355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Коробко-Стефанов » Звук за работой » Текст книги (страница 2)
Звук за работой
  • Текст добавлен: 24 сентября 2016, 03:59

Текст книги "Звук за работой"


Автор книги: Александр Коробко-Стефанов



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

КАК ЗВУЧАЛ БЫ ЦАРЬ-КОЛОКОЛ

Обыкновенный маятник

Мир звуков на Земле существует лишь благодаря атмосфере. В то же время Земля совершает свое движение в безмолвном океане Вселенной.

Шум ветра и дождя, грохот грома и бушующих вод, шелест листьев и звонкое журчанье ручьев – звуки стихии. Они существовали на Земле и безраздельно царили в течение долгого времени, прежде чем появились живые существа. Появление человека не только расширило мир звуков природы, но украсило его речью, пением и музыкой.

Человек заставил тела звучать по своему усмотрению. Хорошо высушенные и натянутые шкуры стали барабанами, а жилы животных – струнами музыкальных инструментов.

Ни один оркестр не обходится без барабана, который является для него своеобразными часами. Звуки барабана раздаются через равные промежутки времени, удерживая музыкантов от излишне торопливого звучания инструментов оркестра.

Трубчатые стебли растений и просверленные рога животных тоже звучат, если через них продувать воздух. По всей вероятности, так были устроены первые духовые инструменты. Охотничьи рожки и свистки сохранились до сих пор, и звуки их по-прежнему собирают собак, увлекшихся преследованием зверя на охоте.

Звучание натянутых шкур и жил происходит тогда, когда их заставляют вздрагивать – совершать колебания. В окружающей среде при этом возникают упругие волны.

Давно замечено, что звучащие тела совершают колебания, но не все колеблющиеся тела издают звук.

Звук, в отличие от света, не распространяется в пространстве, лишенном воздуха.

При каких же условиях возникает звук и какая связь между колеблющимся телом и окружающим его воздухом?

Прежде всего нужно выяснить, как происходят колебания тел и какие законы ими управляют. Это удобно сделать на примере колебаний маленького тела, подвешенного на нитке, так называемого маятника, который только совершает колебания, – никаких звуков он не издает.

Когда маятник висит спокойно, он находится в положении равновесия. Это равновесие является устойчивым, потому что стоит только маятник чуть-чуть отклонить, как сила тяжести возвращает его в прежнее положение. Но он при этом успокаивается не сразу. Долгое время движется тело, подвешенное на нитке, в одну и другую сторону от своего положения равновесия. При этом, как заметил впервые Галилео Галилей, время одного полного колебания, когда маятник с одной стороны от положения равновесия перейдет на другую, а затем вновь вернется туда, откуда он начал движение, оказывается почти одинаковым и очень медленно убывает.

Промежуток времени, в течение которого совершается одно полное колебание, называется периодом. Когда была установлена единица времени – секунда, то величину периода стало возможным выражать числом секунд или ее долей. Число полных колебаний, которые совершает маятник в секунду, называют частотой колебаний. Если период колебаний составляет долю секунды, например две десятых, то в одну секунду маятник совершит пять полных колебаний – частота колебаний равна пяти. Если же в одну секунду совершается только одно полное колебание, то есть период равен одной секунде, то частота колебаний равна единице. Эту единицу называют «герц», в память о физике Генрихе Герце.

При своем движении около положения равновесия маятник отклоняется то в одну, то в другую сторону. Удалившись на наибольшее расстояние, он на мгновение останавливается, а после этой остановки начинает двигаться в обратном направлении, к положению равновесия, и, проходя его, отклоняется на такое же расстояние в другую сторону.

Это расстояние называют амплитудой колебания.

Колебания, которые совершает маятник, могут быть свободными и вынужденными. Свободными они называются тогда, если маятник, после того как он выведен из положения равновесия, предоставлен самому себе. При этом период его колебаний устанавливается в зависимости от его длины, а амплитуда – в зависимости от величины первоначального отклонения. Если же колебание маятника происходит при периодическом постороннем воздействии силы, то колебания называют вынужденными.

Период вынужденных колебаний определяется периодом постороннего воздействия.

Но любопытно то, что амплитуда колебаний маятника при этом может быть различной.

От чего же она зависит?

Вынужденные колебания совершаются под действием внешней периодической силы. Частота их определяется частотой ее действия. Теоретические исследования вынужденных колебаний позволяют установить, что амплитуда вынужденных колебаний будет тем больше, чем больше величина этой силы. Но дело, оказывается, значительно сложнее, чем это может показаться на первый взгляд.

Вот, например, хорошо известные вам качели.

После того как вы удобно уселись на скамейку, привязанную за оба конца веревками, кто-либо из ваших друзей отклоняет качели от положения равновесия.

После этого качели совершают качание около положения равновесия, но каждый раз отклонения будут все меньше и меньше, и в конце концов качели остановятся. Они останавливаются потому, что веревки в месте их подвеса трут о перекладину, тормозя движение. Этому помогает воздух, который вы рассекаете при движении. Такое качание качелей называют свободным, а частоту качаний собственной частотой.

Для того чтобы предотвратить остановку, ваш товарищ должен каждый раз в момент наибольшего отклонения подтолкнуть качели.

Качание качелей в этом случае называют вынужденным, ибо оно происходит под действием внешней силы – мускульного усилия вашего товарища. Если частота толчков будет совпадать с собственной частотой качания качелей, то наступит резкое увеличение амплитуды. Качели при этом могут даже разрушиться – оборваться.

Качели раскачиваются около положения равновесия

Амплитуда будет тем больше, чем меньше частота вынужденных колебаний отличается от частоты собственных.

Совпадение этих частот называется резонансом.

Иногда это явление приводит к более серьезным последствиям, чем разрушение качелей.

Так, например, если строй солдат проходит через мост в ногу, то он ударяет по нему с определенной частотой, заставляя мост совершать вынужденные колебания.

Однажды частота ударов солдатских сапог случайно совпала с собственной частотой колебаний моста, то есть с частотой колебаний, которые он мог бы совершать, если бы его вывели из положения равновесия и предоставили затем самому себе. Из-за совпадения частот наступило явление резонанса. Мост настолько раскачался, что в конце концов рухнул. Это наблюдалось в разные времена во многих странах – в Испании, Франции и России. После этих происшествий по мосту в строю запрещают ходить в ногу.

Солдаты шли в ногу…

Звуковые волны

Посмотрим теперь, что же происходит с окружающей средой, в которой какое-либо тело совершает колебание.

Прежде всего следует вспомнить, что воздух состоит из молекул различных газов, которые все время находятся в движении, то сближаясь между собой, то удаляясь друг от друга. Между двумя столкновениями молекула проходит очень маленькое расстояние и после каждого изменяет скорость и направление движения. Благодаря случайным столкновениям молекулы как бы топчутся на одном месте. При этом, когда они почти совсем приблизятся друг к другу, силы взаимодействия отталкивают одну молекулу от другой, но, разлетевшись в разные стороны, они снова притягиваются друг к другу. Это происходит потому, что силы притяжения больше сил отталкивания только на большом расстоянии. Благодаря этим силам притяжения и отталкивания молекулы воздуха все время движутся, а весь воздух в целом обладает упругостью.

Если теперь мы заставим какое-либо тело совершать колебания в воздухе и будем наблюдать, что с ним происходит, то обнаружим, что, когда тело уходит из положения равновесия, оно, с одной стороны, сжимает прилежащий к нему слой воздуха, а с другой стороны, его разрежает. Сжимая воздух, мы увеличиваем его упругость, и, следовательно, увеличивается давление воздуха.

Таким образом, при движении колеблющегося тела давление воздуха становится чуть-чуть больше атмосферного с той стороны, в которую тело движется, и настолько же меньше атмосферного – с другой.

Увеличенное давление воздуха в сжатом слое передается прилегающим к нему слоям одинаково во все стороны. Ибо, как обнаружил Паскаль, давление в жидкостях и газах благодаря их упругости передается во все стороны одинаково.

Это и приводит к тому, что увеличение давления передается в воздухе от слоя к слою, распространяясь во все стороны от того места, где оно впервые появилось.

Причиной, породившей увеличение давления, является колеблющееся тело. Достигнув наибольшего отклонения, тело возвращается к положению равновесия. При этом сжатие воздуха сменяется разрежением. Затем, через промежуток времени, равный периоду колебаний, вновь наступает сжатие. Чередующееся сжатие и разрежение воздуха передается от слоя к слою, распространяясь во все стороны. И так происходит до тех пор, пока не прекратятся колебания тела.

Таким образом, при колебаниях тела в прилегающем к нему слое воздуха благодаря сжатиям и разрежениям происходят колебания атмосферного давления. Давление, избыточное над атмосферным, называют акустическим. Период колебания величины давления определяется периодом колеблющегося тела.

Распространение состояния сжатия и разрежений в воздухе от слоя к слою называют упругой волной. Различные тела могут совершать колебания с различными частотами, порождая в воздухе упругие волны различных частот.

Расстояние между двумя близкими слоями воздуха, где одновременно наступает сжатие или разрежение воздуха, называют длиной волны.

Длина звуковой волны зависит от скорости распространения звука. А скорость звука определяется только физическими свойствами среды.

Так устанавливаются вынужденные колебания

Если упругая волна достигает нашего уха, то колебание величины атмосферного давления прилегающего к уху воздуха может быть им воспринято. Но это возможно только в том случае, когда частота колебаний этих изменений не меньше 16 герц и не больше 16 тысяч герц. Упругие волны, частота которых находится в этих пределах, называют звуками. Их еще можно подразделить на два вида: музыкальные звуки и шумы.

Звук называют музыкальным, если изменение величины атмосферного давления, которое воспринимает ухо, повторяется регулярно, через равные промежутки времени. Но он перестает быть музыкальным и становится шумом в тех случаях, когда изменение давления происходит беспорядочно.

Скорость звука

О том, что воздух может быть плотнее и реже, было известно задолго до Аристотеля. Но Аристотель, видимо, первый правильно объяснил сущность распространения звуков, полагая, что при этом в воздухе происходит периодическое сжатие и разрежение. Таким образом, природа звука была правильно понята очень давно. Но как протекает процесс сжатия и разрежения, вследствие чего увеличивается и уменьшается атмосферное давление в данном месте, было выяснено сравнительно недавно.

Первые опыты измерения скорости распространения звука в воздухе произвел в 1630 году французский физик Марен Мерсенн по совету одного из крупнейших философов того времени – Френсиса Бекона.

Измерив расстояние между двумя пунктами, Мерсенн определял время от момента, когда появлялась вспышка при выстреле из мушкета, до того момента, когда слышался звук.

Разделив измеренное расстояние на число секунд от момента появления вспышки до прихода звука, Мерсенн нашел скорость распространения звука в воздухе.

Но эти измерения были не очень точными. Тогда в 1738 году Парижская Академия наук решила предпринять точнейшие измерения скорости распространения звука в воздухе.

Грандиозные приготовления к опытам ученых Парижской Академии наук завершились в марте того же года. Вечером в Париже на Монмартре началась стрельба. Она продолжалась в течение часа. Стреляли попеременно из двух пушек. На возвышенности находились наблюдатели, вооруженные самыми лучшими хронометрами, по которым можно было определять промежутки, составляющие доли секунды.

Наблюдение за вспышкой в момент выстрела производили в подзорную трубу. Руководили измерениями доктора наук Лакайль и Кассини.

Опыты были проведены. Скорость звука подсчитана. Оказалось, что она составляет 337 метров в секунду.

Теперь посмотрим, как же ведут себя молекулы воздуха, в котором распространяется звук.

Вот в воздушном слое наступает сжатие. Расстояние между молекулами уменьшается. Это происходит до тех пор, пока силы отталкивания не окажутся равными силам, сближающим молекулы. В этот момент сжатие прекращается. И если бы равенство внешних сил и сил отталкивания сохранилось, то сохранилось бы среднее значение расстояния между молекулами. Но ведь они все время находятся в тепловом движении. После сжатия снова начинается разрежение, и, следовательно, среднее расстояние между молекулами начинает увеличиваться, так как действуют силы, которые отталкивают молекулы друг от друга. Увеличение расстояния происходит до тех пор, пока не прекратится разрежение. За ним вновь следует сжатие.

Молекулы, таким образом, кроме своего теплового движения, приобретают колебательное движение. Следовательно, к скорости теплового движения молекул прибавляется скорость движения колебательного. Колебательную скорость молекул называют акустической скоростью. Она, естественно, зависит от частоты колебаний и от величины взаимного смещения молекул, которое происходит при сжатии и разрежении.

Колебательное движение молекул воздуха происходит в направлении распространения упругой волны, вдоль волны; поэтому упругую волну в воздухе называют продольной.

Зачем понадобился рупор

Упругие волны несут с собой энергию, которую отдает источник в окружающую среду.

Впервые это выяснил русский ученый Николай Алексеевич Умов. Как известно из великого закона природы, сформулированного Ломоносовым, энергия не исчезает и не появляется, а переходит из одного вида в другой.

При механических движениях она переходит из кинетической в потенциальную и наоборот. Полная энергия колеблющегося тела, которая складывается из кинетической и потенциальной, остается в процессе колебаний постоянной по величине. Это, конечно, только теоретически. На практике все движения сопровождаются трением, и часть энергии расходуется на его преодоление.

При движении ножки камертона в одну сторону происходит сжатие воздуха, вследствие чего давление его увеличивается. Частички воздуха при этом приобретают дополнительную скорость, их кинетическая энергия возрастает.

Кроме этого, при движении частичек одного слоя они уходят от частичек другого слоя, лежащего за ними, и между слоями сжатия образуется разреженное пространство. Потенциальная энергия частичек определяется при этом их взаимным положением относительно друг друга. По мере удаления одного слоя от другого она возрастает.

Таким образом, мы обнаруживаем новое качество при распространении процесса колебаний многих частичек, между которыми имеются силы взаимного действия. Это новое качество состоит в том, что их кинетическая и потенциальная энергия возрастает одновременно.

До каких же пор происходит этот процесс возрастания кинетической и потенциальной энергии частичек?

Энергия растет до тех пор, пока в слое, где происходит сжатие, частички не сблизятся на расстояние, при котором силы отталкивания между ними не окажутся равными силам притяжения к частичкам соседнего слоя.

Кинетическая и потенциальная энергия частичек при этом имеет наибольшее значение. После этого процесс начинается в обратном направлении.

Особенно важно то, что если в данном месте кинетическая и потенциальная энергия частичек одновременно убывает, то в этот же самый момент рядом, в близлежащем слое, по направлению распространения волны, кинетическая и потенциальная энергия частичек возрастает.

Энергия частичек, таким образом, передается по направлению распространения волны от слоя к слою.

Этот процесс перетекания энергии от источника в окружающую его среду периодически повторяется и длится в течение всего времени колебания тела.

Поток энергии и служит мерой интенсивности звука, или, как говорят, мерой «силы» звука.

При этом оказалось, что «сила» звука пропорциональна квадрату звукового давления, то есть квадрату величины избыточного над атмосферным давления, которое образуется вследствие сжатия слоя.

Виды рупоров

Величина потока энергии от голоса человека очень мала. Представим себе, что одновременно говорят очень много людей, ну, скажем, сто тысяч человек. Все равно потока энергии звуковых волн их голосов, если ее превратить в электрическую, еле-еле хватило бы на то, чтобы зажечь лампочку карманного электрического фонаря.

От источника звук распространяется во все стороны, и величина потока энергии убывает с расстоянием, так как отдаваемая излучателем энергия в каждую секунду проходит через поверхность шара все увеличивающегося радиуса.

Но если поток энергии становится меньше, то уменьшается и «сила» звука. Поэтому звуки на больших расстояниях едва слышны.

Это обстоятельство заставило задуматься над тем, чтобы создать устройства, которые направляли бы поток звуковой энергии не во все стороны, а по возможности узким пучком.

Для этой цели можно использовать ладони наших рук.

Если, например, мы хотим кого-либо окликнуть, то подносим ладони ко рту и кричим. В дальнейшем ладони заменили трубой, которую называют рупором.

Рупор создает направленную звуковую волну, и поток-энергии становится более мощным.

Рупор, как описывают историки походов греческого полководца Александра Македонского, помогал ему командовать войсками во время сражений.

В наше время в радиовещании форма рупоров для громкоговорителей выбирается с таким расчетом, чтобы создавать звук необходимой силы по выбранному заранее направлению.

Точным расчетом при выборе формы занимается техническая акустика, и математическое описание рупора является не такой уж простой задачей.

Теперь попробуем уяснить, какие величины, характеризующие звук, определяют его восприятие, что мы, собственно говоря, слышим.

Понятие тона как характеристики звука ввел Галилео Галилей. Частота звуковых колебаний определяет тон звука. Если она мала – тон звука низкий. По мере увеличения частоты тон повышается.

Если бы звучащие тела создавали колебания только одной частоты, мы не смогли бы различать звучание различных музыкальных инструментов и голоса наших знакомых. Однако мы прекрасно отличаем их друг от друга даже в том случае, когда они издают один тон. Дело в том, что наряду с основным тоном звучащее тело всегда создает более высокие верхние тона, или, как их называют, обертоны. Разное количество обертонов, подобно световым оттенкам основного цвета, окрашивает звук. Звучание основного тона совместно с верхними тонами и создает тембр звука – его окраску. Это и позволяет нам различать музыкальные инструменты и узнавать голоса наших знакомых. Их тембры всегда различны.

Различие тембра обусловлено числом верхних тонов, которые сопровождают звучание основного тона. Чем больше верхних тонов в звуке, тем приятнее его тембр.

Голоса некоторых людей грубые, или, как говорят, имеют «металлический» оттенок, а у других «мягкие», «бархатистые». Чем определяется такая разница?

Она обусловлена числом высоких и низких тонов.

Если высокие тона преобладают над низкими, то говорят, что в голосе слышится «звучание металла».

Если высоких тонов мало, голос становится мягким и вкрадчивым. Кроме того, восприятие голоса зависит и от силы звука, от составляющих его тонов.

Другой характеристикой звука является громкость. Сложность этого понятия состоит в том, что громкость связана с психическим восприятием звука и чувствительностью уха. Ухо неодинаково чувствительно к звукам различных частот.

Колебания одной и той же частоты, распространяясь в воздухе, могут создавать различное избыточное давление. Если оно незначительно, то звук слабый, еле слышный. При значительном избыточном давлении звук громкий. Наше ухо, о котором мы в дальнейшем вам расскажем, – удивительный механизм. Оно способно воспринять даже такое малое изменение давления, как сотая часть миллионной доли грамма на квадратный сантиметр. Но это же ухо способно воспринять изменение давления в сто миллионов раз большее.

Самое незначительное изменение давления, которое воспринимает ухо, называют порогом слышимости. Большие изменения давления, которые еще воспринимаются ухом без боли, определяют порог болевого восприятия. Эти величины различны для слышимых частот колебаний. Так, например, давление на пороге слышимости для малых частот выше, чем для больших. Это значит, что восприятие еле слышимых звуков малых частот происходит при больших звуковых давлениях.

Опираясь на это, можно уточнить понятие тембра. Дело в том, что при звучании тела звуковое давление низкого тона всегда больше, чем давление высоких тонов, сопровождающих его. Тембр звука определяется не только числом высоких тонов, но и соотношением звуковых давлений между ними. Благодаря этому обстоятельству ухо отличает один тембр от другого, так как оно способно сразу разобраться во всей совокупности тонов сложного звука. Эта особенность уха называется его способностью анализировать звук.

Простые тона являются редкостью и в музыке не употребляются. Даже камертон не всегда дает простой тон. Кроме этого, следует сказать, что очень сильный звук простого тона вызывает ощущение сложного, так как создает верхние тона в самом ухе.

Ну, а теперь мы можем перейти к рассказу о том, как же устроен поистине замечательный механизм, называемый человеческим ухом.


    Ваша оценка произведения:

Популярные книги за неделю