал музыку. Не удивляйтесь, мы не оговорились – Бетховен именно слушал музыку, хотя и был совершенно глух.
Это необычайное восприятие звука называют костной проводимостью. Многие из вас знают, как резко усиливаются еле слышные звуки камертона, если прислонить его к темени или к зубам.
В этих случаях звук распространяется в костях черепа, а это приводит к изменению положения улитки среднего уха. Деформация стенок улитки возбуждает колебание жидкости, и появляется то, что в науке называют слуховым раздражением. Короче говоря, мы слышим звуки. Полная глухота наступает лишь тогда, когда болезнью поражено и внутреннее ухо. И не имея возможности слушать звуки со стороны, глухой Бетховен не потерял способности контролировать себя.
Между прочим, благодаря костной проводимости мы слышим собственный голос. Попробуйте записать свой голос на магнитофон, а потом прослушать запись. Вас удивят эти звуки. Вы их никогда не слышали, хотя это ваш же собственный голос.
Почему же его нельзя узнать?
Дело в том, что мы привыкли воспринимать свой голос благодаря костной проводимости; поэтому тембр его в записи будет другим, не похожим на тот, который мы ежедневно слышим. Наш собственный голос покажется нам чужим и незнакомым.
Так мы слышим себя.
Слушая различные звуки, мы можем точно определить, откуда они доносятся, с какой стороны распространяются. Как мы это делаем?
Слуховые раздражения каждого уха приходят в мозг одновременно только в том случае, когда источник звука находится на равном расстоянии от ушей. Во всех остальных случаях слуховое раздражение, посылаемое одним ухом, приходит в мозг раньше, чем от другого. Мы сразу реагируем на это, поворачивая голову в ту сторону, каким ухом мы раньше услышим звук. Таким образом, восприятие звука двумя ушами делает возможным определить положение источника, излучающего звук. Это называется бинауральным эффектом.
Как бы звучал Царь-колокол
Вверх по течению Москвы-реки от устья Яузы до устья Неглинки, на крутом холме, восемь веков тому назад возникло крохотное поселение. Основатель этого поселения князь Юрий Долгорукий выбрал этот холм, учитывая его особое положение в сравнении с другими. Холм был покрыт густым, непроходимым лесом, который окаймляли полноводные реки. В те далекие от нас времена густые, непроходимые леса называли «бор» или «кремь». Отсюда и происходит, по мнению историков, слово «Кремль».
Крохотное поселение быстро разрасталось. Новые поселенцы располагали свои селения вокруг Кремля, на других, близлежащих холмах.
Со временем поселения превратились в огромный город, имя которого – Москва.
Для первых поселенцев Москвы было ясно, что ни дремучий бор, ни полноводье рек не могут защитить их от непрошеных гостей. Поэтому они воздвигли вокруг холма, у самых берегов рек Москвы и Неглинки, толстые дубовые стены с башнями.
Холм, огражденный дубовыми стенами, и был в те времена городом, а спустя восемь веков превратился в центр столицы великого социалистического государства – Союза Советских Социалистических Республик.
Во времена Дмитрия Донского дубовые стены, пришедшие в ветхость, были заменены новыми, уже не деревянными, а каменными. Камень для стен был выбран белый. Поэтому город стал называться белокаменным.
При Иване III белокаменные стены, выветренные непогодой и израненные бесчисленными врагами, стали заменять новыми, кирпичными. Благодаря заботам потомков стены и башни сохранились до наших дней.
В центре Кремля, на самом высоком месте холма, была выстроена колокольня более восьмидесяти метров высоты. Строили, достраивали колокольню на протяжении чуть-чуть менее ста лет – с 1505 по 1600 год.
Колокольня Ивана Великого
На верх колокольни ведут крутые лестницы. По ним поднимались дозоры для обозрения окрестностей Москвы.
Обнаружив приближение незваных гостей, дозоры предупреждали об этом горожан набатом колоколов. Он разносился далеко-далеко и был слышен в едва видимых с башни деревнях, разбросанных в бескрайных лесах, окружающих город.
Колокола звучали над Москвой не только в годины бедствий и праздников. В течение дня они несколько раз собирали людей для совершения христианских обрядов.
Звук одних колоколов был густой и тревожный, другие переливались радостным, малиновым звоном.
Самый большой колокол на колокольне, который находится там до сего времени, весит семьдесят тонн.
Искусные мастера литейного дела на Руси того времени умели отливать гигантские колокола. Самым прославленным из них оказался Иван Моторин.
В 1735 году Иван Моторин с сыном Михаилом отлили такой колокол, какого не видели не только за морями, но и на Руси, хотя литье колоколов на Руси было не в диковинку. Вес этого колокола, изукрашенного затейливыми узорами, составил почти двести тонн. За это его и назвали «Царь-колокол».
Но в этот колокол никто и никогда не звонил. Он никогда не был установлен на колокольне Ивана Великого.
Случилось это так. Отливали колокол в яме у подножия кремлевского холма. Когда колокол был готов, стали сооружать леса, поднимая его на высоту холма, чтобы затем волоком по настилу оттащить к колокольне.
Два года ушло на сооружение приспособлений для подъема колокола из ямы. В 1737 году гигант уже находился на уровне вершины холма. Теперь оставалось соорудить настил и оттащить его на вершину. Но случилась беда – возник пожар. Жадный огонь пожирал леса, удерживающие Царь-колокол. Его братья-колокола надрывались на колокольнях города, собирая народ гасить пламя. Однако огонь не унимался. Его погасила другая стихия – дождь, который пошел к исходу дня. Но леса, удерживающие колокол, не выдержав тяжести многопудовой махины, обрушились, и колокол упал в яму, наполненную дождевой водой.
Когда колокол опять попал в яму, из которой его два года так хитроумно доставали, он дал ряд трещин, ибо был раскален, а в яме была вода.
После всего случившегося его оставили в яме. Слишком велико было огорчение, да к тому же строителей отвлекли на другие дела.
И пролежал он там сто лет и три года.
А потом его вытащили из ямы и поставили у подножия колокольни, где он находится и по сей день.
Во время установки колокола на подставку край колокола выщербился; осколок, который весит одиннадцать тонн, был оставлен около подставки.
Царь-колокол
Такова судьба самого большого колокола на земном шаре.
Но как бы звучал этот колокол?
Познакомимся прежде всего с законами звучания тел наиболее простой формы. К таким телам относятся прутья, или, как принято их называть, стержни.
Многочисленные наблюдения над колебаниями прутьев, изучением которых занимался академик Петербургской Академии наук Леонард Эйлер, показывают, что если концы прута не закреплены, то он может совершать колебания таким образом, что только две точки его, одинаково отстоящие от концов, остаются неподвижными, а все остальные колеблются. Неподвижные точки называют узлами.
Если теперь прут сгибать, то узловые точки будут сближаться. В том случае, когда мы согнем прут так, что концы его станут параллельными друг другу, узловые точки будут находиться вблизи места сгиба. Согнутый стержень, укрепленный на подставке в месте сгиба, называют камертоном. Это название вы наверняка слышали.
При колебании согнутого стержня – камертона, концы его то сближаются, то расходятся, создавая вокруг себя сжатие и разрежение воздуха. Эти колебания распространяются в пространстве во все стороны. Если их частота больше 16 герц и меньше 16 тысяч герц, то эти изменения величины атмосферного давления воспринимаются нашим ухом как звук.
А частота колебаний камертона зависит от многих причин – от длины ножек, площади поперечного сечения прута и свойств материала, из которого он изготовлен, то есть от его плотности и упругости.
Значит, каждый камертон, каким бы образом мы ни заставили его совершать колебания, колеблется с одной и той же частотой, которая определяет основной тон. Если же возникают высокие тона, то они столь слабы, что лежат ниже порога восприятия. Поэтому и создают наборы камертонов, с помощью которых можно получить различные чистые тона. Маленькие камертоны, изготовленные из тонких прутьев, колеблются с большой частотой, а большие имеют меньшую частоту колебаний.
Подставка камертона – деревянный ящик, открытый с одной стороны. Если открытую сторону ящика закрыть, то звук камертона становится слабее. Ящик, усиливающий звук, называют резонатором.
Камертон
Дело в том, что воздух, который находится внутри ящика, можно заставить совершать колебания, если его вывести из состояния равновесия, как целое. Частота возникающих при этом собственных колебаний, зависит от объема ящика, в котором находится воздух. Поэтому размеры ящика делают такими, чтобы собственная частота колебаний воздушного столба оказалась близкой к основному тону камертона. Когда камертон звучит, колебания давления окружающего воздуха действуют на столб воздуха в ящике как внешняя периодическая сила. И появляются уже знакомые нам вынужденные колебания, частота которых совпадает с собственной частотой резонатора. Амплитуда колебаний акустического давления благодаря этому резко возрастает.
Вернемся теперь к колоколу. Почему он издает звуки? Могучее звучание колокола происходит вследствие колебания его стенок. А стенки приводятся в колебательное движение ударом языка, который находится внутри колокола. Он укреплен в его верхней точке.
Колебание стенки происходит так, что колокол как бы делится на четыре равные части. При этом если две противоположные сближаются, то две другие удаляются. Линии раздела называются узловыми. Вспомните узлы камертона.
При таком делении колокол издает основной тон. Иногда, в зависимости от того, как мы ударим колокол, кроме основного тона, появляются верхние тона. При этом происходит деление колокола на большое число частей – сегментов.
Схема звучания колокола
Каждый колокол имеет свой, отличный от других тембр. Толщина стенок колокола делается неодинаковой. Это и создает обертоны. Снизу его стенки очень толстые, а к вершине их толщина заметно уменьшается. А объем воздуха внутри колокола является резонатором, который усиливает его колебания.
Число колебаний колокола, которому соответствует основной тон, зависит от его толщины и диаметра.
Подсчитать основной тон Царь-колокола можно только весьма приближенно из-за сложности его формы.
Строгий расчет представляет собой довольно сложную математическую задачу, решение которой тем не менее все же останется приближенным.
Когда такой подсчет был сделан, оказалось, что основной тон Царь-колокола должен был быть очень низким. Вряд ли этот низкий звук могли все услышать.
Но ведь колокол не дает одного основного тона. В его тембре имеется много высших тонов.
Различная толщина колоколов как раз и делается для того, чтобы было возможно ударом языка в различных местах возбуждать различное число высших тонов.
Так что более высокие тона Царь-колокола наверняка были бы слышны.
Это хорошо знали мастера глубокой древности, оставившие нам замечательные памятники своего искусства, среди которых видное место занимает гигант Московского Кремля.
* * *
Самый совершенный из всех источников звука – голосовой орган человека. Это очень сложный аппарат – сложнее любого музыкального инструмента.
Легкие, гортань, голосовая щель, голосовые связки, воздушные полости рта – вот что дает возможность человеку говорить, петь, кричать. Как он это делает?
Воздух, выходя из легких при их сжатии, проходит через дыхательную трубу, на конце которой расположены эластичные голосовые связки. Проходя в узкую щель между голосовыми связками, воздух заставляет их совершать различные колебания.
Строение голосового аппарата человека
Частота этих колебаний зависит от того, как напряжены голосовые связки.
Иногда, когда человек простужен, появляется хрипота голоса. Это происходит оттого, что мокрота попадает в щель между голосовыми связками.
Что делает голос человека таким совершенным источником звука? Во-первых, скорость и точность, с которой голосовые связки могут изменять свое натяжение, форму и ширину щели, а также резонансная полость рта, геометрические размеры которой меняются в связи с изменением положения голосовых связок.
В одной из комедий замечательного французского писателя Мольера герой удивляется тому, что, сам того не зная, он всю жизнь говорил прозой.
Каждый из вас произносит различные звуки. Но как эти звуки образуются, не все знают.
Мы сейчас расскажем об этом, и многие из вас окажутся в положении господина Журдена – героя комедии Мольера.
Вот, например, образование гласных звуков.
Они создаются голосовыми связками. Но звучат гласные очень сильно. Как создается такое сильное звучание?
Оказывается, воздушные полости рта создают усиление этих звуков – получается резонанс. При этом усиливаются только те обертоны, частота которых в четное число раз больше частоты основного тона.
Когда мы произносим гласные «о», «у», «а», все воздушные полости образуют один большой резонатор. Зато, произнося «е» и «и», мы перегораживаем полость рта нёбной заслонкой на две части.
В этом случае передняя полость усиливает высокие частоты, а задняя – низкие.
Согласные звуки глуше гласных. В их воспроизведении участвуют не только голосовые связки. Важную роль в правильном воспроизведении этих звуков играет трение струи воздуха. Если струя проходит между языком и зубами, появляется звук «с»; между языком и твердым нёбом – звуки «ж», «з», «ш» и «ч»; между языком и мягким нёбом – звуки «г» и «к».
Многие произносят эти звуки не очень хорошо, иностранцам трудно дается русское произношение – это все объясняется тем, что устройство рта у всех различное, а у иностранцев сказывается привычка произносить различные звуки, в основе те же самые, по-разному.
Говорят не только люди. Существует множество игрушек, обладающих способностью «говорить». Они устроены очень просто. Для этой цели приспособлены органные трубы. В зависимости от их числа и тона каждой трубы можно получать различные гласные звуки. Для звука «а», например, хватит всего лишь трех труб.
Разрез органной трубы
Некоторые куклы, устроенные довольно сложно, могут говорить даже слова, многие из них очень внятно говорят «мама».
Игрушки – предмет забавы. Но аналогичное устройство помогает многим больным людям, гортань которых повреждена.
Созданы образцы искусственных гортаней, которые дают возможность людям внятно говорить. При этом человек пользуется воздухом легких, а высоту тона регулирует рукой. По трубке звук, полученный таким образом, поступает в воздушную полость, где и появляется речь. Речь человека с искусственной гортанью вполне членораздельна, ее можно хорошо понимать.
ТАЙНА НЕСЛЫШИМЫХ ЗВУКОВ
Поющие кристаллы
За последние годы в технику стремительно вошли приборы, использующие неслышимые звуки. Так называют упругие волны, частота колебаний которых более 16 тысяч или менее 16 герц. Обычные уши их не услышат, но возникают эти звуки очень часто.
Если тело колеблется менее чем 16 раз в секунду, то говорят, что оно излучает инфразвук, а если более 16 тысяч, то такое тело излучает ультразвук, тот самый ультразвук, о замечательных применениях которого так много сейчас пишут.
Ультразвук излучают специально устроенные излучатели, при помощи которых можно создать колебания, число которых в секунду достигает не только десятков тысяч, но даже сотен миллионов. Такое большое число колебаний в секунду не может осуществить ни одно механическое устройство. Но изобретательный ум человека использовал для этого одно из явлений природы и, если так можно выразиться, вывернул его наизнанку.
При этом и были получены колебания, число которых во много раз превышало 16 тысяч. Вот как это произошло.
В 1880 году французские ученые, братья Кюри, Пьер и Жорж, наткнулись на интереснейшее явление. Они обнаружили, что если взять кристалл кварца и сжать его в одном направлении, то на гранях, перпендикулярных этому направлению, возникнут электрические заряды: на одной грани положительные, а на противоположной – отрицательные.
Природные кристаллы кварца
Так как электрические заряды появлялись при сжатии кристалла, а по-гречески слово «давить» будет «пьезо», то явление это было названо пьезоэлектричеством.
Это явление привлекло к себе внимание многих исследователей. Начались поиски кристаллов, электризующихся при сжатии. Проходили они весьма успешно. За короткое время было обнаружено, что, кроме кварца, электризуются турмалин, сегнетовая соль, цинковая обманка, хлорат натрия и сахар. Все эти вещества получили название пьезоэлектриков.
Оказалось, что заряды на гранях кристаллов могут возникнуть и в том случае, когда кристаллы растягивают, но при этом образуются заряды противоположного знака.
Изучая это явление теоретически, ученые пришли к выводу, что пьезоэлектрический эффект может быть обратим. Это означало, что если на гранях кристалла расположить электрические заряды противоположных знаков, то он либо сожмется, либо растянется. Братья Кюри заинтересовались этим теоретическим предвидением и подвергли его экспериментальной проверке. Результаты их опытов оказались положительными: заряжая грани кристалла, они наблюдали сжатие и расширение. Однако серьезного практического применения этому явлению они не нашли. Правда, на этом принципе ими был сконструирован манометр – прибор для измерения давления, но особых преимуществ перед другими манометрами он не имел.
О замечательных особенностях кристаллов кварца, турмалина, сегнетовой соли и других постепенно стали забывать.
Явление пьезоэлектричества вскоре после его открытия осталось без всякого внимания, так как не нашло себе практического применения. Упоминали о нем на лекциях как о забавном способе получения электрических зарядов.
Но история развития науки знает немало таких примеров, когда ученые возвращались к давно открытым, оставленным без внимания явлениям, находясь в тупике при решении неотложной практической задачи. Так получилось и с пьезоэлектрическим эффектом. В мировую войну 1914–1918 годов немецкие подводные лодки серьезно затрудняли мореплавание надводных кораблей Франции и Англии. Нужно было найти способ обнаружить подводную лодку задолго до того, как она приблизится к надводному кораблю, чтобы нанести ему смертельный удар. За решение этой задачи взялся известный французский ученый Ланжевен. Ему пришла мысль воспользоваться тем, что лодка, двигаясь, создает винтом в воде упругие волны. Они распространяются со скоростью более 1500 метров в секунду. Следовательно, если погрузить кристалл кварца в воду, в которой происходят сжатия и разрежения, то он будет тоже сжиматься и растягиваться вследствие сжатия и разрежения окружающей его воды. На его гранях в это время будут появляться и исчезать электрические заряды, которые легко обнаружить.
Вот когда пригодился забытый эффект. Опыты Ланжевена, проведенные в 1916 году, оказались успешными. Он быстро сконструировал прибор, который улавливал шум подводных лодок, и подводные лодки уже не могли считать себя неуловимыми. А Ланжевен экспериментировал дальше. Он попробовал подействовать на пластинки кварца током высокой частоты – попеременно заряжать грани кристалла кварца электричеством от генератора переменного тока. И кристалл покорно повторял изменения тока – он начал колебаться в такт с изменением знаков заряда. Так пьезоэлектрический эффект и был вывернут наизнанку, то есть обращен для получения колебаний высокой частоты. Мы скоро узнаем, для чего это было сделано. Быструю перемену электрических зарядов на гранях кристалла в то время уже умели производить при помощи специальных электрических генераторов. Число колебаний в секунду довели до десятков и сотен тысяч.
Так, используя пьезоэлектрики, научились получать ультразвуки.
Другой способ получения ультразвука был открыт и исследован тоже не совсем обычно. Немецкий физик Джоуль в 1847 году при изучении магнитных свойств металлов обнаружил странное явление. Он брал стержень из хорошо намагничивающихся веществ, таких, как железо, кобальт, никель, наматывал на него провод, а затем пропускал переменный ток. И под действием переменного магнитного поля, которое в этом случае возникало, стержень изменял свои размеры и форму. Он то уменьшался, то увеличивался в такт с изменением направления тока. Колеблющийся стержень способен вызвать колебания окружающего воздуха, то есть породить звуки. Но если число перемен направления тока в секунду сделать очень большим и, следовательно, заставить стержень совершать такое же число колебаний, то можно получить колебания очень высокой частоты – звуки, не слышимые ухом.
Изменение размеров стержня при перемагничивании получило название магнитострикции, от латинского слова «стрикстус», что означает сжатие. Это явление также обратимо. При быстром сжатии или растяжении такого стержня в проволоке, которой он обмотан, потечет переменный электрический ток.
Магнитострикция значительно большее время находилась в забвении, хотя и была открыта гораздо раньше, чем пьезоэлектричество. Мысль об использовании этого явления для получения колебаний высокой частоты возникла совсем недавно, уже после того, как были созданы пьезоэлектрические излучатели и приемники ультразвука.
А между тем магнитострикционные приборы прочны и удобны в обращении. Поэтому сейчас они становятся все распространеннее.
Мы не будем касаться конструкции различных приборов, в которых используются явления пьезоэлектричества и магнитострикции для получения ультразвука.
Лучше поговорим теперь о том, зачем нам собственно понадобились неслышимые ультразвуки, чем они помогают нам жить, как используются.
Это целая глава в современной технике, глава новая, которая написана совсем недавно. К ней все время дописываются целые разделы. И многое из того, о чем мы здесь расскажем, вас, наверное, удивит, так как вы узнаете, что давно пользуетесь услугами ультразвука, что он ваш старый, хороший друг.