Текст книги "Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления"
Автор книги: Алекс Беллос
сообщить о нарушении
Текущая страница: 1 (всего у книги 2 страниц)
Алекс Беллос
Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
Научный редактор Александр Минько
Издано с разрешения Alex Bellos Ltd, c/o Janklow & Nesbit (UK) Ltd. и литературного агентства P. & R. Permissions & Rights Ltd., Limassol, Cyprus c/o PRAVA I PREVODI
Все права защищены.
Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
CAN YOU SOLVE MY PROBLEMS Copyright © 2016 by Alex Bellos
Cartoon copyright © 2016 by Andrew Joyce
© Издание на русском языке, перевод, оформление. ООО «Манн, Иванов и Фербер», 2021
* * *
Введение
Все мои проблемы начались с Шерил.
Она была сложной девочкой. Настоящая подстрекательница. Большая любительница поддразнить. Но я не мог не думать о ней. Во многих отношениях она изменила мою жизнь.
Здесь я хотел бы уточнить, что Шерил не существует. Она – главное действующее лицо задачи по математике на экзамене в сингапурской школе. Эта задача захватила мое воображение и вовлекла в исследование мира головоломок, приведшее к написанию этой книги.
Вы найдете задачу о дне рождения Шерил, а также исчерпывающую историю наших отношений (речь идет о задаче 21) чуть позже. А пока, прежде чем отправиться в путешествие по моим любимым задачам, предлагаю решить две увлекательные головоломки, которые подогреют ваш интерес к этой теме.
Во-первых, посмотрите на представленный ниже рисунок. Числа на нем расположены согласно определенному правилу. Установив его, вы найдете отсутствующее число. Число семь в последнем кружочке не опечатка.
Я считаю эту головоломку неотразимой. Она интригующа и не требует глубоких знаний математики. Задача прямо-таки подзадоривает вас решить ее, а когда вы находите ответ (если находите), у вас возникает возбуждающее, манящее чувство удовлетворения. Ноб Йошигахара – знаменитый японский изобретатель головоломок XX столетия – считал ее своим шедевром. Попытайтесь отыскать решение, прежде чем я раскрою его в конце этого раздела.
Вторая головоломка – о марсианских каналах. На карте Красной планеты отображены недавно открытые города и водные пути. Отправляйтесь в дорогу из города T на Южном полюсе. Передвигайтесь по каналам и, посетив каждый город только один раз и вернувшись в исходную точку, составьте предложение на английском языке.
Этой задаче, придуманной плодовитым американским изобретателем головоломок Сэмом Лойдом, более ста лет. Лойд писал: «Когда головоломка была впервые опубликована в журнале, свыше пятидесяти тысяч читателей заявили: “There is no possible way”[1]1
«Возможного пути нет» или «Нет никакой возможности» (англ.). Прим. пер.
[Закрыть]. И все же она очень простая». Вы будете кусать себе локти, если прочитаете решение, прежде чем попытаетесь найти его самостоятельно.
Если вы сделали паузу, чтобы заняться решением какой-то из этих двух задач, мне вряд ли нужно вам объяснять, почему разгадывание головоломок столь увлекательное занятие! Когда вы фокусируетесь на поиске решения, отвлекающие факторы исчезают. Необходимость использовать свой разум оказывает жизнеутверждающее воздействие. А дедуктивные размышления, выраженные в виде простых логических шагов, успокаивают, особенно на фоне алогичности реальной жизни. Кроме того, хорошие головоломки ставят вполне осуществимые цели, достижение которых приносит высшее удовлетворение.
Одним из следствий моей встречи с Шерил стала интернет-колонка головоломок в Guardian, которую я начал вести. Для поиска лучших головоломок я организовал переписку как с их любителями, так и с профессиональными создателями, а также погрузился в чтение книг. Меня всегда увлекали математические загадки, но до начала этой исследовательской работы я в полной мере не осознавал их разнообразия, концептуальной глубины и богатой истории. В частности, я не понимал, что тысячу лет назад основная роль математики (помимо решения скучных задач коммерческого плана, таких как подсчет и измерение) сводилась к обеспечению интеллектуальных развлечений и увлекательного времяпрепровождения. (Возможно, все так и осталось, учитывая, что число любителей судоку существенно превышает количество профессиональных математиков.) Головоломки составляют параллельную историю математики, которая отображает великие открытия и вдохновляет блистательные умы.
В этой книге представлены 125 специально отобранных головоломок, созданных за прошедшие два тысячелетия, плюс истории их происхождения и влияния. Я выбрал только те, которые считаю наиболее захватывающими, увлекательными и стимулирующими работу мысли. Их можно рассматривать как математические только в самом широком смысле, потому что их решение требует логического мышления, а не глубоких знаний математики. Все они пришли из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других мест и времен. Одни представляют собой традиционные загадки, другие созданы ведущими профессиональными математиками своего времени. Но во многих случаях происхождение задачи трудно определить. Подобно анекдотам и сказкам, головоломки постоянно меняются, поскольку каждое новое поколение приукрашивает, адаптирует, упрощает, расширяет и видоизменяет их.
Лучшие головоломки сродни настоящей поэзии. Они, с присущей им элегантностью и лаконичностью, пробуждают интерес, разжигают дух соперничества, проверяют нашу изобретательность, а порой даже открывают универсальные истины. Для решения хорошей головоломки не требуется никаких специальных знаний – только творческий подход, остроумие и способность ясно мыслить. Математические загадки захватывают наше воображение, поскольку отвечают стремлению человека осмыслить этот мир; доставляют нам удовольствие, потому что, решая их, мы постигаем смысл происходящего. При этом, какими бы поверхностными и надуманными ни были головоломки, стратегии, используемые нами для их решения, расширяют наш арсенал средств борьбы со многими проблемами в жизни. И самое важное – головоломки дают волю нашей интеллектуальной игривости. Они забавны и пробуждают любознательность. Представленный мной диапазон головоломок требует совершенно разных подходов к их решению. В одних случаях все будет зависеть от озарения, в других вам придется довериться интуиции, а в третьих… Но об этом мы еще поговорим.
Каждая глава посвящена определенной теме, а задачи следуют примерно в хронологическом порядке. Головоломки не упорядочены по сложности. Впрочем, зачастую определить уровень сложности довольно трудно, ведь то, что один человек воспринимает как пытки, другому кажется элементарным, и наоборот. Я объясню вам решение нескольких головоломок и подскажу, как разгадать еще несколько, но над остальными вам предстоит работать самостоятельно. (Ответы можно найти в конце книги.) Одни задачи достаточно просты. Над другими вы будете ломать голову несколько дней. Самые трудные обозначены символом . Даже если вы не справитесь с ними, надеюсь, их решение покажется вам таким же увлекательным, как и сами задачи. Порой самые волнующие ощущения вызывает открытие нового метода, идеи или последствий ее реализации, о которых вы не знали.
Перед каждой главой я привожу десять блицвопросов, чтобы настроить вас на нужный лад. Первый, третий и пятый разделы включают задачи повышенного уровня сложности, используемые организацией United Kingdom Mathematics Trust[2]2
Благотворительная организация, основанная в 1996 году с целью помочь в обучении математике британских школьников. Прим. ред.
[Закрыть] в ходе национальных конкурсов по математике для школьников 11–13 лет. Все верно, для каждого ребенка по десять задач. Вы готовы к этому?
А теперь вернемся к задачам, которые я предложил в самом начале.
При взгляде на «числовое дерево» вы сразу же обратите внимание на его верхнюю левую часть. Как числа 72 и 99 могут дать 27?
Понятно! 99–72 = 27.
Другими словами, число в кружочке – это разность между числами в двух кружочках, которые указывают на него стрелками.
Обратите внимание: та же схема применима и к числу 18, которое следует дальше: 45–27 = 18.
То же верно и для числа 21: 39–18 = 21.
Это означает, что отсутствующее число должно быть равно разности между числами 36 и 21, то есть 36–21 = 15.
Для полноты картины продолжаем двигаться дальше по дереву: 28–15 = 13.
Замечательно! Закономерность сохраняется. Мы почти добрались до конца.
И вот тут нас поджидает сюрприз.
Последнее число 7 не равно разности между 21 и 13 – двумя числами, которые на него указывают.
Проклятье! Наше первоначальное предположение ошибочно. Число в кружочке не является разностью между числами в двух кружочках, указывающих на него стрелками. Йошигахара искусно провел нас по садовой дорожке только для того, чтобы в самом конце вернуть в исходную точку, а точнее, к исходному кружочку.
Как еще числа 72 и 99 могут образовать 27?
Ответ настолько прост, что вы могли его не заметить.
7 + 2 + 9 + 9 = 27.
Необходимо сложить все цифры, из которых состоят эти два числа.
Та же схема работает и в следующей строке:
2 + 7 + 4 + 5 = 18.
И в следующей. Стало быть, отсутствующее число должно быть таким: 2 + 1 + 3 + 6 = 12.
Последние два кружка тоже подчиняются данной закономерности: 1 + 2 + 2 + 8 = 13 и 1 + 3 + 2 + 1 = 7.
Это совершенно гениальная головоломка, поскольку Йошигахара нашел два арифметических правила, действующих для одних и тех же чисел на пяти шагах последовательности, и лишь одно из правил не выполняется на последнем шаге, причем всего на 1. Головоломка с волшебной легкостью ведет нас в неверном направлении. Нередко задача оказывается сложной не потому, что это действительно так, а потому, что мы неправильно подходим к ее решению. Примите это к сведению.
Вам удалось разгадать головоломку с марсианскими каналами? Значит, вы можете построить предложение «There is no possible way». Для этого нужно внимательно и аккуратно составлять слова из встречающихся букв.
Ну что, приступим?!
10 увлекательных головоломок. Умнее ли вы 11-летнего ребенка?
Правила: пользоваться калькуляторами не разрешается.
1. На рисунке показан вид одного и того же куба с трех разных сторон. Какая буква находится на грани, противоположной грани с буквой U?
Варианты ответов: а) I; б) P; в) K; г) M; д) O.
Ответ
2. Длина носа Пиноккио 5 сантиметров. Каждый раз, когда он говорит неправду, длина его носа удваивается. Когда Пиноккио соврет девять раз, длина его носа примерно будет равна длине:
Варианты ответов: а) костяшки домино; б) теннисной ракетки; в) бильярдного стола; г) теннисного корта; д) футбольного поля.
Ответ
3. В слове thirty (30) 6 букв, а 30 = 6 × 5. Аналогично в слове fourty (40) 5 букв, а 40 = 5 × 8. Какие из следующих слов обозначают числа, не кратные количеству букв в этом слове?
Варианты ответов: а) six (6); б) twelve (12); в) eighteen (18); г) seventy (70); д) ninety (90).
Ответ
4. Эми, Бен и Крис стоят в ряд. Если Эми стоит слева от Бена, а Крис справа от Эми, то какое из следующих утверждений верно?
Варианты ответов: а) Бен – крайний слева; б) Крис – крайний справа; в) Эми стоит посредине; г) Эми – крайняя слева; д) ни одно из предыдущих утверждений не верно.
Ответ
5. Какие из изображений можно нарисовать, не отрывая карандаша от бумаги и не проводя им по линии второй раз?
Ответ
6. Чему равен остаток при делении числа 354 972 на 7?
Варианты ответов: а) 1; б) 2; в) 3; г) 4; д) 5.
Ответ
7. У каждого ребенка в данной семье есть хотя бы один брат и хотя бы одна сестра. Какое минимальное количество детей в этой семье?
Варианты ответов: а) 2; б) 3; в) 4; г) 5; д) 6.
Ответ
8. Сколько раз цифра 8 встречается в произведении 987 654 321 × 9?
Варианты ответов: а) 1; б) 2; в) 3; г) 4; д) 9.
Ответ
9. В каждом прямоугольнике частично заполненной пирамиды необходимо записать число, равное сумме двух чисел в прямоугольниках, расположенных непосредственно под ним. Какое число находится на месте х?
Варианты ответов: а) 3; б) 4; в) 5; г) 7; д) 12.
Ответ
10. Сколько разных цифр присутствует в периодической десятичной дроби, соответствующей дроби ?
Варианты ответов: а) 2; б) 3; в) 4; г) 5; д) 6.
Ответ
Глава 1. Капуста, неверные мужья и зебра. Логические задачи
Итак, логика. Обоснованно было бы начать разговор с того, что логическая дедукция – это ключевое правило всех математических головоломок. Безусловно, логика – основа всей математики. Однако в терминологии занимательной математики логические задачи – это головоломки, при решении которых используются только дедуктивные рассуждения, без каких бы то ни было арифметических вычислений, алгебраических преобразований или рисования фигур на клочке бумаги. Головоломки – самый доступный тип математических загадок, поскольку они не предполагают специальных знаний и их можно сформулировать в юмористической форме. Но, как вы увидите далее, решать их не всегда просто, потому что они требуют нестандартного мышления.
И это происходит по меньшей мере со времен Карла Великого[3]3
Карл Великий (742–814) – король франков, объединивший под своей властью половину территории Западной Европы. Прим. ред.
[Закрыть], короля франков.
В 799 году Карл Великий, который правил большей частью Западной Европы, получил от своего учителя и советника Алкуина письмо, в котором говорилось: «Я отправил несколько занимательных задач, чтобы тебя позабавить».
Алкуин был величайшим ученым своей эпохи. Он вырос в Йорке, где учился в городской кафедральной школе, а впоследствии стал ее руководителем. Слухи о репутации этого британца дошли до Карла Великого. Король уговорил ученого возглавить придворную академию в Ахене, где Алкуин создал крупную библиотеку и начал реформу образования во всей Каролингской империи. Позднее Алкуин покинул двор Карла Великого и стал аббатом монастыря в Туре; именно тогда он и написал вышеупомянутое письмо своему бывшему господину.
Алкуину приписывают изобретение слитного письма, позволившего ему и его многочисленным писарям быстрее писать. Некоторые считают, что именно он первым использовал специальный символ (диагональную волнистую линию) в качестве знака пунктуации для обозначения вопроса. Просто удивительно, что вопросительный знак придумал человек, являющийся одной из самых значимых фигур в ранней истории создания головоломок.
Документ, на который ссылался Алкуин в своем письме, не сохранился, однако историки убеждены, что это был сборник примерно из пятидесяти задач под названием Propositiones ad Acuendos Juvenes («Задачи для развития молодого ума»), самая ранняя уцелевшая рукопись которого датируется следующим столетием. Кто еще, утверждают историки, мог написать эту работу, кроме Алкуина, самого выдающегося учителя своего времени?
«Задачи для развития молодого ума» – замечательный документ, представляющий собой наибольший сборник головоломок времен Средневековья, а также первый текст на латыни, содержащий оригинальный математический материал. (Римляне строили дороги, акведуки, общественные бани и системы канализации, но не занимались математикой.) А начинается сборник с шутливой задачи:
Ласточка приглашает улитку на обед, для чего той нужно преодолеть расстояние в одну лигу[4]4
Лига – британская и американская единица измерения расстояния, равная 4828,032 метра. Прим. ред.
[Закрыть]. Если улитка будет передвигаться по одному дюйму в день, то сколько времени ей понадобится, чтобы добраться до места назначения?
Ответ – 246 лет и 210 дней. Улитка умерла бы более чем за два столетия до конца пути.
Еще одна головоломка звучит так:
Один человек, встретив нескольких учеников, спросил их: «Сколько детей учится в вашей школе?» Один из учеников ответил: «Я не хочу говорить вам прямо, но скажу, как это можно определить. Удвойте количество учеников, затем увеличьте это число в три раза, после чего разделите его на четыре части. Если вы прибавите меня к одной из этих четвертей, получится 100». Сколько учеников в этой школе?
Маленькие умники! Оставляю эту головоломку вам для самостоятельного решения.
Шутливые формулировки Алкуина звучали новаторски. Впервые юмор использовался для того, чтобы заинтересовать учеников арифметикой. Однако важность сборника «Задачи для развития молодого ума» обусловлена не только новаторской стилистикой, но и тем, что он включал задачи новых типов. Некоторые из них требовали дедуктивных рассуждений при полном отсутствии вычислений. Наиболее известная головоломка Алкуина считается самой знаменитой математической загадкой всех времен.
1. ВОЛК, КОЗА И КАПУСТА
Человек приходит на берег реки с волком, козой и несколькими кочанами капусты. Ему нужно переправиться через реку, но в единственной имеющейся лодке одновременно может поместиться только он сам и что-то одно из того, что у него есть. Оставить волка с козой или козу с капустой нельзя, поскольку в обоих случаях что-то будет съедено. Как человеку перебраться на другой берег реки за минимальное количество переправ?
Эта головоломка замечательна по двум причинам. Во-первых, ситуация довольно комична. Вы все утро тащились по грунтовой дороге, отчаянно пытаясь не подпускать волка к козе, а козу к капусте. А дальше – еще хуже: вам предстоит переправиться через реку в небольшой лодке. И все же самым забавным и интересным в этом сценарии я считаю само решение задачи, которое заставляет человека действовать вопреки вашим ожиданиям.
Попытайтесь решить эту головоломку. В одной книге XIII века сказано, что это под силу даже пятилетнему ребенку. Или порассуждайте вместе со мной.
Предположим, путешественник находится на левом берегу реки. Изначально у него есть три объекта, из которых он может взять с собой в лодку всего один. Если он возьмет волка, коза останется с капустой и съест ее. Если возьмет капусту, волк съест козу. Методом исключения приходим к выводу, что во время первой переправы через реку путешественник может взять с собой только козу, поскольку волк не ест капусту. Наш герой переправляет козу на правый берег и возвращается за следующим объектом.
Теперь путешественнику предстоит сделать выбор между волком и капустой. Допустим, он решает взять капусту и переправляется через реку в третий раз. Он добрался до правого берега, но не может оставить капусту с козой. Что же ему делать? Он ничего не добьется, вернувшись на левый берег с капустой, поскольку только что ее перевез. Значит, ему придется вернуться с козой. Этот шаг противоречит здравому смыслу: для того чтобы путешественник переправил через реку все свое имущество, ему необходимо перевезти что-то через реку на другой берег, затем обратно, а затем снова на тот же берег.
После четырех переправ на левом берегу находятся волк и коза, и путешественник привязывает козу, в пятый раз отправляясь через реку, на сей раз с волком. Волк, перевезенный на правый берег, по-прежнему не посягает на капусту. Остается совершить последнее путешествие на левый берег, чтобы забрать бородатое жвачное животное, – и наш герой справляется с задачей за семь переправ.
(Существует и второе, эквивалентное решение: во время второй переправы взять с собой волка. Далее действует та же логика, и человек благополучно переправляется на другой берег со всем своим скарбом за семь переправ.)
В сборнике «Задачи для развития молодого ума» есть и другие задачи о переправе через реку вроде представленной ниже, напоминающей сюжет альковного фарса.
Ответ
2. ТРОЕ МУЖЧИН И ИХ СЕСТРЫ
Итак, троим мужчинам, у каждого из которых есть сестра, предстоит переправиться через реку. Все мужчины испытывают влечение к чужим сестрам. У реки стоит маленький паром, который может перевезти за один раз только двоих. Определите (если сможете), как всем героям переправиться через реку таким образом, чтобы ничья сестра не была обесчещена, оказавшись в лодке наедине с мужчиной, который не является ее братом.
Вы можете интерпретировать эту задачу двумя способами, поскольку формулировка Алкуина допускает двоякое толкование. Не вызывает сомнений лишь наличие трех пар, состоящих из брата и сестры, которые должны переправиться через реку, имея в своем распоряжении двухместную лодку. Однако в задаче может быть одно из двух ограничений.
Первое: в лодке не должны находиться мужчина и женщина, не связанные родством. В этом случае вся компания переберется на другой берег за девять переправ.
Второе: женщине нельзя находиться в лодке без сопровождения брата в тот момент, когда лодка высаживает или забирает пассажиров на том берегу, где есть другие мужчины. На мой взгляд, второй сценарий больше соответствует духу задачи, а ее решение в этом случае требует одиннадцати переправ. Попытайтесь найти оба варианта.
Задачи о переправе радуют детей и взрослых вот уже более тысячи лет. Распространяясь по миру, они менялись в соответствии с местной спецификой. В Алжире волк, коза и капуста превратились в шакала, козу и вязанку сена; в Либерии это гепард, птица и рис, а в Занзибаре – леопард, коза и листья. Задача о трех друзьях и их сестрах тоже преобразилась с течением времени: распутные мужчины вскоре стали ревнивыми мужьями, запрещающими своим женам путешествовать в одной лодке с другим мужчиной. В одном пересказе XIII столетия у пар были имена: Бертольдус и Берта, Герардус и Грета, Роландус и Роза. Решение представлено в виде двух гекзаметров[5]5
Гекзаметр (от греч. hex – шесть и metron – мера) – шестистопный дактиль, стихотворный размер в античном стихосложении. Прим. пер.
[Закрыть]. (Если вы умеете читать на латыни, переведите для других; примерный перевод дается в ответах.)
Binae, sola, duae, mulier, duo, vir mulierque,
Bini, sola, duae, solus, vir cum muliere.
В XVII веке пары состояли из господ и камердинеров. Каждый господин запрещал своему камердинеру путешествовать вместе с другим господином, чтобы тот его не убил. В XIX столетии характер социального противостояния в корне изменился: парами стали хозяева и слуги, причем слугам не разрешалось численно превосходить количество хозяев на любом берегу, чтобы у них не возникло искушения их ограбить. Затем темы сексизма и классовой борьбы сменила ксенофобия: в классической версии задачи появилась путешествующая группа из трех миссионеров и трех голодных каннибалов. Из истории этой головоломки можно узнать об эволюции социальных стереотипов столько же, сколько и о математике.
Задача о переправе появилась в 80-х годах XX столетия. На рубеже веков компания Microsoft использовала ее в качестве одного из тех пресловутых каверзных вопросов, которые ставят во время собеседования, для проверки навыков решения задач потенциальными сотрудниками. В этой головоломке главное – позволить логике взять верх над интуицией.
Ответ
3. ПЕРЕХОД ЧЕРЕЗ МОСТ (С НЕБОЛЬШОЙ ПОМОЩЬЮ МОИХ ДРУЗЕЙ)
[6]6
«С небольшой помощью моих друзей» (With a Little Help from My Friends) – песня группы The Beatles, которую Джон Леннон и Пол Маккартни написали в 1967 году для Ринго Старра. Прим. пер.
[Закрыть]
Четыре человека (Джон, Пол, Джордж и Ринго) находятся на одной стороне ущелья, соединенной с другой стороной шатким мостом, по которому одновременно могут идти только двое. Поскольку дело происходит вечером, а мост не очень надежный, переходить его нужно с фонарем. У группы всего один фонарь, а ущелье слишком широкое, чтобы можно было перебросить фонарь с одной стороны на другую, поэтому при переходе людям приходится носить его с собой. Джон может перейти через мост за 1 минуту, Пол за 2 минуты, Джордж за 5 минут, а Ринго за 10 минут. Если мост переходят двое, они передвигаются со скоростью того, кто идет медленнее.
Как нашим героям перебраться через мост за минимальное время?
Очевидный способ решения этой задачи состоит в том, чтобы Джон перевел каждого из друзей через мост по одному, так как именно он может вернуться быстрее всех за следующим человеком. Такая стратегия позволяет всем перейти мост за 2 + 1 + 5 + 1 + 10 = 19 минут. Но действительно ли этот способ самый быстрый?
Вернемся к Алкуину и вопросу из сборника «Задачи для развития молодого ума».
Сколько следов останется в последней борозде после быка, который пашет поле целый день?
Конечно же, ни одного! Соха разрушит все следы. Это самая ранняя задача с подвохом в книгах с головоломками.
В сборнике «Задачи для развития молодого ума» впервые появились и головоломки другого типа – задачи о родстве, в которых необходимо определить родственные связи в нетрадиционных семьях. Это мой последний пример из сборника старого йоркца, прежде чем мы перенесемся на тысячу лет вперед.
Ответ
4. ДВОЙНОЕ СВИДАНИЕ
Если двое мужчин возьмут матерей друг друга в жены, то кем будут приходиться друг другу их сыновья?
Я нахожу загадки о родстве чрезвычайно забавными. С какой бы серьезностью я ни подходил к их решению, мне не удается избежать искушения пофантазировать по поводу невероятно запутанной предыстории.
Решение таких головоломок было основным способом проведения досуга со времен Средневековья; их очень любили и викторианцы, которые, по всей вероятности, находили нечто возбуждающее в разрушении традиционной семейной структуры.
Льюис Кэрролл был большим любителем такого рода головоломок. Представленная ниже задача взята из одной из глав (или узелков, как он их называл) книги A Tangled Tale[7]7
Издана на русском языке: Кэрролл Л. Истории с узелками. М.: АСТ, 2001.
[Закрыть], опубликованной в 1885 году. Я считаю эту головоломку вершиной жанра.
Ответ
5. ЗВАНЫЙ УЖИН
Губернатор этого самого… ну, как его?.. хочет устроить званый ужин в очень тесном кругу и намеревается пригласить шурина своего отца, тестя своего брата, брата своего тестя и отца своего шурина. Мы должны отгадать, сколько гостей соберется у губернатора.
Сколько гостей соберется у губернатора, если на званом ужине должно быть как можно меньше людей?
Благодаря романам «Алиса в Стране чудес» и «Алиса в Зазеркалье» Льюис Кэрролл как писатель, пожалуй, внес самый большой вклад в популяризацию логических размышлений в качестве развлечения. Оба романа полны парадоксов, игр и философских загадок. Льюис Кэрролл (псевдоним Чарльза Лютвиджа Доджсона, профессора математики Оксфордского университета) также написал три книги с математическими головоломками. Увы, ни одна из них не повторила успеха книги об Алисе – отчасти потому, что в них была представлена слишком сложная математика.
Льюис Кэрролл первым изобрел головоломки о правде и лжи – вид логических головоломок, ставших впоследствии очень популярными. Кэрролл заметил, что если разные люди обвиняют друг друга во лжи, то методом дедукции можно определить, кто из них говорит правду. «За несколько последних дней я составил ряд любопытных с точки зрения “дилеммы лжи” задач», – писал он в своем дневнике в 1894 году, упомянув о следующей задаче, которая сформулирована здесь с участием знакомых персонажей. В том же году она была опубликована в виде памфлета без указания имени автора.
Ответ
6. ЛГУНЬИ
Берта говорит, что Грета лжет.
Грета говорит, что Роза лжет.
Роза говорит, что Берта и Грета лгут.
Кто из них говорит правду?
Вскоре мы вернемся к задачам о правде и лжи. Но прежде попытайтесь решить следующую логическую головоломку, которая была невероятно популярной в начале 1930-х годов.
Ответ
7. СМИТ, ДЖОНС И РОБИНСОН
Смит, Джонс и Робинсон – машинист, кочегар и кондуктор поезда (необязательно в указанном порядке). По случайному стечению обстоятельств в поезде едут три пассажира с такими же фамилиями: господа Джонс, Смит и Робинсон.
Господин Робинсон живет в Лидсе.
Кондуктор живет на полпути между Лидсом и Шеффилдом.
Зарплата господина Джонса составляет 1000 фунтов 2 шиллинга 1 пенс в год.
Смит может выиграть у кочегара в бильярд.
Ближайший сосед кондуктора (один из пассажиров) зарабатывает ровно втрое больше него.
Тезка кондуктора живет в Шеффилде.
Как зовут машиниста?
(Я сохранил оригинальную формулировку задачи, в которой используется старая британская денежная единица. Сумма 1000 фунтов 2 шиллинга 1 пенс важна по той причине, что она не делится на три без остатка.)
Мне нравится эта головоломка: она предлагает вам стать детективом. При первом прочтении может показаться, что для поиска ответа слишком мало информации. Однако постепенно, соединяя подсказки, вы сможете раскрыть личности персонажей головоломки.
Вскоре после публикации в апреле 1930 года задачи о Смите, Джонсе и Робинсоне в лондонском литературном журнале Strand она стала всеобщим увлечением в Великобритании и была напечатана во всех газетах страны. И далее распространилась по всему миру: в 1932 году New York Times опубликовала статью об этой задаче и представила ее американизированную версию, в которой место Лидса и Шеффилда заняли Детройт и Чикаго.
Проще всего решить эту головоломку с помощью двух таблиц. Я покажу вам как. Нам необходимо определить, кто из троих персонажей (Смит, Джонс и Робинсон) машинист, кто кочегар и кто кондуктор. Для этого, как показано в левой части рисунка, начертите одну таблицу с именами работников и названиями их профессий. В задаче также фигурируют три пассажира и три места, поэтому нарисуйте вторую таблицу, показанную в правой части рисунка, в которой записаны господа Смит, Джонс и Робинсон, а также Лидс, Шеффилд и место, расположенное на полпути между этими двумя городами.
Первый фрагмент достоверной информации – тот факт, что господин Робинсон живет в Лидсе, поэтому мы можем отметить галочкой ячейку на пересечении строки «Господин Робинсон» и столбца «Лидс» и поставить крестики в ячейках, которые говорят о том, что господин Робинсон живет в других местах или что в Лидсе живет кто-то другой. Чтобы заполнить остальные ячейки, необходимо свести воедино оставшиеся подсказки. Например, ближайший сосед кондуктора (один из пассажиров) зарабатывает в три раза больше него. Следовательно, мы можем исключить господина Джонса в качестве ближайшего соседа кондуктора, поскольку его заработная плата не делится на три. Дальнейшее расследование проведите самостоятельно.
Создатель задачи о Смите, Джонсе и Робинсоне умер в том же месяце, когда она была опубликована. Британскому математику Генри Дьюдени исполнилось 73 года; к тому времени он писал головоломки для Strand Magazine уже более двадцати лет. Дьюдени был самым выдающимся изобретателем математических головоломок своей эпохи, но задача о Смите, Джонсе и Робинсоне, пожалуй, имела наибольший успех. Когда она была повторно опубликована в британском журнале New Statesman, редактор колонки бриджа и кроссвордов Хьюберт Филлипс писал: «Результат оказался просто поразительным. Лавина решений (которых никто не просил присылать) показала, насколько широк интерес публики к дедуктивным головоломкам».
Сам Филлипс в свое время был преподавателем экономики и советником Либеральной партии Великобритании; в момент публикации головоломки ему исполнилось сорок с небольшим и он только начал заниматься журналистикой. Под влиянием беспрецедентного интереса к логическим задачам Филлипс ушел с должности редактора колонки бриджа и занялся головоломками. В 1930-х годах он стал их плодовитым и новаторским создателем, превратив это десятилетие в золотой век данного жанра.
Мне очень нравятся две его задачи, описанные ниже. Первая – из серии «детектив» или, скорее, «ищите женщину». Вторая – остроумная дань традиционным загадкам о родстве.
Ответ
8. ШКОЛА СВЯТОГО ДАНДЕРХЕДА
Школа святого Дандерхеда в Фогуэлле славится своими успехами в хоккее, но не правдивостью учениц. Недавно команда First XI сыграла в Дидлхэме матч, после которого девочкам разрешили пойти на концерт. После концерта учительница мисс Прай собрала команду; она видела, как десять девочек вышли из концертного зала, а одна – из кинотеатра. На вопрос мисс Прай о том, кто был в кинотеатре, ученицы ответили так:
Джоан Джаггинс: Это была Джоан Твигг.
Герти Гасс: Это была я.
Бесси Блант: Герти Гасс лжет.
Салли Шарп: Герти Гасс и Джоан Джаггинс лгут.
Мэри Смит: Это была Бесси Блант.
Дороти Смит: Это не были ни Бесси, ни я.
Китти Смит: Это не была ни одна из девочек по фамилии Смит.
Джоан Твигг: Это не были ни Бесси Блант, ни Салли Шарп.
Джоан Форсайт: Две другие Джоан лгут.
Лора Лэм: Только одна из девочек по фамилии Смит говорит правду.
Флора Фламмери: Нет, две девочки по фамилии Смит говорят правду.
Учитывая, что из этих одиннадцати утверждений по меньшей мере семь не соответствуют действительности, выясните, кто же ходил в кино?
Ответ