355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Альберт Виолант-и-Хольц » Том 9. Загадка Ферма. Трехвековой вызов математике » Текст книги (страница 5)
Том 9. Загадка Ферма. Трехвековой вызов математике
  • Текст добавлен: 24 сентября 2016, 03:28

Текст книги "Том 9. Загадка Ферма. Трехвековой вызов математике"


Автор книги: Альберт Виолант-и-Хольц


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 5 (всего у книги 9 страниц)

(источник: Мальба Тахан. Человек, который считал).

* * *

«Арифметика» Диофанта

О жизни Диофанта практически ничего не известно. В точности неизвестны даже годы его жизни. Однако до нас дошли несколько дат. С одной стороны, Диофант цитирует Гипсикла, давая определение фигурных чисел, следовательно, его труд был написан позднее 150 года до н. э. С другой стороны, Теон Александрийский, отец Гипатии, приводит в своих трудах одно из определений Диофанта, откуда следует, что «Арифметика» было написана до 350 года н. э. Следовательно, мы можем лишь утверждать, что даты рождения и смерти Диофанта находятся в границах этого периода длиной в 500 лет.

Точнее определить годы жизни Диофанта помогает письмо византийского автора XI века Михаила Пселла. В переводе с греческого письмо звучит так: «Диофант управлялся с ней (египетской арифметикой. – Примеч. автора) более умело, но образованный Анатолий объединил важнейшие части доктрины Диофанта, которую тот изложил разрозненно и сжато, и посвятил свой труд Диофанту». Пол Таннери опубликовал это письмо в одном из своих исследований и предположил, что Пселл ссылается на комментарий о Диофанте, источник которого был утерян. Возможно, он был написан Гипатией. Упоминаемый в письме Анатолий был епископом Лаодикеи, писателем и знатоком математики и жил в III веке н. э. Следовательно, можно предполагать, что Диофант написал «Арифметику» примерно в 250 году н. э. Однако не все исследователи согласны с этим переводом, поэтому предложенную дату нельзя считать окончательной.


Обложка книги «Арифметика» Диофанта, напечатанной в Базеле в 1575 году.

Как и в случае с Ферма, точный возраст Диофанта можно определить по его эпитафии. Она содержится в «Греческой антологии», составленной Метродором примерно в 500 году и. э. Одна задача из этого собрания посвящена автору «Арифметики»:

 
«Прах  Диофанта  гробница  покоит;  дивись  ей  –  и  камень
Мудрым  искусством  его  скажет  усопшего  век.
Волей  богов  шестую  часть  жизни  он  прожил  ребенком.
И  половину  шестой  встретил  с  пушком  на  щеках.
Только  минула  седьмая,  с  подругой  он  обручился.
С  нею  пять  лет  проведя,  сына  дождался  мудрец;
Только  полжизни  отцовской  возлюбленный  сын  его  прожил.
Отнят  он  был  у  отца  ранней  могилой  своей.
Дважды  два  года  родитель  оплакивал  тяжкое  горе,
Тут  и  увидел  предел  жизни  печальной  своей».
 

(Перевод С.П. Боброва)

Если мы обозначим возраст Диофанта за х, то его детство длилось х/6 лет, он женился по прошествии х/7 лет, его борода росла х/12 лет. Его сын родился 5 лет спустя и прожил х/2 лет. Отец умер 4 года спустя после смерти сына. Получим:

хх/6 + х/7 + х/12 + 5 + х/2 + 4.

Умножив обе части равенства на 84, получим:

84х = 84· х/6 + 84·х/7 + 84·х/12 + 84·5 + 84·х/2 + 84·4.

Упростим равенство:

84х = 14х + 12х + 7х + 420 + 42х + 336.

Перенеся все члены с х в одну часть, получим:

84х – 14х – 12х – 7х – 42х = 420 + 336.

Отсюда 9х = 776, следовательно, х = 156/9 = 84. Таким образом, Диофант женился в 26 лет, сын родился, когда ему было 38 лет. Сын прожил 42 года – в два раза меньше, чем отец. Однако нам неизвестно, является эта задача полностью вымышленной или же, напротив, она основана на реальных событиях жизни математика.

* * *

КНИГИ «АРИФМЕТИКИ» ДИОФАНТА

«Арифметика» Диофанта состоит из 13 книг на греческом языке, из которых до нас дошли шесть. Кроме этого, в 1972 году обнаружилась арабская рукопись, включающая еще четыре книги, по содержанию не совпадающие с книгами, дошедшими до нас на греческом. В них описывается ряд задач по нахождению рациональных решений алгебраических уравнений с рациональными коэффициентами. Шесть книг на греческом содержат 189 задач. Они распределяются так:

Книга I: приведены 25 задач для уравнений первой степени и 14 – для второй степени.

Книга II состоит из 35 задач. Задача под номером 8, несомненно, самая известная из всех, так как именно она навела Ферма на мысль о его теореме.

Книга III содержит 21 задачу. Наиболее известной является 19-я, в которой впервые применяется геометрический метод решения.

Книга IV содержит 40 задач, в большинстве из них речь идет о кубах чисел.

Книга V содержит 30 задач. В 28 из них идет речь об уравнениях второй и третьей степени. Последняя, 30-я задача – это задача о смесях.

Книга VI содержит 24 задачи. Они посвящены поиску прямоугольных треугольников с рациональными сторонами.


Обложка одного из изданий «Арифметики» Диофанта, опубликованного в 1670 году сыном Ферма уже после смерти отца. В это издание были включены комментарии, сделанные знаменитым математиком.

* * *

Важность «Арифметики»

Важность работы Диофанта сложно переоценить. Предложенные им задачи бросают вызов гениальности и творчеству и воспевают красоту математики. Хотя Диофант не применял сложные алгебраические обозначения, он ввел в употребление некоторые символы. Так, он обозначал сокращениями неизвестную и степени неизвестной. Это позволило упростить запись уравнений. Он также использовал сокращение, обозначавшее равенство. Поэтому его работа стала важным шагом в переходе от словесной к символьной алгебре.

Также очевидно, что Диофант уделял больше внимания частным, а не общим случаям. Очевидно, переход к общим случаям был слишком большим шагом вперед. Однако некоторые из методов Диофанта можно легко распространить на более общие случаи. Тем не менее, ему явно не хватало средств алгебраической нотации, чтобы записать более общие методы. Например, Диофант мог обозначать только одну неизвестную, и всякий раз, когда в решении появлялись различные неизвестные, он называл их «первая неизвестная», «вторая неизвестная», «третья неизвестная» и так далее. У него в распоряжении также не было символа для обозначения произвольного числа n, поэтому выражение (6+ 1)/(n2 + n) требовалось записывать словами:

«Число, умноженное на шесть и увеличенное на один, которое делится на сумму его квадрата и этого же числа». Нетрудно видеть, что записывать сложные выражения в подобном виде было непросто. Лишь Виет сделал решающий шаг к современной алгебраической нотации.

* * *

АЛГЕБРАИЧЕСКАЯ НОТАЦИЯ ВИЕТА

Сегодняшнюю математику нельзя представить без символьной нотации. Но она формировалась в течение многих тысяч лет. Буквенные обозначения в своих доказательствах использовали уже Диофант и Евклид, но окончательный переход к алгебраической нотации осуществил Виет. В своей книге In artem analyticem isagoge («Введение в аналитическое искусство»), написанной в 1591 году, Виет уделил особое внимание алгебраическим методам и привел их систематическое изложение. Его метод контрастировал с синтетическим методом, который использовали греки для доказательства теорем. Он применил новый подход к тому, что было известно на тот момент, и стремился, чтобы ни одна математическая задача не осталась нерешенной. Тот же Виет без тени сомнения утверждал, что благодаря алгебре будет возможно решить все задачи. Развитие математической нотации можно оценить на следующем примере. Здесь записан один и тот же многочлен в нотации Диофанта, нотации Виета и современным способом.

Способ записи Диофанта:


Способ записи Виета: CC CQ + QQC QN + 1

Современная нотация: хх5 + х4х + х х + 1.

* * *

Распространение заветов Диофанта

Европейские математики начали открывать для себя наследие Диофанта усилиями немецкого математика и астронома Иоганна Мюллера, также известного как Региомонтан. Около 1463 года он обнаружил копию «Арифметики» в Венеции и обратил внимание, что «никто до сей поры не перевел с греческого на латынь тринадцать книг Диофанта, в которых сокрыт истинный цвет математики». Примерно в 1570 году Рафаэль Бомбелли перевел часть «Арифметики», но его труд так и не был опубликован. Тем не менее он использовал многие задачи Диофанта в своей книге под названием «Алгебра». В 1575 году Вильгельм Гольцман, известный также под именем Ксиландр, опубликовал в Базеле книгу «Сочинения Диофанта Александрийского в шести книгах» (Diophanti Alexandrini Rerum libri sex) – первый перевод книги Диофанта на латынь. В 1621 году Баше де Мезириак сделал еще один шаг, опубликовав в Париже новый перевод под следующим названием: «"Арифметика" Диофанта Александрийского в шести книгах и одна книга о многоугольных числах, переведенные с латыни и греческого, с иллюстрациями» (Diophanti Alexandrini Arithmeticorum libri sex, et de Numeris multangulis liber unus. Nunc primun graece et latini editi atque absolutissimis commentariis illustrati). Это издание содержит исходный текст на греческом, его перевод на латынь, а также ряд примечаний и комментариев.


Портрет Йоганна Мюллера, который в XV веке обнаружил копию труда Диофанта.

* * *

ГИПАТИЯ АЛЕКСАНДРИЙСКАЯ

Жизнь Гипатии окутана легендами. О точной дате ее рождения ведутся споры. Год смерти известен точно – 415 год, но историки расходятся во мнениях относительно того, сколько лет было Гипатии на момент смерти. Ее отец, Теон, был известным ученым и преподавателем математики в Александрии. Он воспитал в Гипатии любовь к наукам. Он также рассказал ей о мировых религиях и обучил физическим упражнениям, чтобы сохранять тело сильным и здоровым. Гипатия очень быстро стала превосходным оратором, и многие приезжали из других городов, чтобы обучиться у нее ораторскому искусству. Среди ее учеников были язычники и христиане. Они принадлежали к аристократии, некоторые занимали очень высокие посты. Философ Дамаский писал, что «достигнув высочайшего мастерства в искусстве обучения, она также была справедливой и мудрой и всю свою жизнь оставалась невинной».

Гипатия изучала астрономию, астрологию и математику. Синезий в письмах упоминает, что Гипатия, будучи его ученицей, усовершенствовала астролябию и изобрела гидрометр. Она также была редактором и автором комментариев для множества книг по математике, среди которых отметим «Конические сечения» Аполлония и «Арифметику» Диофанта. Благодаря ее усилиям эти книги стали доступнее читателям и сохранились на протяжении многих веков. В 415 году Гипатия была убита во время столкновений между последователями епископа Кирилла и префекта Ореста, ее бывшего ученика.


На этом фрагменте картины Рафаэля «Афинская школа» на переднем плане изображен Пифагор, а чуть дальше – Гапатия Александрийская в белой тунике.

* * *

Перевод Баше дал огромный толчок развитию теории чисел. Тот же Баше решил диофантовы уравнения первой степени вида ах + by = cz. Позднее Альбер Жиро идеально точно выделил целые числа, представимые в виде суммы двух квадратов. Наконец, Ферма изобрел новый общий метод доказательства, так называемый метод бесконечного спуска, и применил его для доказательства своей теоремы при n = 4.

До выхода перевода Баше теория чисел не вызывала интереса математиков. Считалось, что задачи теории чисел – не более чем математические курьезы, любопытные, но носящие частный характер. Объектами всеобщего внимания в то время были геометрия и анализ. Но после публикации трудов Ферма теория чисел быстро привлекла к себе интерес наиболее выдающихся математиков: Виета, Декарта, Гаусса, Эйлера, Якоби, Лагранжа, Лежандра, Дирихле, Дедекинда, Кронекера и многих других. Это лишь часть обширного перечня ученых, которые занимались исследованиями теории чисел – «королевы математики», как считал Гаусс.


Портрет математика XVIII века Жозефа Луи Лагранжа, который изучал различные задачи, поставленные Ферма.

* * *

РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ

Диофантовы уравнения имеют целые коэффициенты и целые решения. Сначала удалось решить диофантовы уравнения первой степени, что позволило найти решения многих практических задач. Рассмотрим один наглядный пример. Допустим, что наш сосед отправился за покупками и хочет купить растительного масла на целый год вперед. Вернувшись из магазина, он сказал, что нашел два сорта масла – один по 3,24 евро за литр, другой по 4,50 евро за литр – и что всего он потратил 43,20 евро. В ответ мы говорим, что И бутылок будет явно недостаточно на весь год.

Как мы узнали, сколько бутылок купил сосед, если мы даже не открывали пакеты, которые он принес из магазина? Обозначим за х число бутылок стоимостью 3,24 евро, за у – число бутылок по 4,50 евро. Выразим потраченную сумму с помощью уравнения и получим 3,24х + 4,50у = 43,20. Это уравнение имеет дробные коэффициенты, но если умножить обе части на 100, получим уравнение с целыми коэффициентами: 324х + 450у = 4320. Следовательно, нужно найти такие х и у, для которых это равенство было бы верным. Они должны быть целыми, так как число бутылок каждого сорта обязательно целое. Необходимое и достаточное условие наличия целых корней уравнения с целыми коэффициентами таково: наибольший общий делитель коэффициентов при неизвестных должен быть делителем свободного члена. Наибольший общий делитель 324 и 450 равен 18. 4320 нацело делится на это число. Поделив обе части уравнения на 18, получим 18х + 25у = 240. Теперь мы можем составить таблицу решений для этого уравнения. Для этого будем присваивать х целые значения, начиная с 0, и находить соответствующие значения у, которые удовлетворяют уравнению, то есть такие, что у = (240 – 18х)/25.



Из этой таблицы видно, что единственными целыми положительными решениями являются х = 5, у = 6, следовательно, всего наш сосед купил 11 бутылок растительного масла. Со временем методы решения уравнений подобного типа совершенствовались и были реализованы в компьютерных программах и инженерных калькуляторах.

* * *

В 1885 году сэр Томас Хит опубликовал первый перевод «Арифметики» на английский язык. Второе издание этого замечательного перевода увидело свет в 1910 году. В него были включены комментарии Баше, Ферма и других. Многие античные авторы оставляли в книгах свои комментарии. В различные издания и переводы часто включались примечания редактора и переводчика, но при этом не указывалось, что именно является частью исходного текста, а что – комментариями. Возможно, тогда считалось, что настоящий шедевр строится со временем и любой желающий может изучить его и дополнить чем-то новым. Следовательно, с исторической точки зрения очень важно иметь как можно больше изданий одной и той же книги, чтобы видеть, как ее текст изменялся со временем.

Изучив рукописи, которые сохранились до наших дней, Таннери предположил, что все они имеют один общий источник. По-видимому, этим общим источником является издание «Арифметики» с комментариями Гипатии Александрийской. Согласно этой же теории, данный труд включал именно те шесть книг, которые дошли до наших дней. Утерянными оказались те книги, которые не были прокомментированы Гипатией. Если это так, то именно усилиями Гипатии до нас дошла часть наследия Диофанта. Также весьма вероятно, что сама Гипатия существенно дополнила эти книги. В настоящее время исследователи продолжают работу, и окончательный ответ все еще не найден.


Обзор задач из «Арифметики» Диофанта

Один из экземпляров издания с комментариями Баше попал в руки Ферма. Тот прекрасно владел латынью и греческим и мог читать «Арифметику» на двух языках. Кроме того, это издание уже содержало комментарии, словом, служило идеальной отправной точкой для новых комментариев.

Задача 32 из книги II

Эта задача формулируется так:

«Найти три числа, таких что квадрат любого из них, сложенный со следующим числом, дает квадрат».

Можно использовать любые способы решения. Возможно, если нам повезет, мы сможем найти верный ответ. Можно начать, например, с того, что выбрать в качестве первого числа 1. Теперь, по условию, его нужно возвести в квадрат и прибавить к нему следующее из трех чисел, при этом результат должен также являться квадратом. Например, 12 + 3 = 4 = 22. Итак, мы выбрали 1 и 3. Теперь возведем 3 в квадрат и прибавим к нему некое число так, чтобы результат тоже был квадратом. Например, З2 + 7 = 16 = 42. Имеем 1, 3 и 7. Теперь осталось совершить последний шаг цикла и подтвердить, что 7 в квадрате, сложенное с 1, также дает квадрат: 72 + 1 = 50. Увы, но 50 не является квадратом. Следовательно, нужно начинать все сначала и попробовать другие числа. Эта задача подобна головоломке: нужно правильно расставить все элементы по своим местам. Ферма проводил многие часы за решением подобных задач. Они бросали вызов его воображению, и такой же вызов позднее бросил современникам он сам.

Решение задачи 32

Диофанту было известно решение этой задачи, и непохоже, что он нашел его случайно. Скорее всего, ему был известен некий загадочный метод решения. Решение, предложенное Диофантом, таково:

«Обозначим первое число за х, второе примем равным 2х + 1, третье – 2(2х + 1) + 1, то есть 4х + 3, так что два условия задачи выполняются. Последнее условие формулируется так: (4х + 3)2х = квадрат = (4х – 4)2. Следовательно, х = 1/51, а тройка искомых чисел такова: 7/57, 71/57, 199/57».

Как получилось, что подобные выкладки приводят к верному ответу? Нет никаких сомнений, что Диофант был выдающимся математиком. Он обозначил первое число за х. Второе число он мог выбрать любым способом, но обозначил его за 2х + 1, потому что знал, что х2 + 2х + 1 = (х + 1)2, следовательно, выполнялось первое условие. Третье число он также мог выбрать произвольным образом, но выбрал 2(2х + 1) + 1, то есть 4х + 3, поскольку он знал, что (2х + 1)2 + 2(2х + 1) + 1 = (2х + 2)2, следовательно, выполнялось и второе условие. Остается лишь третье условие, а именно: (4х + 3)2 + х = квадрат. Здесь снова проявляется гений Диофанта: он понял, что этот квадрат может быть представлен в виде (4х – 4)2, и в этом случае для решения задачи достаточно найти корни очень простого уравнения.

(4х + 3)2 + х = (4х – 4)2.

Раскрыв скобки, получим:

16х2 + 24х + 9 + = 16х2 – 32х + 16.

Сократив 16х2, имеем:

24х + 9 + х = —32х + 16.

Перенесем все члены с х в одну часть и получим:

24х + х + 32х = 16 – 9 —> 57х = 7 —> х = 7/37.

Мы нашли первое из искомых чисел. Теперь нетрудно найти второе число, равное 2х + 1 = 71/57, и третье, равное 4х + 3 = 199/57. Наконец, легко показать, что

(7/57)2 + 71/57 = 4096/3249 = (64/57)2 (первое условие);

(71/57) + 199/57 = 16384/3249 = (128/57)2 (второе условие);

(199/57)2 + 7/57 = 40000/3249 = (200/57)2 (третье условие).

Особенности задачи

На примере этой задачи мы можем оценить всю красоту стиля Диофанта, которым, должно быть, восторгался и Ферма. Эта задача красива, но явно непрактична. Кому может быть интересно решить ее? Она не нужна, чтобы подсчитать урожай, измерить землю или узнать расположение звезд. Она лишь показывает одно из свойств рациональных чисел. Интерес этой задачи заключен в музыке чисел, в беспрестанных попытках понять их внутреннюю гармонию и ритм. Однако чтобы решить ее, требуется весь математический аппарат и все доступные средства. Так, именно размышления об «Арифметике» навели Виета на мысль о создании основ алгебраической нотации, которая используется и сейчас. Он пытался сделать труд Диофанта понятнее читателю и найти средство для решения все более сложных задач. Ферма, вдохновленный «Арифметикой», сформулировал новые задачи и нашел новые способы доказательства, которые снова вызвали интерес к теории чисел, ставшей со временем одним из самых многообещающих разделов математики. Простые числа, которые в свое время интересовали древних греков, сегодня используются в сложнейших системах шифрования информации и моделирования Вселенной.

С другой стороны, решенная задача имеет чисто арифметический смысл. Если бы задача имела геометрический смысл, то сложение числа, возведенного в квадрат, с другим числом было бы равносильно сложению площади и длины – величин разных порядков. Теорема Пифагора – совершенно иной случай: она гласит, что сумма квадратов катетов равна квадрату гипотенузы, то есть площадь двух квадратов, построенных на катетах, равна площади большого квадрата, построенного на гипотенузе. В этом равенстве все величины имеют один порядок. В теореме Ферма все степени также имеют одинаковые показатели: хn + уn = zn. При = 3 можно представить, что мы складываем объемы кубов и получаем объем третьего, большего куба. Для больших степеней речь будет идти уже о многомерных фигурах в многомерных пространствах.

Параллельные рассуждения

Эта задача также характеризуется тем, что ее решение нетривиально. Его сложно найти случайно. Подобным свойством обладают и многие другие задачи из «Арифметики». Кроме этого, Диофант довольствовался одним частным решением и не стремился решить задачу в общем виде, чтобы найти все возможные решения. Несмотря на это, его результаты открывают возможность провести параллельные рассуждения, с помощью которых можно найти новые решения, не упоминаемые в книге.

Например, если вместо последнего условия 4х – 4 мы используем 4х – 5, то получим другое, полностью корректное решение:

(4х + 3)2 + х = (4х – 5)2 —>

16х2 + 24х + 9 + х = 16х2 – 40х + 25 —>

24х + 9 + х = – 40х + 25 —>

24х + х + 40х = 25 – 9 —>

65х = 16 —>

х = 16/65.

Мы получили еще одно решение: 16/65, 97/65, 259/65.

Если вместо последнего условия 4х – 4 мы используем 5х – 3, то получим еще одно корректное решение:

(4х + З)2 + х = (5х – 3)2 —>

16х2 + 24х + 9 + х = 25х2 – 30х + 9.

Сократив девятки в обеих частях равенства, получим:

16х2 + 24х + х = 25х2 – 30х.

Поделив обе части на х, имеем:

16х + 24 + 1 = 25х 30 —>

24 + 1 + 30 = 25х – 16х —>

55 = 9х —>

х = 55/9.

Мы получили еще одно решение: 55/9, 119/9, 247/9. Теперь нам открываются новые задачи. Например, существуют ли целые решения, которые удовлетворяют этим условиям?

Задача 29 из книги IV

Еще одна, также очень известная задача из «Арифметики» – это задача 29 из книги IV. Она звучит так:

«Найти четыре квадрата, сумма которых, увеличенная на сумму их сторон, будет равна данному числу».

И снова мы видим всю гениальность Диофанта:

«Пусть дано число 12. х + х + 1/4 – квадрат. Следовательно, сумма четырех квадратов + сумма их сторон + 1 = сумма других четырех квадратов = 13. Следовательно, нужно разделить 13 на четыре квадрата, и, если мы вычтем 1/2 из всех его сторон, получим стороны искомых квадратов.

Имеем 13 = 4 + 9 = (64/23 + 36/25) + (144/25 + 81/25), и стороны искомых квадратов равны 11/10, 7/10, 19/10, 13/10. Их квадраты соответственно равны 121/100, 49/100, 361/100, 169/100».

Рассуждения полностью корректны для частного случая n = 12. Эту задачу в современной форме записи можно представить так:

«Найти x1, х2, х3, х4 такие, что

х12 + х22х32х42 + х1 + х2 + х3 х4 = n,

где n – данное число».

Прибавив 1 к обеим частям равенства, получим

х12 + х22х32х42 + х1 + х2 + х3 х4 + 1/4 + 1/4 + 1/4 + 1/4 = n + 1.

Переупорядочив слагаемые и предположив, что n = 12, имеем

х12х1 + 1/4 + х22 + х2 + 1/4 + х32 + х3  + 1/4 + x42 + х4 + 1/4 = 12 + 1.

Принимая во внимание, что х2х + 1/4 = (х + 1/2)2, можно записать следующее:

(x1 + 1/2)2 + (х2+ 1/2)2 + (х3 + 1/2)2 + (х4+ 1/2) = 13.

Осталось лишь представить 13 в виде суммы четырех квадратов. В данном конкретном случае нетрудно заметить, что 13 является суммой двух квадратов, 4 и 9. Используя теорему Пифагора, нетрудно выразить каждое из этих чисел в виде суммы двух квадратов, как делает сам Диофант в других задачах «Арифметики».

Числа 4, 3, 5 образуют пифагорову тройку: 42 + 32 = 52. Поделив обе части равенства на 52, получим (4/5)2 + (3/5)2 = 1. Теперь, если мы умножим обе части равенства на 22, получим (8/5)2 + (6/5)2 = 22, то есть (64/25) + (36/25) – 4. Если умножить обе части равенства на З2, получим (12/5)2 + (9/5)2 = З2, то есть (144/25) + (81/25) = 9 – именно такое разложение и предлагает Диофант. Таким образом, решение найдено:

(х1 + 1/2) = 8/5,

(x2 + 1/2) = 6/5,

(x3 + 1/2) = 12/5,

(x4 + 1/2) = 9/5.

Вычтем 1/2 из обеих частей каждого равенства и получим ответ, предлагаемый Диофантом. Удивительно, но 13 = 1 + 4 + 4 + 4, то есть представить 13 в виде суммы четырех квадратов можно было намного проще! Подобное разложение дает следующее решение: 1/2, 3/2, 3/2, 3/2.

Загадочное примечание

Баше заметил, что в этой и других задачах «Арифметики» Диофант пользовался тем, что любое число можно представить в виде суммы четырех квадратов. Он проверил эту закономерность для всех чисел до 325, но ему хотелось найти строгое доказательство. Здесь в дело вступил гений Ферма: «Я первым открыл замечательную теорему, которая гласит: всякое натуральное число – либо треугольное, либо сумма двух или трех треугольных чисел; всякое натуральное число – либо квадратное, либо сумма двух, трех или четырех квадратных чисел; всякое натуральное число – либо пятиугольное, либо сумма от двух до пяти пятиугольных чисел и так далее до бесконечности для шестиугольников, семиугольников и любых других многоугольников, изменяя формулировку этой удивительной теоремы в соответствии с числом углов».

Он писал: «Доказательство этой теоремы зависит от различных и запутанных свойств чисел, и я не могу привести его здесь. Я решил посвятить этому вопросу отдельный и полный труд и тем самым удивительным образом продвинуть арифметику далеко за пределы, известные еще с древних времен».

Но эта работа так никогда и не увидела свет. Написал ли ее Ферма? Действительно ли ему удалось найти какое-то доказательство? Неизвестно. Это еще одна загадка Ферма. Известно лишь, что этой задачей занимались математики масштаба Лежандра, Лагранжа, Эйлера и Гаусса, и каждому из них удалось внести свой вклад в ее решение.

В 1770 году Жозеф Луи Лагранж доказал случай для квадратов, то есть утверждение, что любое натуральное число можно представить в виде суммы четырех квадратов. Доказательство этой теоремы для треугольных чисел принадлежит Гауссу, который 10 июля 1796 года записал в дневнике: «**EYRHKA num = Δ + Δ + Δ».

Этот частный случай оказался эквивалентен следующему утверждению: любое число вида 8m + 3 можно представить в виде суммы трех нечетных квадратов. Дирихле, в свою очередь, изучал, сколькими способами можно представить данное число в виде суммы трех треугольных чисел. Наконец, в 1813 году Коши привел полное доказательство. Для полного решения задачи, вкратце записанной на полях книги, понадобилось почти 150 лет.


Портрет математика Огюстена Луи Коши, который завершил доказательство теоремы, сформулированной Ферма на основе задачи 29 книги IV «Арифметики» Диофанта.

Возвращаемся ко второй книге: задача 8

Задача 8 книги II, несомненно, является важнейшей вехой в истории, которая рассказывается в этой книге. Эта задача звучит так:

«Представить квадратное число в виде суммы двух квадратов».

Затем Диофант приводит следующее решение:

«Пусть дано квадратное число 16. Пусть х2 – один из искомых квадратов. Следовательно, 16 – х2 также будет квадратом. Возьмем квадрат вида (mx – 4)2, где m – любое целое, 4 – квадратный корень из 16. Возьмем в качестве примера (2х – 4)2 и приравняем это выражение к 16 – х2. Следовательно, 4х2 – 16х + 16 = 16 – х2; 5х2 = 16х; х = 16/5. Искомыми квадратами являются 256/25 и 144/25».

Здесь использован тот же прием, что и в задаче 32 книги II. Так как значение m может быть произвольным, то задача может иметь бесконечно много решений.

Все эти решения очень легко найти. На полях страницы, где излагается эта задача, Ферма написал комментарий, который вошел в историю:

«Cubum autem in duos cubos, aut quadrate-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet».

Что в переводе означает:

«Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него».

Другими словами, Ферма утверждал, что уравнение хn  + уn  = zn не имеет рациональных решений при х, у, z, отличных от нуля, и n > 2, и оправдывал отсутствие пояснений тем, что найденное им чудесное доказательство не поместится на полях этой страницы. Это напоминает нам пометку к задаче 29 книги IV. Разумеется, это доказательство никогда не увидело свет.

Этот и другие комментарии Ферма не перестают удивлять нас. С одной стороны, кажется, что Ферма никогда не имел намерений опубликовать их. Поэтому от него не следует ожидать каких-либо подробных доказательств. Они больше похожи на личные заметки, которые были нужны, чтобы затем можно было вспомнить ход рассуждений и заняться углубленным изучением темы. Но, с другой стороны, они написаны так, как будто обращены к читателю. Иначе зачем нужно было объяснять самому себе, что чудесное доказательство не поместится на полях страницы или что он не приводит доказательство, так как позднее надеется опубликовать отдельную большую книгу по этой теме? По-видимому, эти пометки действительно были частью его личного дневника, но в то же время Ферма хотел подготовить издание «Арифметики» со своими комментариями.

Вклад Ферма

Как бы то ни было, комментарий не пропал напрасно. Ферма много раз возвращался к нему и действительно хотел привести в порядок и записать свое «чудесное доказательство». Первое, что понял Ферма: из любого рационального решения можно получить целое решение путем умножения на наименьшее общее кратное знаменателей.

Следовательно, достаточно показать, что уравнение не допускает целых решений. С другой стороны, нетрудно видеть, что достаточно доказать лишь случаи для n = р, где р – простое, и для n = 4. Все остальные случаи будут доказаны автоматически. Если n = рm, то уравнение хn + уn = zn будет иметь вид х + у = zmp, откуда получим (хm)р + (уm)р = (zm)p. Если для показателя степени р решения отсутствуют, то они также отсутствуют для показателей степени, кратных р. Аналогично понятно, что если решения отсутствуют для = 4, то их также не будет для показателей степени, кратных 4. Поэтому Ферма сосредоточил внимание на том, чтобы доказать, что его уравнение не имеет целых решений для = р, где р – простое, и для n = 4.



Страница книги II «Арифметики» Диофанта издания 1670 года. На этой странице приведена задача 8 и комментарий Ферма.

По-видимому, это указывает на то, что ему действительно удалось доказать частные случаи для = 3 и n = 4. Доказательство для n = 3 не сохранилось, но Ферма ссылается на него в некоторых письмах. Доказательство для = 4 сохранилось, и его можно назвать поистине мудрым. В нем впервые представлен метод бесконечного спуска: доказывается, что если существуют три значения х, у, z натуральные и отличные от нуля, которые удовлетворяют уравнению х4 + у4 = z4, то можно найти три других, меньших натуральных числа, отличных от нуля, х', у', z', которые также будут удовлетворять этому уравнению. Продолжая подобные рассуждения, мы придем к тому, что всякий раз будем получать всё меньшие и меньшие решения, при этом они будут натуральными и отличными от нуля. Но это приводит к противоречию: натуральные числа не могут быть бесконечно малыми. Следовательно, таких решений не существует.


    Ваша оценка произведения:

Популярные книги за неделю