Текст книги "Эволюция физики"
Автор книги: Альберт Эйнштейн
Соавторы: Леопольд Инфельд
Жанр:
Физика
сообщить о нарушении
Текущая страница: 6 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]
Скорость света
В Галилеевых «Беседах о двух новых науках» мы находим разговор учителя и его учеников о скорости света:
Сагредо: Но какого рода и какой степени быстроты должно быть это движение света? Должны ли мы считать его мгновенным или же совершающимся во времени, как другие движения? Нельзя ли опытом убедиться, каково оно?
Симпличио: Повседневный опыт показывает, что распространение света совершается мгновенно. Если вы наблюдаете с большого расстояния действие артиллерии, то свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени.
Сагредо: Ну, синьор Симпличио, из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через бо́льшие промежутки времени, нежели свет; но это нисколько не убеждает меня в том, что распространение света происходит мгновенно и не требует известного, хотя и малого времени…
Сальвиати: Малая доказательность этих и других подобных же наблюдений заставила меня подумать о каком-либо способе удостовериться безошибочно в том, что освещение, т. е. распространение света, совершается действительно мгновенно…
Далее Сальвиати продолжает объяснять метод своего эксперимента. Для того чтобы понять его идею, представим себе, что скорость света не только конечна, но и мала, что движение света замедлилось подобно тому, как может замедлиться на экране реальное движение при просмотре замедленно движущейся плёнки. Два человека, Аи В, держат закрытые фонари и стоят, скажем, на расстоянии одного километра друг от друга. Первый человек, А, открывает свой фонарь. Оба они согласились, что В откроет свой фонарь в момент, когда увидит свет А. Предположим, что в нашем «замедленном движении» свет проходит один километр в секунду. А посылает сигнал, открывая свой фонарь, В видит это спустя секунду и посылает ответный сигнал. Этот сигнал получает А спустя две секунды после того, как он послал свой сигнал. Иными словами, если свет движется со скоростью одного километра в секунду, то пройдёт две секунды между посылкой и приёмом сигналов А, если предположить, что В находится на расстоянии одного километра. Наоборот, если А не знает скорости света, но предполагает, что его компаньон действует так, как условились, и он заметил, что В открыл фонарь через две секунды после того, как он открыл свой, то он может заключить, что скорость света равна одному километру в секунду.
При той экспериментальной технике, какая была доступна во времена Галилея, не было шансов определить скорость света таким путём. Если расстояние было порядка одного километра, то он должен был бы определять промежутки времени порядка одной стотысячной секунды.
Галилей сформулировал проблему определения скорости света, но он не разрешил её. Формулировка проблемы часто более существенна, чем её разрешение, которое может быть делом лишь математического или экспериментального искусства. Постановка новых вопросов, развитие новых возможностей, рассмотрение старых проблем под новым углом зрения требуют творческого воображения и отражают действительный успех в науке. Принцип инерции, закон сохранения энергии были получены только благодаря новым и оригинальным идеям в отношении уже хорошо известных экспериментов и явлений. Много примеров такого рода можно найти на последующих страницах этой книги, где будет подчёркнута важность рассмотрения известных фактов в новом свете и будут описаны новые теории.
Возвращаясь к сравнительно простому вопросу об определении скорости света, мы можем заметить, что удивительно, почему Галилей не установил, что его эксперимент мог бы быть осуществлён значительно проще и точнее одним человеком. Вместо того чтобы ставить на некотором расстоянии от себя своего компаньона, он мог бы установить там зеркало, которое автоматически посылало бы сигнал сразу же после его получения.
Около 250 лет спустя зеркало использовал Физо, который был первым, кто определил скорость света с помощью экспериментов со светом, исходящим от земного источника. С помощью астрономических наблюдений скорость света была определена Рёмером гораздо раньше, хотя и с меньшей точностью.
Совершенно ясно, что благодаря своей огромной величине скорость света могла быть измерена только при условии, если расстояния были сравнимы с расстояниями между Землёй и другими планетами Солнечной системы, или же с помощью весьма утончённой экспериментальной техники. Первый метод – это метод Рёмера, второй же – метод Физо. Со времени этих первых экспериментов скорость света, представляющая весьма важную величину, измерялась много раз со всё возрастающей точностью. В нашем столетии Майкельсон изобрёл для этой цели весьма совершенную аппаратуру. Результат этих экспериментов можно выразить просто: скорость света в вакууме равна примерно 300000 км/с.
Свет как субстанция
Мы опять начинаем с нескольких экспериментальных фактов. Только что приведённая величина относится к скорости света в вакууме. Свет распространяется с этой скоростью в пустом пространстве. Мы можем видеть и через пустой стеклянный сосуд, когда из него удалён воздух. Мы видим планеты, звёзды, небесные тела, хотя свет доходит от них к нашим глазам через пустое пространство. Тот простой факт, что мы можем видеть через стеклянный сосуд независимо от того, имеется ли внутри него воздух или нет, показывает нам, что наличие воздуха имеет весьма малое значение. На этом основании мы можем осуществлять оптические эксперименты в обыкновенной комнате с тем же самым эффектом, как если бы там не было воздуха.
Один из наиболее простых оптических фактов – это прямолинейное распространение света. Опишем примитивные эксперименты, показывающие это. Перед точечным источником помещён экран с отверстием. Точечный источник – это очень малый источник света, скажем маленькое отверстие в закрытом фонаре. На отдалённой стене отверстие в экране будет представлено в виде светлого пятна на тёмном фоне. Рис. 37 показывает, как это явление связано с прямолинейным распространением света. Все подобные явления, даже в более сложных случаях, в которых кроме света и тени появляются ещё и полутени, можно объяснить, если предположить, что и в вакууме, и в воздухе свет распространяется по прямым линиям.
Рис. 37
Возьмём другой случай, когда свет проходит через вещество. Пусть световой пучок проходит через вакуум и падает на стеклянную пластинку. Что происходит? Если бы закон прямолинейного движения был по-прежнему справедлив, то путь светового пучка шёл бы вдоль линии, указанной на рис. 38 пунктиром. Но в действительности это не так. Луч преломляется, как указано на рисунке. Явление, которое мы здесь наблюдаем, называется рефракцией (преломлением). Одной из многих демонстраций рефракции является известный опыт с палкой, которая, будучи наполовину опущенной в воду, кажется переломленной.
Рис. 38
Этих фактов достаточно для того, чтобы построить элементарную механическую теорию света. Наша цель здесь – показать, как идеи субстанции, частиц и сил проникли в область оптики и как в конечном счёте потерпела крах старая точка зрения.
Здесь теория приходит на ум в самой простой и примитивной форме. Предположим, что все светящиеся тела испускают частицы света, или корпускулы, которые, попадая в наши глаза, производят в них ощущение света. Мы уже настолько привыкли вводить новые субстанции, если это необходимо для механистического объяснения, что можем сделать это ещё раз без больших колебаний. Эти корпускулы должны проходить по прямым линиям через пустое пространство с известной скоростью, принося к нашим глазам сообщения от тел, испускающих свет. Все явления, показывающие прямолинейное распространение света, подкрепляют корпускулярную теорию света, ибо именно этот вид движения предписан корпускулам. Теория объясняет очень просто и отражение света зеркалом; это отражение такого же рода, как и отражение, обнаруживаемое в механических экспериментах с упругими мячами, ударяющимися в стену, как показывает рис. 39.
Рис. 39
Объяснение рефракции немного труднее. Не входя в детали, мы всё же видим возможность её механистического объяснения. Если корпускулы падают, например, на поверхность стекла, то возможно, что на них действует сила, создаваемая частицами вещества, которая довольно странно действует только в непосредственном соседстве с веществом. Как мы знаем, любая сила, действующая на движущуюся частицу, изменяет её скорость. Если сила, действующая на световую корпускулу, есть притяжение, перпендикулярное к поверхности стекла, то новое движение луча будет где-то между линией первоначального пути и перпендикуляром к поверхности стекла. Кажется, что это элементарное объяснение обещает успех корпускулярной теории света. Однако, чтобы определить полезность и степень справедливости этой теории, мы должны исследовать новые и более сложные факты.
Загадка цвета
Всё богатство цветов в природе впервые объяснил тот же гениальный Ньютон. Здесь мы даём описание одного из экспериментов Ньютона его собственными словами:
«В начале 1666 года (в это время я занимался шлифовкой стёкол иных форм, чем сферические) я достал треугольную стеклянную призму, чтобы с нею произвести опыты над знаменитым явлением цветов. Для этой цели, затемнив свою комнату и проделав небольшое отверстие в оконных ставнях для пропускания в нужном количестве солнечного света, я поместил призму там, где входил свет, так что он мог преломляться к противоположной стене. Зрелище живых и ярких красок, получавшихся при этом, доставляло мне приятное удовольствие».
Солнечный свет – «белый». После прохождения через призму в нём обнаруживаются все цвета, которые существуют в нашем мире. Сама природа воспроизводит тот же самый опыт в великолепной цветовой палитре – радуге. Попытки объяснить это явление очень стары. Библейская легенда о том, что радуга – божественный знак примирения с человеком, – это в некотором смысле тоже «теория». Но она не даёт удовлетворительного объяснения, почему радуга время от времени повторяется и почему её появление всегда связано с дождём. Вся загадка цвета впервые подверглась научному обсуждению, и разрешение её было намечено в великой работе Ньютона.
Один край радуги всегда красный, а другой – фиолетовый. Между ними расположены все другие цвета. Приведём ньютоновское объяснение этого явления. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет – это, так сказать, смесь разнородных корпускул, принадлежащих разным цветам. В эксперименте Ньютона призма разделяет их в пространстве. Согласно механической теории, рефракция (преломление) обязана силам, которые исходят от частиц стекла и действуют на частицы света. Эти силы различны для корпускул, принадлежащих к различным цветам, они наибольшие для фиолетового и наименьшие для красного. Путь корпускул каждого отдельного цвета будет преломляться по-своему и будет отделяться от других, когда свет покидает призму. В радуге роль призм играют капли воды.
Субстанциональная теория света теперь более усложнена, чем прежде. Мы имеем уже не одну световую субстанцию, а множество, и каждая из них относится к отдельному цвету. Однако если в теории имеется доля правды, её следствия должны согласоваться с наблюдением.
Серии цветов в белом солнечном свете, обнаруженные экспериментом Ньютона, называются солнечным спектром, или, точнее, его видимым спектром. Описанное здесь разложение белого света на составляющие его компоненты называется дисперсией света. Разделённые цвета спектра можно было бы смешать снова с помощью второй, должным образом приспособленной, призмы, если только данное объяснение не является ложным. Процесс был бы как раз обратным предыдущему. Мы получили бы белый свет из цветов, разделённых ранее. Ньютон экспериментально подтвердил, что в самом деле возможно этим путём получить белый свет из его спектра, а спектр – из белого света столько раз, сколько захочется. Эти эксперименты создали прочную основу для теории, в которой корпускулы, принадлежащие каждому цвету, ведут себя как неизменяемые субстанции. По этому поводу Ньютон писал:
«…эти цвета не порождены вновь, а лишь стали видными благодаря разделению, ибо, если их снова полностью смешать вместе, то они вновь составят тот свет, который они составляли до разделения. По той же причине изменения, которые получаются при соединении различных цветов, не реальны, ибо, если различные лучи вновь разъединить, они будут проявлять точно те же цвета, как и до вхождения в смесь. Как вы знаете, синие и жёлтые порошки при тонком смешивании кажутся невооружённому глазу зелёными, и всё же цвета составляющих корпускул не изменились в действительности, а лишь смешались. Ибо, если посмотреть в хороший микроскоп, они по-прежнему будут казаться только синими и жёлтыми».
Предположим, что мы выделили очень узкую полосу спектра. Это означает, что из всего множества цветов мы позволили лишь одному пройти сквозь щель, другие же задержали экраном. Луч, который проходит сквозь щель, будет состоять из однородногосвета, т. е. света, который не может быть разделён на дальнейшие компоненты. Это следствие теории, и его легко можно проверить экспериментально. Такой луч однородного цвета никаким путём нельзя разделить дальше. Имеется простой способ получения источников однородного света. Например, натрий, будучи раскалён, испускает однородный жёлтый свет. Производить обычные оптические эксперименты с однородным светом часто очень удобно, ибо легко понять, что в этом случае результат будет гораздо проще.
Представим себе, что внезапно произошло очень странное событие: наше Солнце стало испускать только однородный свет некоторого определённого цвета, скажем жёлтого. Тогда огромное многообразие цветов на Земле немедленно исчезло бы. Всё выглядело бы либо жёлтым, либо чёрным! Это предсказание есть следствие субстанциональной теории света, ибо новые цвета не могут быть созданы.
Справедливость его можно проверить экспериментально: в комнате, где единственным источником света является раскалённый натрий, всё кажется либо жёлтым, либо чёрным. Богатство красок в мире отражает многообразие цветов, из которых состоит белый свет. Субстанциональная теория света во всех этих случаях действует блестяще, хотя необходимость введения стольких субстанций, сколько имеется цветов, может нас несколько обеспокоить. Предположение, что все корпускулы света имеют одну и ту же скорость в пустом пространстве, также кажется очень искусственным.
Вполне можно представить себе, что другой ряд положений, теория совершенно другого характера, действовали бы столь же хорошо и давали бы все необходимые объяснения. В самом деле, скоро мы станем свидетелями развития другой теории, основанной на совершенно иных понятиях и всё же объясняющей ту же самую область оптических явлений. Однако прежде чем сформулировать положения, лежащие в основе этой новой теории, мы должны осветить вопрос, никак не связанный с этими оптическими явлениями. Мы должны вернуться к механике и спросить: что такое волна?
Что такое волна?
Какая-нибудь сплетня, пущенная в Вашингтоне, очень быстро доходит до Нью-Йорка, несмотря на то что ни одно лицо, принимавшее участие в её распространении, не передвигалось между этими двумя городами. Имеются два совершенно различных способа передачи или движения слухов из Вашингтона в Нью-Йорк и движения лиц, передающих слух.
Порыв ветра, проносясь над хлебным полем, создаёт волну, которая распространяется по всему полю. И здесь опять мы должны делать различие между движением волны и движением отдельных растений, которые совершают лишь малые колебания. Все мы видели волны, которые распространяются всё более и более широкими кругами, когда в воду брошен камень. Движение волны сильно отличается от движения частиц воды. Частицы движутся лишь вверх и вниз. Наблюдаемое движение волны – это перемещение некоторого состояния вещества, а не самого вещества. Пробка, плавающая на волне, ясно показывает это, ибо она движется вверх и вниз, подражая действительному движению воды, а не переносится вдоль волны.
Чтобы лучше понять механизм волны, рассмотрим опять идеализированный эксперимент. Предположим, что огромное пространство сплошь заполнено водой, или воздухом, или какой-либо другой «средой». Где-то в центре имеется шар (рис. 40). В начале эксперимента никакого движения нет вовсе. Вдруг шар начинает ритмически «дышать», расширяясь и сжимаясь в объёме, однако всё время оставаясь сферическим по форме. Что происходит в среде? Начнём рассмотрение в тот момент, когда шар начинает расширяться. Частицы среды, находящиеся в непосредственной близости к шару, отталкиваются, так что плотность прилегающего к шару слоя воды или воздуха увеличивается против своего нормального значения. Точно так же, когда шар сжимается, то плотность той части среды, которая непосредственно окружает шар, будет уменьшаться. Эти изменения плотности распространяются во всей среде. Частицы, составляющие среду, проделывают лишь малые колебания, но движение в целом – это движение распространяющейся волны. Существенно новым здесь является то, что впервые мы рассматриваем движение чего-то, что есть не вещество, а энергия, распространяющаяся в веществе.
Рис. 40
Используя пример пульсирующего шара, мы можем ввести два общих физических понятия, важных для характеристики волн. Первое – это скорость, с которой распространяется волна. Она будет зависеть от среды и будет различна, например, для воды и воздуха. Второе понятие – длина волны – это расстояние от углубления одной волны до углубления следующей или же расстояние от гребня одной волны до гребня следующей. Морские волны имеют бо́льшую длину волны, чем волны на реке. В наших волнах, образующихся благодаря пульсации шара, длина волны – это расстояние, взятое в некоторый определённый момент между двумя соседними шаровыми слоями, у которых одновременно плотность имеет максимальное или минимальное значение. Очевидно, что это расстояние зависит не только от среды. Большое влияние будет, конечно, иметь быстрота пульсации шара; так, длина волны будет короче, если пульсация становится быстрее, и длиннее, если пульсация медленнее.
Это понятие волны оказывается очень удачным в физике. Оно является определённо механическим понятием. Явление сводится к движению частиц, которые, согласно кинетической теории, образуют вещество. Таким образом, всякая теория, которая употребляет понятие волны, может, вообще говоря, считаться механической теорией. В частности, объяснение акустических явлений существенно опирается на это понятие. Колеблющиеся тела, например, такие, как голосовые связки или скрипичные струны, являются источниками звуковых волн, которые распространяются в воздухе, аналогично тому как это имеет место для волн, образующихся от пульсирующего шара. Таким образом, с помощью понятия волны можно все акустические явления свести к механическим.
Уже было подчёркнуто, что мы должны отличать друг от друга движение частиц и движение самой волны, которая является состоянием среды. Оба движения совершенно различны, но очевидно, что в нашем примере пульсирующего шара оба движения происходят вдоль одной и той же прямой. Частицы среды колеблются в небольших пределах, и плотность увеличивается и уменьшается периодически в соответствии с этим движением. Направление, в котором распространяются волны, и направление, вдоль которого совершаются колебания, одно и то же. Волны этого типа называются продольными. Но является ли этот тип волн единственным? Для наших дальнейших рассуждений важно ясно представить себе возможность другого типа волны, называемой поперечной.
Изменим наш предыдущий пример. Пусть мы по-прежнему имеем шар, но он погружён в среду другого рода: вместо воздуха или воды взято нечто вроде студня или желе. Более того, шар больше не пульсирует, а поворачивается на небольшой угол сначала в одном направлении, а затем в обратном, всегда в одном и том же ритме и вокруг определённой оси (рис. 41). Желе прилипает к шару, и прилипающие частицы вынуждены повторять его движение. Эти частицы вынуждают частицы, расположенные немного дальше, повторять то же движение и т. д., так что в среде возникает волна. Если мы помним о различии между движением среды и движением волны, то мы видим, что в данном случае они явно не совпадают. Волна распространяется в направлении радиуса шара, а частицы среды движутся перпендикулярно к этому направлению. Следовательно, мы создали поперечную волну.
Рис. 41
Волны, распространяющиеся на поверхности воды, поперечны. Плавающая пробка движется вверх и вниз, а волна распространяется вдоль горизонтальной плоскости. С другой стороны, звуковые волны дают нам наиболее известный пример продольных волн.
Ещё одно замечание: волна, созданная пульсирующим или колеблющимся в однородной среде шаром, – это сферическая волна. Она называется так потому, что в любой данный момент все точки среды, размещающиеся на любой сфере, окружающей источник, ведут себя одинаковым образом. Рассмотрим часть такой сферы на большом расстоянии от источника (рис. 42). Чем дальше от источника мы берём такую часть сферы и чем меньшую часть мы берём, тем больше она похожа на часть плоскости. Не стремясь быть слишком строгими, мы можем сказать, что нет существенного различия между частью плоскости и частью сферы, радиус которой достаточно велик. Очень часто мы говорим о небольших частях сферической волны, далеко продвинувшейся от её источника, как о плоских волнах. Чем дальше мы помещаем заштрихованную на рисунке часть поверхности от центра сферы и чем меньше угол между двумя радиусами, тем более она приближается к представлению о плоской волне. Понятие плоской волны, подобно многим другим физическим понятиям, есть не больше как абстракция, которую мы можем осуществить лишь с известной степенью точности. Тем не менее это полезное понятие, и оно нам понадобится в дальнейшем.
Рис. 42