355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает » Текст книги (страница 6)
Красота в квадрате. Как цифры отражают жизнь и жизнь отражает
  • Текст добавлен: 4 октября 2016, 03:14

Текст книги "Красота в квадрате. Как цифры отражают жизнь и жизнь отражает "


Автор книги: Алекс Беллос


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

В 1533 году голландский математик Гемма Фризиус понял, что метод триангуляции как нельзя лучше подходит для картографии, поскольку измерять углы гораздо легче, чем большие расстояния [10]. Его идея состояла в том, чтобы выбрать точки на местности так, чтобы от каждой из них было видно две других, и построить таким образом сеть треугольников. Он измерил углы между точками с помощью теодолита – круглого транспортира на подставке. Определив длину базисной линии, Гемма Фризиус смог рассчитать все остальные расстояния, используя тригонометрические таблицы, а затем нарисовал точную карту местности.

Триангуляция

Франция стала первой страной, в которой триангуляция была выполнена по всей территории, и произошло это в 1668 году. Единственная сложная задача в любом виде триангуляции заключается в измерении первого расстояния. Аббат Жан Пикар взял за основу участок прямой дороги от Вильжюиф до Жувиньи длиной в 11 километров, который тщательно измерил с помощью деревянных мерных реек. Затем Пикар отправился на север, используя в качестве вершин треугольников такие ориентиры, как часовые башни и вершины холмов, и измеряя только углы между ними. Добравшись до Атлантического океана, Пикар обнаружил, что побережье гораздо ближе расположено к Парижу, чем считалось раньше. «Твоя работа стоила мне приличной части моих владений!» – фыркнул Людовик XIV. Начатый Пикаром процесс триангуляции продолжался еще столетие после его смерти, пока территорию Франции не покрыли четыре сотни треугольников. Знаменитая карта Франции, составленная в итоге, содержала больше деталей, чем любая другая из созданных ранее карт, и была выполнена почти в том же масштабе, что и стандартные туристические карты Michelin, доступные в наше время.

Французы испытывали amour fou – безумную любовь к треугольникам. В 1735 году Людовик XV отправил две команды геодезистов-триангуляторов в противоположные концы Земли, для того чтобы решить важный научный спор. Земля – неидеальная сфера. Шли жаркие дискуссии вокруг того, какую форму она имеет – сплюснутую у полюсов (как грейпфрут) или на экваторе (как лимон). Эта тема стала предметом раздора между британцами, ратующими за первое, и французами, которые с ними не соглашались. Французы поняли, что можно правильно определить, на какой именно плод похожа Земля, сравнив расстояние, которое покрывает на поверхности Земли один градус широты у Северного полюса и у экватора. Если бы Земля имела форму идеальной сферы, длина одного градуса широты была бы везде одинаковой и составляла бы окружности Земли. Однако, если бы у полюсов это расстояние было больше, это означало бы, что земной шар сплюснут у полюсов, а если меньше, значит, у экватора. Французы отправили одну экспедицию в Лапландию, а другую – в сторону современного Эквадора в Южной Америке. Наблюдая за звездами, они рассчитали начальную широту, а затем в Лапландии начали строить сеть триангуляции строго на север, а в Эквадоре – строго на юг. В конечной точке триангуляции они снова определили широту посредством наблюдений за звездами. После длительной борьбы со снежными бурями и москитами в Скандинавии и высотной болезнью в Андах две группы пришли к выводу, что в Лапландии один градус широты длиннее. Британцы оказались правы: наш мир действительно похож на большой pamplemousse («грейпфрут» по-французски).

Французы использовали треугольник в качестве рабочего инструмента для социального и научного развития. Для Великобритании же это был инструмент управления империей [11]. Великое тригонометрическое исследование Индии, проводившееся в течение большей части XIX столетия, стало крупнейшим научным проектом своего времени. Говорят, по количеству погибших людей и потраченных денег оно превзошло многие индийские войны той эпохи. Процесс измерения начался с южной оконечности Индийского полуострова, продолжился по джунглям, Деканскому плоскогорью и северным равнинам и закончился в Гималаях под руководством полковника Джорджа Эвереста (правильное произношение его имени – «Иврест»).

В ходе триангуляции измеряются как горизонтальные, так и вертикальные углы, что дает возможность создать трехмерную сеть треугольников, позволяющую топографам измерить и высоту объектов, и расстояние между ними. В Гималаях высота горных вершин представляла наибольший интерес. В то время самой высокой в мире считалась гора Чимборасо в Эквадоре, высоту которой столетием ранее измерили французы. Гималаи с их покрытыми снегом вершинами называли величественными горами, но заявления о том, что они выше Анд, воспринимались как очередная небылица из страны фокусников и заклинателей змей. Однако это мнение изменилось, когда экспедиция Джорджа Эвереста добралась до цепи гор, вздымающихся в небо, у самой высокой из которых не было местного названия. Впоследствии ее нарекли «Эверест» – по имени полковника Эвереста. Это самая высокая гора в мире, и ее название все произносят неправильно.

Северо-восточная территория Великой тригонометрической службы Индии, в том числе Колката (бывшая Калькутта) и Гималаи

Science Museum/Science & Society Picture Library

В Великобритании создание первой триангуляционной сети, охватывающей всю территорию страны, осуществлялось в период с 1783 по 1853 год. (Один конец базисной линии находится сейчас на территории автопарка аэропорта Хитроу, где размещен небольшой памятный знак. Базисные линии и аэропорты чаще всего располагаются на равнинах.) Повторная триангуляция началась в 1935 году и продолжалась до 1962 года. Управление геодезии и картографии установило в вершинах треугольников более шести тысяч бетонных геодезических знаков, ставших основой создания сети координат, используемой в официальных картах до сих пор.

Однако результаты повторной триангуляции почти сразу же устарели. Необходимость построения триангуляционной сети в масштабах всей страны была обусловлена тем, что измерять углы гораздо легче, чем расстояние между объектами. Но в 1960-х годах появилась новая лазерная технология, позволяющая точно определять большие расстояния. Достаточно разместить лазерный передатчик в одном месте, а приемник – в другом, и лазерный луч пройдет этот отрезок со скоростью света. Расстояние от источника до цели равно произведению скорости света на время прохождения этого расстояния. Когда у геодезистов появилась возможность использовать лазерные приборы, у них отпала необходимость в построении треугольников.

В Великобритании осталось 6200 геодезических знаков, и все они стали местом паломничества, причем не только для таких людей, как Роб Вудолл, но и для искателей приключений самых разных мастей. Геометрическая простота этих знаков, которые представляют собой пирамидальные обелиски с плоской верхушкой, придает им непреходящее мистическое очарование. Сейчас, когда они изрядно обветшали и потрепаны временем, поневоле задаешься вопросом: может, их поставили здесь друиды, а не географы?

Тем не менее новые технологии все же не могут обойтись без треугольников. Тригонометрические функции – неотъемлемая часть Глобальной системы позиционирования (Global Positioning System, GPS), инфраструктуры на основе спутниковой связи, которая устанавливает местоположение наших смартфонов и автомобильных навигаторов, в каком бы месте земного шара мы ни находились. Каждый спутник сети расположен на независимой орбите, которая определяется на основании ряда параметров, рассчитанных с помощью синусов и косинусов. Для того чтобы мой телефон вычислил свое местоположение, он должен получить такие координаты минимум с четырех спутников. Когда это происходит, он обрабатывает эти данные, обращаясь к таблице синусов и косинусов, хранящейся в его памяти.

Ученые пользовались таблицами тригонометрических функций на протяжении двух тысяч лет. В настоящее время мы носим их в карманах. Принцип, который гласит, что стороны треугольников с одинаковыми углами пропорциональны, был положен в основу первого математического доказательства и сохраняет свою важность в информационную эпоху.

4. Конусоголовые



Давайте возьмем прямоугольный треугольник и модифицируем его, вращая вокруг одной из меньших сторон. Полученный трехмерный объект – это конус: геометрическое тело с основой в виде круга и острой вершиной. Такие объемные фигуры не очень практичны: их нельзя катать как шары или складывать друг на друга как кубики. Тем не менее в прошлом конус активно использовался в моделях головных уборов. Вьетнамские крестьяне, работающие на рисовых полях, волшебники, отстающие ученики – все они носили остроконечные шляпы. У древних греков среди ремесленников и простого люда был популярен конусообразный головной убор из войлока или кожи – пилос. Однако в целом интерес к конусу имел скорее интеллектуальный, чем портняжный характер, поскольку конус – это настоящий математический клад.

Разрежьте конус ножом – и получите сечение в виде одной из четырех кривых: окружность, эллипс, парабола или гипербола. Форма конического сечения зависит от угла наклона лезвия ножа. Горизонтальный разрез образует окружность; наклонный разрез, пересекающий боковую поверхность конуса, – эллипс; разрез, параллельный образующей конуса, – параболу, а более глубокие разрезы – гиперболу, как показано на рисунке ниже. Анализ конических сечений стал высшим достижением древнегреческой геометрии и представляет собой яркий пример того, как некий объект исследований изучался исключительно ради удовольствия и лишь тысячелетие спустя нашел важнейшее применение. Оказалось, что обычный конус содержит ответы на фундаментальные вопросы об устройстве Вселенной.

Конические сечения

Окружность – это замкнутая плоская кривая, все точки которой равноудалены от центра. Привяжите нить к карандашу и воткнутой в бумагу булавке, натяните нить – и сможете нарисовать окружность. А теперь сделайте из нити петлю и зафиксируйте ее на двух булавках, как показано на рисунке ниже. Путь, который пройдет карандаш, туго натягивающий нить, – это эллипс. Все окружности имеют одинаковую форму, а это значит, что при их уменьшении или увеличичении полученная в итоге окружность будет идентична любой другой окружности. Эллипсы, напротив, бывают разной формы, зависящей от положения булавок, или фокусов. Чем ближе фокусы друг к другу, тем больше эллипс напоминает окружность. Когда фокусы совпадают, эллипс превращается в окружность. На самом деле в математике окружность считается частным случаем эллипса с совпадающими фокусами.

Как нарисовать эллипс

При взгляде на окружность под углом мы видим эллипс. Колеса, монеты, часы, обручи, кольца и диски всегда выглядят как эллипсы, если только они не находятся параллельно лицу, что бывает нечасто. Кроме того, для любого эллипса есть такой угол зрения, под которым он похож на окружность. (Отодвиньте эту книгу в сторону и поверните ее от себя, чтобы увидеть любой из эллипсов на этих страницах как окружность.)

Эллипс обладает одним геометрическим свойством, представляющим исторический интерес для любителей игр в закрытых помещениях. Если стол для игры в американский бильярд сконструирован в виде эллипса, то шар, посланный из одного фокуса, всегда отскакивает от борта и направляется ко второму фокусу, независимо от того, в каком направлении сделан удар по шару. Эта интересная особенность обусловлена следующим свойством эллипса: прямая линия, проведенная от одного фокуса к точке на эллипсе, образует с касательной такой же угол, что и линия, проведенная из этой точки к другому фокусу, как показано на рисунке слева. Когда вы наносите удар по шару, отбивая его на край стола, угол движения шара в момент его приближения к борту равен углу в тот момент, когда шар отскакивает от борта, – это известно любому, кто когда-либо натирал мелом конец кия [1]. Следовательно, если ударить по шару в одной точке фокуса, он обязательно отскочит в направлении другого фокуса.

Линии, проведенные от точки на эллипсе к двум его фокусам, образуют с касательной одинаковые углы, что обеспечивает бильярдистам три способа загнать шар в лузу непрямым ударом

В начале 1960-х годов ученик средней школы из Коннектикута Арт Фриго-младший сделал эллиптический стол для игры в американский бильярд, после того как узнал о конических сечениях в школьном математическом кружке. На столе Арта была черная точка на месте одного фокуса и луза – на месте другого; больше луз у этого стола не было. Если на столе находился только один шар, как показано на рисунке справа, существовало три способа загнать его в лузу, нацеливаясь не на саму лузу, а на черную точку. В таком случае, если сделать удар по шару в направлении черной точки, шар пройдет через нее, ударится о борт и попадет в лузу; если сделать удар по шару в направлении, противоположном направлению на черную точку, шар также отскочит от борта и попадет в лузу; если сделать удар по шару в направлении, противоположном лузе, то шар отскочит от борта один раз, пройдет через черную точку, ударится о борт еще раз, отскочит и снова попадет в лузу. Этот стол был настоящей машиной по забиванию шаров в лузу! Арт предложил начинать игру, которую он назвал «эллиптипул», с одного белого и шести цветных шаров на столе. Оригинальная форма стола открывала уникальные возможности для создания новых схем игры.

Арт сделал прототип своего стола и взял его с собой, когда поступил в Колледж Союза в городе Скенектади. В студенческом клубе стол пользовался такой популярностью, что о нем даже рассказывали в теленовостях. Впоследствии Арт запатентовал стол, и одна из компаний по производству игрушек предложила парню сделку. «У них были заказы на 80 000 столов. Мне тогда исполнился 21 год, и я подумал: “Я стану миллионером!”» – вспоминал он. Компания наняла Пола Ньюмана, который как раз снялся в главной роли в драме о бильярде The Hustler («Мошенник»), для съемок в рекламе стола. Однако возникли непредвиденные трудности. В результате понадобился почти год, чтобы столы поступили в продажу, но к тому времени дерево, из которого они были сделаны, деформировалось. После этого была разработана новая версия более прочного стола с монетоприемником, и такие столы установили в сотнях баров крупных городов. Но и это не помогло.

Когда Арт побывал в одном из таких мест, чтобы понаблюдать за игрой, он очень расстроился из-за того, что за его столом никто не играл. «Мне было больно, когда я увидел, что люди не понимают эту игру, – сетовал он. – Люди воспринимали мой стол просто как стол, который чем-то отличается от остальных. Если вы не знаете о фокальных точках, мяч не полетит туда, куда надо. Люди не могли загнать шар в лузу, потому что не понимали сути игры». Тем не менее, по словам Арта, этот опыт научил его тому, как не нужно начинать выпуск продукта. Впоследствии он стал успешным предпринимателем, занимаясь бриллиантами и губковыми швабрами. В настоящее время Арт живет во Флориде и импортирует оливковое масло.

Возможно, математической зависимости между фокусами эллипса и не удалось совершить переворот в американской барной культуре, но зато она нашла прекрасное применение в индустрии осветительных приборов. Подобно тому как бильярдный шар, посланный из одного фокуса эллипса, отскакивает от борта в направлении другого фокуса, все лучи источника света, если его разместить в фокусе эллипса, сделанного из отражающего материала, будут направлены в сторону другого фокуса. Вращая эллипс вокруг невидимой линии, соединяющей две фокальные точки, вы получите трехмерную фигуру под названием «эллипсоид». Если разместить лампочку у одного из фокусов эллипсоида с зеркальной внутренней поверхностью, это и будет основной элемент театрального прожектора. Речь идет о самом эффективном способе получения узконаправленного луча света. Излучаемый лампочкой свет отражается поверхностью эллипсоида и собирается во втором фокусе, образуя концентрированный пучок света, который преломляется затем через линзу. На самом деле оптическое применение конических сечений объясняет происхождение слова «фокус»: на латыни оно означает «очаг». В немецком языке происхождение этого слова еще более очевидно: «фокус» на немецком – brennpunkt, что значит «точка воспламенения».

Здания с эллиптическими крышами обладают удивительными свойствами, поскольку звук, созданный в одном из фокусов, будет отражаться из любой точки на поверхности крыши в другой фокус. Например, гигантский купол мормонского Табернакля (молитвенного дома) в Солт-Лейк-Сити был специально построен в форме половины эллипсоида [2]. Если вы уроните булавку у кафедры проповедника, которая находится в одном из фокусов, звук от ее падения будет отчетливо слышен у другого фокуса, расположенного более чем в пятидесяти метрах от первого.

Развитие древнегреческой математики длилось почти тысячу лет, от Фалеса, который жил в VII–VI веках до нашей эры, до последней значимой фигуры – Паппа, предположительно жившего на рубеже IV–III веков до нашей эры [3]. Самое почетное место занимают три мыслителя: Евклид, Архимед и Аполлоний, великая троица классических математиков. Все они жили в III столетии до нашей эры. С Евклидом и Архимедом мы встретимся немного позже. Аполлоний же, самый младший из них, учился и преподавал в Александрии. Кроме того, он проживал в городе Пергам (территория современной Турции), в котором находилась вторая по величине библиотека Греческой империи. В наше время из этих троих гигантов мысли Древней Греции Аполлоний наименее известен, хотя в свое время его называли Megas Geometris – Великим Геометром. Из всех его книг до нас дошел только трактат о конусах Conics («Конические сечения»).

В трактате «Конические сечения» Аполлоний показал, как рассечение конуса позволяет получить три типа сечений, и дал им имена. Термин «эллипс» происходит от греческого слова leipein («опустить, пропустить»), «парабола» – от para («рядом, около»), а «гипербола» – от hyper («сверх, по ту сторону»). (Суффикс -bola означает «бросать» [4].) Названия, выбранные Аполлонием, основаны на свойствах областей этих кривых, достаточно сложных для того, чтобы их здесь объяснять. Однако мы можем выяснить, что он имел в виду, воспользовавшись понятием угла наклона секущей плоскости и той аналогией с рассечением конуса, о которой шла речь выше. Когда угол наклона секущей плоскости равен углу наклона боковой поверхности конуса, полученное сечение называется параболой; когда этот угол больше – гиперболой. В трактате «Конические сечения» содержится 387 тезисов; читать этот труд нелегко, отчасти потому, что Аполлоний использует громоздкую систему обозначений, уже вышедшую из употребления. Тем не менее он проделал колоссальную работу, которая считается высшим достижением древнегреческой геометрии. Тщательно изучив свойства конуса, Аполлоний создал формальную основу для крупных научных открытий, сделанных спустя два тысячелетия.

В «Конических сечениях» Аполлоний самонадеянно заявил, что тему этого трактата стоит изучать исключительно ради удовольствия. И все же он разработал математические концепции, нашедшие применение на практике. Древние звездочеты видели, что планеты перемещаются не по прямым линиям, а блуждают по небу и зачастую даже возвращаются обратно, образуя петли. (Слово «планета» происходит от греческого planetes – «странник».) В свое время Платон заявил, что планеты двигаются по идеальной окружности, которая представляет собой самую простую и изящную форму. Это утверждение основывалось на уверенности Платона в том, что мир построен с геометрической простотой и элегантностью, даже если факты говорят об обратном. Данным заявлением Платон бросил мыслителям вызов: доказать блуждающее движение небесных тел, используя определенное сочетание круговых движений. Аполлоний принял вызов и разработал систему, которая стала стандартной моделью на почти две тысячи лет.

Согласно предложенному Аполлонием описанию движения планет Земля находится в центре мироздания. Каждая планета движется по малой окружности – эпициклу, который, в свою очередь, перемещается вокруг Земли по большой окружности – деференту, как показано на рисунке ниже. Эта похожая на кружево орбитальная траектория напоминает рисунок, полученный с помощью спирографа – игрушки, в которой маленькое зубчатое колесо с ручкой в одном из отверстий вращается вокруг зубчатого колеса большего диаметра. Бывают моменты, когда орбита планеты, которая движется по эпициклу, перемещающемуся по деференту, образует петли, что объясняет, почему время от времени планеты как будто движутся в обратную сторону. Система Аполлония полностью соответствовала фактическим данным при совсем незначительных погрешностях, легко устраняемых посредством введения дополнительного эпицикла. Это означало, что орбита планеты формируется под влиянием совокупности трех круговых движений, другими словами – движется по окружности, которая перемещается по второй окружности, которая, в свою очередь, движется по третьей окружности с Землей в центре.

В труде «Альмагест», написанном во II веке нашей эры14, греческий астроном Птолемей описал систему эпициклов и деферентов, которая оставалась общепризнанной моделью устройства мира вплоть до XVI столетия. Никто не подвергал ее сомнению, даже когда более точные измерения требовали включения все большего количества эпициклов. Последняя версия этой модели, включавшая в себя 39 циклов и эпициклов, описывала движение пяти планет, Солнца и Луны [5]. Мечта Платона о геометрической элегантности привела к созданию чрезвычайно запутанной схемы, которую даже церковь критиковала за нерациональность. «Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще», – сказал в XIII веке о системе Птолемея король Альфонсо X Кастильский, которого еще называли El Sabio – Мудрый.

Сейчас мы знаем, что Аполлоний был неправ. Более простая модель планетных орбит все же существует, о чем мы поговорим чуть позже. На самом деле пренебрежительная фраза «прибавлять эпициклы» употребляется в наше время по отношению к плохой науке, бесконечному совершенствованию ошибочной теории в надежде на то, что в конце концов она сработает. Тем не менее система эпициклов господствовала так долго потому, что она как нельзя лучше справлялась со своей задачей. В большинстве случаев теория опровергается тогда, когда доказана ее несостоятельность. Но теорию эпициклов так никто и не опроверг, поскольку это невозможно в принципе. Интересно то, что циклы и эпициклы можно использовать для описания любой замкнутой непрерывной орбиты [6]. Идея Аполлония оказалась настолько действенной, что никому даже в голову не приходило искать что-то другое.

В 2005 году аргентинцы Кристиан Карман и Рамиро Серра решили описать невероятно сложную орбиту, а затем найти эпициклы, образующие ее [7]. Они выбрали для этого изображение Гомера Симпсона, поскольку оно вовсе не похоже на орбиту, а еще потому, что это ведь Гомер Симпсон!15 Представленный ниже рисунок с немалым количеством завитушек – это модель гомеровской орбиты. Большая окружность – деферент, а переплетение окружностей поменьше содержит 9999 эпициклов разных размеров. Планета вращается вокруг 9999-го эпицикла, который движется вокруг 9998-го эпицикла и так далее до самого первого эпицикла, вращающегося вокруг деферента. К тому времени, когда планета завершит один оборот вокруг деферента (и два оборота вокруг первого эпицикла, три вокруг второго и т. д., в том числе 10 000 оборотов вокруг 9999-го эпицикла), она пройдет весь путь по этому рисунку. Карман и Серра были, по их собственным словам, «поистине взволнованы и очень довольны», когда их модель заработала. Пожалуй, Платон тоже оценил бы присущую Гомеру поэтичность.

Похоже на Мардж, но это Гомер: путь, пройденный планетой, орбита которой представляет собой совокупность 10 000 окружностей, – это портрет главы семейства Симпсонов

Шестнадцатого мая 1571 года в 4:37 утра в небольшом немецком городке Вайль-дер-Штадт был зачат Иоганн Кеплер [8]. Он родился через 224 дня, 9 часов и 53 минуты, в 14:30 27 декабря. Эти детали известны нам благодаря гороскопу, который Кеплер составил для себя в возрасте 26 лет. В нем он рассказывает также о том, что едва не умер от оспы, что его руки были сильно изуродованы, что он часто страдал от болезней кожи и что когда в возрасте 21 года он потерял невинность, то это далось ему «с невероятным трудом и сопровождалось острой болью в мочевом пузыре». Исходя из всего этого, мы можем сделать вывод о наличии у Кеплера качеств, определивших всю его жизнь: мнительность, склонность к самоанализу, одержимость звездами и любовь к числам.

К тому времени, когда Кеплер составил этот гороскоп, он уже опубликовал свою первую книгу The Mystery of the Cosmos («Тайна мироздания»), в которой представил модель планетарной системы, основанную на предложенной на полстолетия раньше революционной теории Николая Коперника о том, что планеты вращаются вокруг Солнца. Хотя Коперник отвергал геоцентризм, он все же считал, что планеты перемещаются по эпициклам. Кеплер усовершенствовал эти воззрения посредством модели, в которой орбиты планет образуют суперструктуру из геометрических объектов, так называемых платоновых тел, таких как куб, тетраэдр, октаэдр, икосаэдр и додекаэдр. Все эти фигуры были разного размера, но в центре структуры находилось Солнце. Безусловно, это была неправильная модель, тем не менее книга «Тайна мироздания» сделала Кеплеру имя в ученых кругах, и, когда знаменитый датский астроном Тихо Браге начал строить новую обсерваторию возле Праги, он взял амбициозного молодого немца к себе в помощники.

Браге был эпатажным аристократом. Он носил протез носа из сплава золота и серебра, после того как кузен отсек нос ему во время дуэли, состоявшейся из-за одной математической формулы. Кроме того, у Браге был домашний лось, который упал замертво, выпив слишком много пива за ужином. Однако этот датчанин гораздо бережнее обращался со своими астрономическими данными – самыми точными и полными на то время, о чем знала вся Европа. Тихо Браге поручил Кеплеру разобраться с орбитой Марса – планеты, путь которой больше всего отклонялся от круговой орбиты. Это была изнурительная, кропотливая работа, требующая построения возможных орбит, расчета прогнозируемых позиций и проверки данных наблюдения. «Если этот утомительный метод внушает вам отвращение, – объяснял Кеплер впоследствии, – он должен внушить вам и сострадание ко мне, поскольку я проделал это не менее семидесяти раз».

В период «боев с Марсом» Кеплер сделал перерыв, во время которого изобрел современную оптику. В книге The Optical Part of Astronomy («Оптика в астрономии») есть раздел о зеркалах, сделанных в форме конических сечений: эллипса, параболы и гиперболы. В действительности именно в этом труде Кеплер ввел слово «фокус», означавшее точку пересечения отраженных лучей света. Когда Кеплер вернулся к Марсу, его так вывела из себя неспособность найти систему круговых движений, которая согласовывалась бы с данными наблюдения, что в конце концов он решил отказаться от теории эпициклов. Новое направление исследований вряд ли внушало Кеплеру оптимизм. «Я очистил авгиевы конюшни астрономии от окружностей и спиралей, – сетовал он, – и остался с одной телегой навоза». На протяжении года Кеплер экспериментировал с яйцевидной орбитой – овалом, сплюснутым у одного края и более острым у другого, хотя сам ученый испытывал отвращение к такой форме орбиты и не считал ее ни симметричной, ни гармоничной. Для того чтобы аппроксимировать этот овал в своих вычислениях, он использовал эллипс – геометрическую фигуру, которую знал по работе с применением конических сечений в оптике. И тут его осенило: эта фигура с ее свойствами сама может все объяснить. «O me ridiculum! Каким же глупцом я был! – воскликнул Кеплер. – Идеальный эллипс – это единственно возможная форма орбиты планет».

Поначалу Кеплер отбрасывал идею об эллиптической орбите Марса, потому что считал ее слишком простой для того, чтобы ее не заметили другие ученые. Кроме того, он знал, что у эллипса два фокуса, а это противоречило теории об уникальности Солнца, предполагающей, что оно должно быть в центре системы, а не в одной из одинаково важных точек. Однако затем Кеплер понял, что, несмотря на кажущееся противоречие, Солнце действительно находится в одном из фокусов и что именно его влияние определяет скорость движения планеты по орбите. (В другом фокусе нет ничего.) Чем ближе планета к Солнцу, тем быстрее она движется по эллиптической орбите, но охватывает при этом равную площадь за равные промежутки времени, как показано на рисунке ниже. Философ Норвуд Рассел Хэнсон писал, что величайшее достижение Кеплера было самым смелым актом воображения за всю историю науки [9]. «Даже концептуальные потрясения [двадцатого столетия] не требовали такого разрыва с прошлым». Модель эпициклов Аполлония была в конце концов вытеснена эллипсом – кривой, которой Великий Геометр сам дал имя и свойства которой знал лучше, чем кто-либо другой.

Для того чтобы добраться из точки A в точку B, требуется столько же времени, сколько из точки C в точку D, поскольку заштрихованные сегменты имеют одинаковую площадь. Следовательно, по мере отдаления от Солнца планета движется медленнее

В 1610 году Кеплер получил послание от Галилео Галилея, выдающегося астронома, жившего за Альпами, в Италии. Оно гласило:

smaismrmilmepoetalevmibunenugttaviras

Новость Галилея была слишком захватывающей, чтобы держать ее в себе, но и слишком ценной, чтобы рассказывать о ней всем подряд, тем самым помогая кому-то в его научных изысканиях. Поэтому ученый написал ее в виде анаграммы, что устанавливало приоритетность открытия, а также позволяло сохранить детали в тайне и избежать чрезмерной ответственности в случае, если он окажется неправ.

Эта загадка сводила Кеплера с ума. В конце концов ему показалось, что он у цели, когда он переставил буквы и получил вместо бессмысленного набора символов предложение, имевшее смысл: «Salve umbistineum geminatum Martia proles» – «Привет вам, близнецы, порождение Марса» (хотя он и использовал здесь латинизацию немецкого слова umbeistehen). Кеплер был убежден, что его соперник обнаружил у Марса два спутника. Впоследствии Галилей расшифровал эту анаграмму так: «Altissimum planetam tergeminum observavi» – «Высочайшую планету тройную наблюдал». Открытие касалось вовсе не Марса, а Сатурна: Галилей выявил у этой планеты выпуклости по бокам, которые образуют кольца Сатурна. Но самое интересное, что Кеплер таки оказался прав! У Марса действительно есть два спутника, Фобос и Деймос, которые были открыты два столетия спустя.


    Ваша оценка произведения:

Популярные книги за неделю