412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Александр Харс » Я познаю мир. Биология » Текст книги (страница 9)
Я познаю мир. Биология
  • Текст добавлен: 18 июля 2025, 00:23

Текст книги "Я познаю мир. Биология"


Автор книги: Александр Харс



сообщить о нарушении

Текущая страница: 9 (всего у книги 12 страниц)

Глаз способен хорошо видеть, только когда его размеры достигнут определенной величины. Поэтому можно заранее сказать, что крохотные глаза рыбьих мальков, головастиков, водных лягушек–хенопсусов видят плохо. По мере роста молодых животных у них увеличиваются и глаза, но особенно энергично они растут у некоторых рыб. В результате у взрослых рыб глаза, в сравнении с размерами их тела, кажутся гигантскими. Представьте – у маленькой рыбки, светящегося анчоуса, они по размеру достигают половины головы!

Если сравнить размеры глаз с величиной самого животного, то окажется, что самыми крупными глазами обладают птицы, однако они не производят впечатления крупноглазых существ, так как большая часть глазного яблока у них скрыта внутри глазницы, а в разрезе век видна лишь его малая часть. Птицы вылупляются из яиц уже крупноглазыми, но их глаза могут расти и потом и даже менять свою форму. По остроте зрения птичьи глаза не знают себе равных. У одних они играют роль бинокля, другим служат в качестве микроскопа.

image l:href="#image156.png"

Череп птицы

Хищные птицы должны быть дальнозоркими. Канюк, кружащийся над лугом, высмотрит в траве крохотного мышонка. Кобчик чуть ли не за километр обнаружит в воздухе стрекозу. Гриф–стервятник, высматривающий падаль, парит над саванной на высоте от двух до четырех километров. Чтобы глаз мог видеть вдаль, он из шаровидного превращается в цилиндрический. Глаза, работающие как микроскопы, наоборот, из шарообразных становятся сплющенными. Без этого синицы и славки не могли бы собирать с коры и листьев крохотных насекомых и тем более их яички.

У молодых птенцов глаза расположены по бокам головы. Там они и остаются у большинства птиц. Поэтому птицы хорошо замечают все, что делается вокруг, но любой предмет видят только одним глазом. Лишь узкая полоска пространства впереди головы видна одновременно обоими глазами, но видна плохо, так как изображение в этом случае попадает на боковую часть сетчатки. Тот, кто наблюдал за поведением птиц в неволе, вероятно, замечал: если попугаю или другой птице хочется рассмотреть что–то получше, они смотрят одним глазом, смешно поворачивая голову набок.

image l:href="#image157.png"

Славка–черноголовка

У птиц, ищущих корм на ощупь, – колпиц, караваек, вальдшнепов – глаза сдвинуты на затылок, и они могут видеть двумя глазами даже то, что находится сзади. У сов, наоборот, глаза сдвигаются вперед, и взрослые птицы смотрят на мир сразу двумя глазами. У них тоже весьма зоркие глаза, ведь охотятся эти птицы в сумерках. Поле зрения глаз совы, – то есть то, что она может видеть, не поворачивая головы, – очень узко, а глаза у них при этом намертво закреплены в глазницах. Это обстоятельство послужило поводом считать, что совы днем при солнце ничего не видят. На самом деле они отлично видят, но только то, что находится прямо перед ними. А неподвижность глаз компенсирует шея, позволяющая поворачивать голову на 180°.

Удивительные превращения глаз происходят у небольших глубоководных рыб батилихнопсов. У взрослых рыб они становятся очень большими, приобретают цилиндрическую форму, перебираются на лоб и направлены вперед и вверх. Кроме того, сбоку из каждого глаза вырастает второй, поменьше, со зрачком, направленным вниз. Так что рыба видит и то, что вверху, и то, что внизу.

Есть глубоководные рыбы, у которых с каждой стороны головы тоже образуются по два сросшихся между собой глаза, только зрачок дополнительного открывается не наружу, а в полость главного. Такой глаз улавливает лучи, идущие сбоку и не попадающие на светочувствительные клетки главного. Такой «двойной глаз» имеет более широкое поле зрения.

image l:href="#image158.png"

Колпица

Электрические рыбы

Чтобы вы подумали, увидев маленькую рыбку, висящую у самой поверхности воды головой вниз, как будто ее кто–то подвесил за хвостик? И мало того, что она висит, она еще потихоньку плывет брюхом вперед, не меняя при этом своей экстравагантной позы.

А что можно подумать о рыбке, которая плывет на боку у самого дна, да к тому же хвостом вперед? Странные рыбки! С ними встретились наши ученые, побывавшие в Южной Америке на реке Укаяли, крупном притоке Амазонки. Не только поведение, но и название этих рыб необычное. Зоологи называют их «электрическими рыбами».

Зоологи делят электрических рыб на две группы. Одни из них вырабатывают такой сильный ток, что с его помощью охотятся на мирных рыбешек, лягушек и водяных змей. Разряды электрического угря такой силы, что могут сбить с ног не только человека, но и лошадь. Это очень интересные существа, но сейчас речь пойдет о рыбах второй группы, о слабоэлектрических рыбешках. Они генерируют электрические разряды небольшой силы и, взяв их в руки, человек не испытает неприятных ощущений.

image l:href="#image159.png"

Электрический угорь

Между обеими группами электрических рыб большая разница. Охотники, владеющие электрическим оружием, – это крупные рыбы или рыбы средней величины. Свое оружие они используют и для обороны, если им кто–нибудь угрожает, и для охоты, когда вблизи появляется подходящая «дичь» или хотя бы возникает подозрение, что рядом находятся существа, которых можно съесть.

Другое дело – слабоэлектрические рыбы. Среди них много совсем маленьких рыбешек, а свои электрические разряды они генерируют, если и не непрерывно, то во всяком случае длинными сериями в течение десятков минут, причем производят от 50 до 1000, а иногда и больше разрядов в секунду. Величина этих разрядов настолько мала, что обнаружить их удается лишь чувствительными электроизмерительными приборами. Невольно возникает вопрос: зачем эти рыбы обзавелись электрическими органами, для чего прилежно генерируют электричество и способны ли сами ощущать слабые электрические разряды?

Вода природных водоемов, рек, озер, прудов, болот и особенно соленая вода морей, хорошо проводит электричество, а в живом организме, в каждой его клеточке, постоянно осуществляются электрические реакции. Они возникают и в неживой неорганической природе. Если в каком–то участке водоема изменяется температура воды, ее соленость, появляются примеси других веществ или скопления живых организмов, всё это будет сопровождаться возникновением электрических реакций. В результате различные участки водоема будут отличаться по величине своего электрического заряда и между ними, как между полюсами батарейки, потечет ток. Величина этого тока, конечно, мизерна, но в результате в водоеме создаются постоянно изменяющиеся электрические поля.

Тела живых организмов прекрасно проводят электричество. Живя в постоянно меняющемся электрическом мире водоемов, участвуя в создании, изменении или искажении существующих электрических полей, живые организмы не могли «пройти» мимо таких явлений окружающей их среды, не отреагировать на эти поля. Вот почему у многих водяных организмов появились электрорецепторы – специальные органы, способные с феноменальной чувствительностью улавливать малейшие изменения электрической обстановки в водоеме и анализировать ее, с тем чтобы установить причину, вызывающую эти изменения.

Электрорецепторы

Специфические чувствительные приборчики – электрорецепторы обнаружены лишь у водных позвоночных: миксин и миног, акул и скатов, костистых рыб. Они входят в число рецепторных органов боковой линии или просто разбросаны в коже разных участков тела.

image l:href="#image160.png"

Миксина (слева) и минога

Наиболее часто встречаются электрорецепторы двух типов. Одни из них названы ампулярными, от слова ампула. Они представляют собой канал, расположенный в толще кожи, один конец которого крохотной порой открывается наружу, а в другом, ампулообразно расширенном конце, находятся электрочувствительные клетки. Они сидят в толще стенок ампулы, выставив в ее просвет одну ресничку или целую щетку их. Канал может быть очень коротким, длиной всего несколько десятков микрон, или более длинным – до 20 мм, а его ширина редко достигает 1,5 мм.

Канал заполнен желеобразной жидкостью, хорошо проводящей электричество, а стенки канала – хорошие изоляторы. Благодаря такому устройству электрический ток, возникающий в воде, без серьезных потерь добирается до воспринимающих ворсинок, а электрические токи самих рыб добраться до них не могут. Стенки канала надежно изолируют рецепторы от электрических реакций, возникающих в собственном теле рыбы.

Другой тип – бугорковые электрорецепторы. Они названы так потому, что в виде крохотных бугорков выступают на поверхности кожи. Электрочувствительные клетки находятся во внутренней полости бугорка. Она никак не соединена с наружной средой, однако оболочки клеток верхней стенки бугорка хорошо проводят электричество, но от разрядов, возникающих в собственных электрических органах, рецепторные клетки также надежно изолированы.

По своей чувствительности бугорковые рецепторы серьезно отстают от ампулярных, но они предназначены для контроля более сильных полей, создаваемых самой рыбой. Ампулярные же рецепторы используются для обнаружения электрических полей, создаваемых работающими мышцами других существ. Вот почему бугорковые рецепторы бывают только у электрических рыб, а ампулярными нередко оснащены и другие существа, у которых нет собственных электрических органов.

Чувствительности электрорецепторов рыб могут позавидовать созданные людьми электроизмерительные приборы. Некоторые рыбы ощущают изменение в напряженности электрического поля, если на протяжении 1 см оно уменьшается или возрастает всего на 0,0000001—0,000001 вольта. Если поле, производимое слабенькой батарейкой от карманного фонарика, «размазать» по 200–километровой дистанции, изменение напряженности на 1 см длины все равно будет в несколько раз больше.

Электрорецепторные клетки рыб беспрерывно шлют в их мозг нервные импульсы с постоянной скоростью 10–30 импульсов в секунду. Если напряженность электрического поля вокруг рыбы меняется, изменяется и реакция рецепторов. Электрический ток, текущий в направлении от электрорецепторов в сторону воды, у акул и скатов, живущих в морской соленой воде, вызывает увеличение частоты импульсов, а ток, текущий в направлении электрорецепторов, замедляет их генерацию.

У пресноводных рыб все наоборот: реакцию их рецепторов усиливает ток, текущий в направлении электрорецепторов, а ток противоположного направления уменьшает частоту электрических разрядов. Мозг рыб анализирует и сопоставляет информацию, поступающую от рецепторов разных участков тела, и на основании проведенного анализа делает выводы о причинах изменения электрической обстановки.

Ножетелка и ее электролокатор

Небольшие рыбешки чёрные ножетелки длиной 10–15 см ведут ночной образ жизни. Днем они прячутся в убежищах: в дуплах затопленных деревьев, между их корней или в нишах под берегом среди обнажившихся корней прибрежных кустов. Они не просто прячутся там – не отдыхают, не спят, а ведут себя весьма активно. Забравшись в убежище на рассвете, они на протяжении часа беспрерывно раскачиваются из стороны в сторону. Затем на 20–30 минут все–таки делают перерыв на отдых, ложатся на бок и замирают. Отдохнув, а, может быть, выспавшись, они начинают медленно вращаться вокруг своей продольной оси, тщательно «ощупывая» кончиком рыла стенки своего укрытия и при этом беспрерывно генерируют электрические разряды. Убедившись, что всё в порядке, ножетелка, приняв нормальное положение, начинает раскачиваться и так ведет себя все светлое время суток.

С наступлением темноты рыбешки покидают свои убежища и отправляются на поиски пищи. При этом ножетелка сначала плывет на боку у самого дна, двигаясь хвостом вперед. Обнаружив корм, она (боюсь, мне никто не поверит!) обследует его хвостом. Затем проплывает 2–3 раза около своей добычи и, убедившись, наконец, что обнаружен съедобный объект, хватает его и уплывает в укрытие, чтобы там отправить добычу в желудок.

Обследовав всё дно вблизи от укрытия, рыбка переключается на обследование поверхности воды, только теперь подвешивается вниз головой и, почти касаясь хвостом поверхности, энергично генерирует электрические разряды. Во время коротких одно–двухминутных вылазок на охоту, рыбка двигается с большой скоростью. Она торопится (ведь так легко попасться на глаза хищнику), но, добравшись до поверхности и приступив к охоте, движется медленно грудью вперед. В зависимости от обилия корма вечерняя охота продолжается от получаса до двух часов и столько же длится в предрассветное время.

Для чего рыбе электрический орган и зачем она беспрерывно генерирует электрические разряды? Оказывается, для электроло* кации, чтобы с ее помощью обнаруживать добычу и врагов. Работа электрического органа создает вокруг ножетелки электрическое поле. Любой объект, оказавшийся в пределах этого поля и отличающийся своей электропроводностью от окружающей воды, искажает его. Множество электрорецепторов, находящихся в коже рыбы, улавливают это искажение и шлют о нем сигналы в мозг.

Для такой малюсенькой рыбешки, как ножетелка, дальность действия локатора достаточно велика. В период бодрствования ее хвостик на 1–3 см высовывается наружу и ведет караульную службу. Если на расстоянии 8–10 см от ее дома окажется червяк, рыбий малек или головастик, ножетелка мгновенно замечает, что появилась «дичь», и выскакивает из укрытия хвостом вперед. Затем, стремительно развернувшись, хватает добычу и скрывается в убежище, чтобы позавтракать.

image l:href="#image161.png"

Гимнот (Gymnotus)

Примерно также ведут себя и другие слабоэлектрические рыбы Америки. Гимноты, живущие на мелководье, пользуются убежищами в корнях и полых стеблях тростника. Червяка, оказавшегося в 5 см от укрытия, они замечают мгновенно, выскакивают хвостом вперед и тотчас хватают добычу. Кусочек пластмассовой пластинки, оказавшийся на таком же расстоянии, рыбка обнаружила через 2–3 секунды. Подплыв к пластинке, рыбка 1–2 минуты изучала ее при помощи хвоста, но до нее, естественно, не дотрагивалась, держа хвост в 1–2 см от исследуемого предмета.

Металлические пластинки способны привести рыбок в неистовство. Дело в том, что характер искажения электромагнитного поля металлом, прекрасно проводящим электричество, напоминает характер его искажения живыми объектами, однако по степени выраженности серьезно превосходят любое живое существо. Это, конечно, сбивает рыб с толку, вызывая недоумение. Ну как же тут не всполошиться?! Гимноты по 2–3 минуты то хвостом, то рылом обследовали пластинку и только после этого скрывались в убежище.

Встретившись со столь непонятным явлением, успокоиться не так–то просто. Рыбы обычно предпринимали от 7 до 12 попыток разобраться в загадочном предмете. В реках, еще не замусоренных людьми, рыбы пока не познакомились с металлами и даже не подозревают о существовании предметов, способных так сильно искажать электромагнитное поле. В конце концов гимноты атакуют непонятный предмет. Налетая на пластинку, рыбешка рылом подталкивает ее до тех пор, пока ей не удастся оттащить ее в сторону. Но даже после этого гимнотам требовалось еще 15–20 минут, чтобы окончательно успокоиться.

Средство общения

Электрические органы слабоэлектрических рыб имеют еще одно важное предназначение: они используются для общения. Электрический язык годится для любого диалога. С помощью электросигналов рыбы способны передавать друг другу сложную информацию. Слаженные действия большой стайки рыбьей мелюзги можно подсмотреть в любом водоеме. Сигнал на одновременный поворот всей стаи, видимо, дается с помощью электрических команд.

Электрические разряды используются рыбами для широковещательных объявлений своим соплеменникам о том, что участок занят и хозяин будет защищать свои владения. Ученые убедились в этом, записав разряды, производимые рассерженным нильским слоником, а затем «проиграли» ему эту запись. Эффект оказался потрясающим. Рыбка просто рассвирепела и с остервенением набросилась на источник электрических разрядов. Электрическими разрядами рыбы оповещают соседей о своем социальном статусе. Чем выше у гимнота частота электрических разрядов, тем большим уважением он пользуется среди своих соплеменников.

Электрические разряды генерируют не только те рыбы, у которых имеются для этого специальные электрические органы. Слабые высокочастотные разряды возникают у любых существ, совершающих быстрые энергичные движения: броски, развороты, открывание и захлопывание рта. Они возникают в работающих мышцах.

Мышцы хищных рыб, вроде щук или сомов, генерируют электроразряды длинными сериями, а у рыб, питающихся мелкими донными организмами и илом, при движении возникают короткие, серии или одиночные разряды. По электрическим разрядам этих рыб можно догадаться, опасное ли существо появилось в зоне восприятия электрорецепторов или нет.

image l:href="#image162.png"

Обыкновенный сом

Когда рыбы плывут дружной компанией, согласовывая свои движения, разряды их мышц суммируются и вокруг стаи формируется общее электрическое поле.

Автопилот

Электрорецепторы слабоэлектрических рыб могут заменить им компас. Зоологи давно задумывались над тем, как находят дорогу птицы, морские черепахи и рыбы, ежегодно совершающие дальние миграции. По этому во–, просу было высказано множество предположений. Некоторые ученые считают, что птицы и рыбы рождаются с заложенной в мозг географической картой Земли. Другие думают, что у них развито магнитное чувство, иными словами, имеется биологический компас. Ничего невероятного в подобных предположениях нет, однако точные доказательства (или опровержения) этих гипотез еще впереди. А вот изучение электрорецепции позволило, во всяком случае для рыб, доказать их способность ориентироваться по магнитному полю Земли.

Обитающий в Средней Азии туркестанский сомик, или звездочёт, лежащий на дне водоема, не ощущает магнитного поля Земли. Но стоит ему отправиться в путь, все меняется. Из курса физики вы знаете (или узнаете чуть позже), что электрический ток создает магнитное поле, а магнитное поле, в свою очередь, способно вызывать возникновение электрического тока. Он возникает в любых замкнутых проводниках при пересечении ими магнитного поля. На этом основано устройство любых электрогенераторов.

Когда рыба движется в магнитном поле, в ее теле возникают концентрические индукционные токи. На них и у морских, и у пресноводных рыб реагируют ампулы Лоренцини, расположенные вертикально по отношению к поверхности тела рыбы. Следовательно, рыбы чувствительны не к самому магнитному полю, а лишь к его изменению. Величина индукционных токов зависит от того, под каким углом и с какой скоростью пересекаются силовые линии магнитного поля, что и позволяет рыбе прокладывать свой маршрут в океане с не меньшей точностью, чем мы это делаем по компасу.

image l:href="#image163.png"

Туркестанский сомик (Glyptosternum reticulatum)

Электрические рыбы открыты сравнительно недавно, а изучение их начато лишь в наши дни. Можно с уверенностью сказать, что в ближайшие годы ученые смогут узнать много нового о работе электрических органов и о поведении электрических рыб.

Механика живого

image l:href="#image164.png"

Подвижность присуща многим живым организмам, причем не только животным, но и растениям, а также некоторым грибам. Высшие животные приобрели «моторы» – гладкие и поперечнополосатые мышцы, позволяющие им приводить в движение части своего тела и перемещаться в пространстве: бегать, прыгать, плавать, летать. Давайте познакомимся с некоторыми проблемами и ограничениями в работе двигательных органов.

Подкожные резинки

Резина – довольно обыденный материал. Чего только из нее не делают! Главная ценность резины в том, что она способна сильно растягиваться и при этом не портиться, а когда мы прекращаем ее растягивать, восстанавливает свою прежнюю длину.

Свойства резины общеизвестны, но нас интересуют биологические объекты. Давайте познакомимся с работой скелетных мышц. Они тоже способны растягиваться и сокращаться, правда, в отличие от резины, растягиваются они под действием собственной тяжести, а сокращаясь, способны производить значительную работу.

Скелетные мышцы состоят из многоядерных клеток, имеющих вид волокон. Волокна длинные, до 40 мм длиной. Каждое волокно состоит из чередующихся светлых и темных дисков, как ручки ножей, набранные из пластинок разноцветной пластмассы. Темный диск и две половинки светлых дисков, прилегающих к нему слева и справа, образуют саркомер – рабочий элемент мышечных волокон.

image l:href="#image165.png"

Схема строения поперечнополосатой мышечной клетки: 1саркомер; 2миофибрилла актина; 3миофибрилла миозина; 4головки миозина

Мышечные волокна собраны в пучки таким образом, что все темные диски каждого волокна располагаются точно под темными дисками других волокон, образуя темную полосу, а светлые диски таким же образом формируют светлые полосы. Это придает мышце сходство с зеброй и послужило причиной того, что скелетные мышцы называют поперечнополосатыми .

В каждой мышечной клетке находятся многочисленные тяжи – миофибриллы, производящие сокращение мышц. Они бывают двух типов. Толстые нити диаметром 15 нанометров (нм) состоят в основном из белка миозина, а тонкие имеют в диаметре всего 7 нм и в состав вещества, из которого они состоят, входит белок актин. Тонкие нити проходят только по светлым участкам саркомера, а в средней части темной полосы проходят только толстые нити. Лишь в самых темных боковых участках темных полос находятся и толстые, и тонкие нити. Причем каждую толстую нить окружают 6 тонких.

Молекулы миозина, как мы уже сказали, составляют основу вещества толстых нитей. Каждая молекула этого белка имеет массивную головку, торчащую наружу, и длинный хвост, вплетенный в нить. В спокойном состоянии, когда мышца не занята работой, головки миозина никакой активности не проявляют. Когда же нерв приносит распоряжение мозга сократиться, они прикрепляются к соседним тонким актиновым нитям и наклоняются. При этом головки поворачиваются примерно на 45° и тянут за собой тонкую нить, которая скользит вдоль толстой нити по направлению к центру саркомера. Здесь тонкие нити встречаются и могут даже заходить друг за друга. Это приводит к сокращению саркомера до 28%, но сами нити при этом не укорачиваются.

Чем длиннее мышца, тем больше в ней саркомеров, тем значительнее она способна сократиться и тем короче она при этом станет. Когда работа мышцы окажется выполненной и мозг отменит приказ о сокращении, головки миозина отсоединяются от тонких нитей и мышечное волокно переходит в нерабочее состояние, а мышца удлиняется до прежнего нерабочего состояния. Таким образом, мышцы сокращаются и растягиваются не потому, что молекулы белков, из которых они состоят, способны растягиваться и уменьшаться, а потому, что белковые нити способны перемещаться.

Попрыгунчики

Высоко ли может прыгнуть человек? К сожалению, не очень. Олимпийский рекорд по прыжкам в высоту без шеста ненамного превышает 2 метра – чуть выше человеческого роста. Если учесть, что непосредственно перед прыжком центр тяжести у человека находится на высоте 90 сантиметров, то рекорд кажется совсем мизерным. Перемахивая через планку, спортсмен на 2 метра поднимает свои ноги, а его центр тяжести «подпрыгивает» от силы метра на полтора!

image l:href="#image166.png"

Гигантский кенгуру

Крупным наземным животным тоже нечем особенно хвастаться. Трехметровый гигантский кенгуру, тело которого специально приспособлено для прыжков, прыгает не выше 3,3 метра. Чем больше весит животное, тем тяжелее ему прыгать, тем больше мышц должно участвовать в осуществлении прыжка. Но мощные мышцы становятся дополнительным грузом. Возникает заколдованный круг.

Математический расчет позволяет предполагать, что животные, у которых отношение веса тела к весу ножных мышц одинаково, должны прыгать на одинаковую высоту независимо от их размера. Наблюдения за животными показывают, что это предположение правильно. Самый маленький кенгуру – сумчатая кенгуровая крыса ростом 40–45 см – прыгает на высоту 2,5 м, а миниатюрная полуобезьянка галаго способна лишь слегка перекрыть олимпийский рекорд человека.

image l:href="#image167.png"

Галаго

Интересно, что водные животные прыгают лучше сухопутных. Неуклюжие на суше пингвины пулей вылетают из воды и, взмыв над ее поверхностью на 1,4—1,6 м, ловко приземляются на кромку льда. Дельфины совершают прыжки на высоту 4–5 м. Даже кальмады, используя свои плавники как несущую плоскость и планируя с их помощью, поднимаются до 7 м над поверхностью воды. Умеют прыгать даже глубоководные рыбы. В 1959 году с борта советского исследовательского судна «Витязь» ученые наблюдали вертикальные прыжки тирзитопса на высоту 2–3 м. Видимо, редкая глубоководная рыба решила дать возможность ученым познакомиться с ней накоротке.

Прыгать в длину значительно легче. Лошадь во время галопа совершает прыжки до 7,5 м. Это 4 длины туловища самого прыгуна. Гиббоны, перепрыгивая с ветки на ветку, покрывают расстояние до 6 м, а крупные кенгуру способны совершать прыжки длиной 9–12 м. Американские полутушканчики прыгают на 3,7 м, а гребнепалый тушканчик из среднеазиатских пустынь – на 3 м. Длина прыжка у них в 20 раз больше длины тела.

image l:href="#image168.png"

Гиббон

Катапульта обыкновенной блохи

Даже первобытный человек не был особенно сильным. Когда он научился использовать на охоте первые примитивные орудия – палки, камни, дубины, он всё равно ощущал, что ему часто не хватает силы, чтобы одним ударом убить оленя или докинуть камень, а позже и копье до пасущейся вдалеке антилопы. Серьезно усовершенствовать орудия охоты первобытные люди смогли только благодаря тому, что научились запасать энергию.

Первым охотничьим орудием, которое использовало запасенную энергию, был охотничий лук. Охотник, натягивая тетиву, сгибал гибкий лук и при этом запасал в нем энергию, когда же он отпускал тетиву, вся энергия, запасенная в согнутом луке, высвобождалась в одно мгновение, посылая стрелу вперед с такой силой, что она могла улететь на значительное расстояние и пронзить дичь. Просто бросить стрелу рукой с такой же силой человек не мог.

До изобретения огнестрельного оружия на войне использовались катапульты и баллисты – метательные машины, способные бросать тяжелые камни, заостренные бревна или бочки с горящей смолой на несколько сот метров. Принцип действия этих машин тот же, что у охотничьего лука. Даже один человек способен был привести в боевую готовность метательную машину. В нужный момент вся накопленная энергия высвобождалась, и огромный камень летел на врага.

Прыгающим животным приходится метать в воздух собственное тело. Среди них самые способные прыгуны – насекомые. Они могут совершать прыжки в высоту на расстояние в 100 и более раз превосходящее длину их тела. Секрет этих рекордов заключается в том, что они используют принцип катапульты. Поэтому мощность, развиваемая мышцами насекомых, в 10 и более раз выше мощности, на которую способны мышцы позвоночных животных.

В теле насекомых и других членистоногих встречается белок резилин. Подобно резине, он обладает очень высокой упругостью. В честь нее вновь открытый белок и получил свое название. Его резильянс, то есть коффициент полезного действия, – 97%. Это очень много. Только 3% его энергии теряется в виде тепла. Резильянс самых лучших сортов резины не превышает 91%. Если резилин на несколько недель оставить в растянутом состоянии, он не потеряет способности мгновенно восстанавливать свою первоначальную величину!

Резилином пользуются хорошо прыгающие блохи. Эластичная подушечка, состоящая из резилина, лежит у основания их задних конечностей. Приготавливаясь к прыжку, зловредное насекомое поднимает задние ноги и сжимает резилин. Когда специальный механизм, удерживающий ноги блохи в таком положении, освобождает их, они за счет упругих сил резилина отталкивают блоху от земли, и насекомое стремительно взлетает вверх. Резилин, мгновенно распрямляясь, способен развить гораздо большую мощность, чем мышцы, вызвавшие его сжатие.

image l:href="#image169.png"

Блоха

Покорители неба

Из обитателей Земли первыми научились летать насекомые. Среди них есть настоящие рекордсмены, способные самостоятельно, не прибегая к услугам ветра, подниматься на несколько сот метров над поверхностью Земли и совершать тысячекилометровые путешествия. Некоторые из них прилетают к нам на север весной из Южной и Западной Европы и даже из Африки. При этом насекомые способны развивать значительную скорость. Комар кулекс (обычный кровососущий комар) летает со средней скоростью 1,5 км/ч, комнатная муха – 8, саранча – 16, щмель – 18, а пчелы и стрекозы – 30 км/ч. При этом им приходится интенсивно работать крыльями. Бабочка белянка делает при этом 10–12 взмахов крыльев в секунду, саранча – 20, майский жук – 45, божья коровка – 75–90, пчела – 250, комар кулекс – 300, комар–звонец – больше 1000!

image l:href="#image170.png"

Стрекоза

Крылья насекомых как «подъемный» механизм менее совершенны, чем винт самолета. Работа пропеллера целиком используется для полета, тогда как крыло саранчи использует на это лишь 65% затраченной энергии. Неиспользованные 35% были бы для саранчи слишком большой потерей. Насекомые, конечно, не смогли с ней смириться. Для компенсации этих потерь у них используется резилин. Его крохотные комочки находятся у основания крыльев саранчи, мух и многих других летающих насекомых. Они используются как амортизаторы и для сбережения затрачиваемой энергии.

image l:href="#image171.png"

Траектория крыла мухи в полете

Когда крыло насекомого доходит до крайнего положения, его движение тормозится за счет сжатия резилина. Затем резилин расправляется и сообщает крылу ускорение, возвращая при этом 97% энергии, затраченной на его сжатие. В результате на одно сокращение мышцы крыло отвечает не одним, а несколькими взмахами. Это и позволяет многим насекомым быть весьма неплохими летунами.

Хорошо, что у жирафов маленькая голова

Рост взрослого жирафа более пяти метров. Длинная изящная шея поддерживает небольшую голову. Если вам посчастливилось видеть этих животных, вы, безусловно, обратили внимание на грациозность их движений. Совершенно ясно, что жираф не чувствует тяжести своей головы, хотя ее вес вместе с шеей немал. Еще больше усилий должно требоваться, чтобы удержать на горизонтально вытянутой шее тяжелую голову быка или оленя, нередко украшенною огромными рогами. В действительности животные на это не затрачивают почти никаких усилий. От этой необходимости их избавляет другой белок – эластин. Он действует на манер дверных пружин. Подобные пружины, удерживающие части тела в заданном положении, имеются у многих животных.


    Ваша оценка произведения:

Популярные книги за неделю