355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Альберт Эйнштейн » Эволюция физики » Текст книги (страница 5)
Эволюция физики
  • Текст добавлен: 9 октября 2016, 06:06

Текст книги "Эволюция физики"


Автор книги: Альберт Эйнштейн


Соавторы: Леопольд Инфельд

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]

Здесь возникает тот же самый вопрос, который мы рассматривали в связи с теплотой. Являются ли электрические жидкости невесомыми субстанциями или нет? Другими словами, будет ли вес куска металла одинаков, когда он нейтрален и когда он заряжен? Весы никакого различия не обнаруживают. Мы заключаем, что электрические жидкости тоже являются членами семейства невесомых субстанций.

Дальнейший прогресс в теории электричества требует введения двух понятий. Мы опять будем избегать строгих определений, используя вместо них аналогии с уже известными понятиями. Мы помним, как существенно было для понимания тепловых явлений различие между самой теплотой и температурой. Равным образом и здесь важно различать электрический потенциал и электрический заряд. Различие между обоими понятиями станет ясным из следующей аналогии:

Электрический потенциал ↔ Температура

Электрический заряд ↔ Теплота

Два проводника, например два шара различной величины, могут иметь одинаковый заряд, т. е. одинаковый избыток электрической жидкости, но потенциал будет различным в обоих случаях, а именно: он выше для меньшего шара и ниже для большего. Электрическая жидкость будет иметь бо́льшую плотность и, стало быть, будет более сжата в малом проводнике. Так как отталкивательные силы должны с плотностью возрастать, то тенденция заряда улетучиваться будет больше в меньшем шаре, чем в большем. Эта тенденция заряда уходить с проводника есть непосредственное выражение его потенциала. Чтобы ясно показать различие между зарядом и потенциалом, мы сформулируем несколько предложений, описывающих поведение нагретых тел, и соответствующие им предложения, касающиеся заряженных проводников.

Теплота

Два тела, имеющих вначале различную температуру, спустя некоторое время после того, как они приведены в соприкосновение, достигают одной и той же температуры.

Равные количества теплоты производят различные изменения температуры в двух телах, если теплоёмкости этих тел различны.

Термометр, находящийся в контакте с каким-либо телом, длиной своего ртутного столбика показывает свою собственную температуру, а вместе с тем и температуру тела.

Электричество

Два изолированных проводника, имеющих вначале различные электрические потенциалы, очень скоро после того, как они приведены в соприкосновение, достигают одного и того же потенциала.

Равные величины электрических зарядов производят различные изменения электрических потенциалов в двух телах, если электрические ёмкости тел различны.

Электроскоп, находящийся в контакте с каким-либо проводником, разделением золотых листочков показывает свой собственный электрический потенциал, а вместе с тем и электрический потенциал проводника.

Но такую аналогию нельзя продолжать слишком далеко. Следующий пример показывает как сходство, так и различие. Если горячее тело приведено в контакт с холодным, то теплота течёт от горячего к холодному телу. Предположим, с другой стороны, что мы имеем два изолированных проводника, имеющих равные, но противоположные заряды, положительный и отрицательный. Оба – при разных потенциалах. Согласились считать потенциал, соответствующий отрицательному заряду, более низким, чем потенциал, соответствующий положительному. Если оба проводника сдвинуты до соприкосновения друг с другом или соединены проволокой, то из теории электрических жидкостей следует, что они не покажут никакого заряда, а это означает, что никакой разности электрических потенциалов нет вовсе. Мы должны представить себе, что «течение» электрического заряда от одного проводника к другому совершается за очень короткое время, в течение которого разность потенциалов исчезает. Но как это происходит? Течёт ли положительная жидкость к отрицательно заряженному телу или отрицательная – к положительно заряженному?

В фактах, которые здесь разбирались, мы не видели никакого основания для решения этого вопроса. Мы можем предположить осуществляющейся либо одну из этих возможностей, либо и ту и другую, считая, что течение электричества совершается одновременно в обоих направлениях. Это лишь вопрос соглашения, которое мы принимаем, и нельзя придавать значения выбору, ибо мы знаем, что нет никакой возможности экспериментально решить этот вопрос. Дальнейшее развитие, ведущее к гораздо более глубокой теории электричества, дало разрешение этой проблемы, которая совершенно бессмысленна, пока она сформулирована в пределах примитивной теории электрических жидкостей. В дальнейшем мы будем придерживаться следующего способа выражения: электрические жидкости текут от проводника с более высоким потенциалом к проводнику с более низким потенциалом. Таким образом, в случае наших двух проводников электричество течёт от положительно заряженного проводника к отрицательно заряженному (рис. 31). Это выражение – исключительно дело соглашения и с этой точки зрения совершенно произвольно.

Рис. 31

Все эти затруднения показывают, что аналогия между теплотой и электричеством ни в коем случае не является полной.

Мы видели, какова возможность приспособления механистического воззрения к описанию элементарных фактов электростатики. То же самое возможно и в отношении магнитных явлений.

Магнитные жидкости

Мы будем поступать здесь так же, как и раньше: начинать с очень простых фактов, а затем отыскивать их теоретическое объяснение.

Рис. 32

1. Пусть у нас имеются два длинных магнита; один из них уравновешен так, что он занимает горизонтальное положение, а другой мы возьмём в руку. Если концы обоих магнитов поднести друг к другу, между ними обнаруживается сильное притяжение (рис. 32). Этого всегда можно достигнуть. Если притяжения нет, мы должны повернуть магнит и попробовать другой конец. Концы магнитов называются их полюсами. Продолжая эксперимент, мы двигаем полюс магнита, который держим в руке, вдоль другого магнита. При этом наблюдается уменьшение притяжения, а когда полюс достигает середины уравновешенного магнита, то вообще никакого проявления сил нет. Если полюс движется дальше в том же направлении, то наблюдается отталкивание, достигающее наибольшей силы у второго полюса уравновешенного магнита.

2. Приведённый выше пример наводит на следующую мысль. Каждый магнит имеет два полюса. Нельзя ли изолировать один из них? Осуществление этой идеи кажется очень простым, а именно: разломить магнит на две равные части. Мы видели, что никакого взаимодействия между полюсом одного магнита и серединой другого магнита нет. Но если мы действительно разломим магнит, то результат окажется весьма удивительным и неожиданным. Если мы повторим первый эксперимент, но теперь лишь с половиной уравновешенного магнита, то результаты будут совершенно те же самые, что и раньше. Там, где раньше не было никакого следа магнитной силы, теперь находится сильный полюс.

Как следует объяснить эти факты? Мы можем попробовать набросать теорию магнетизма, аналогичную теории электрических жидкостей. Это внушено тем обстоятельством, что здесь, как и в электростатических явлениях, мы имеем и притяжение, и отталкивание. Вообразим себе два проводника в форме шаров, обладающих равными зарядами, один – положительным, а другой – отрицательным. Здесь слово «равные» означает величины, имеющие одинаковое абсолютное значение: например, +5 и −5 имеют одинаковое абсолютное значение. Предположим, что шары связаны посредством изолятора, например стеклянного стержня. Схематически это устройство может быть представлено стрелкой, направленной от отрицательно заряженного проводника к положительно заряженному. Мы назовём это электрическим диполем (рис. 33).

Рис. 33

Ясно, что два таких диполя вели бы себя совершенно так же, как и магнитные стержни в первом эксперименте. Если мы рассматриваем наше изобретение как модель реального магнита, мы можем сказать, предполагая существование магнитных жидкостей, что магнит – это не что иное, как магнитный диполь, имеющий на своих концах две жидкости разных родов. Эта простая теория, подражающая теории электричества, вполне подходит для объяснения первого эксперимента. По этой теории должно быть притяжение на одном конце, отталкивание на другом и уравновешивание равных и противоположных сил в середине. Но как обстоит дело со вторым экспериментом? Разламывая стеклянный стержень электрического диполя, мы получаем два изолированных полюса. То же самое, казалось бы, должно быть и для железного стержня магнитного диполя, что противоречит результатам второго эксперимента. Таким образом, это противоречие вынуждает нас ввести несколько более утончённую теорию. Вместо нашей первоначальной модели мы можем представить себе, что магнит состоит из очень малых элементарных магнитных диполей, которые не могут быть разделены на отдельные полюсы. Во всём магните господствует порядок, ибо все элементарные диполи в нём имеют одинаковое направление (рис. 34). Мы непосредственно видим, почему разрезание магнита вызывает появление двух новых полюсов на новых концах и почему эта более тонкая теория объясняет факты как первого эксперимента, так и второго.

Рис. 34

Многие факты можно объяснить и без этого уточнения теории. Возьмём пример: мы знаем, что магнит притягивает куски железа. Почему? В куске обычного железа обе магнитные жидкости смешаны так, что не обнаруживается никакого чистого эффекта. Поднесение положительного полюса действует как «приказ к разделению» жидкостей в результате притяжения отрицательной жидкости в железе и отталкивания положительной. Возникает притяжение между железом и магнитом. Если магнит отодвинут, жидкости более или менее возвращаются к своему первоначальному положению, что зависит от того, в какой степени они «запоминают» приказ, исходящий от внешней силы.

Необходимо немного сказать о количественной стороне проблемы. Имея два очень длинных магнитных стержня, мы могли бы исследовать притяжение (или отталкивание) их полюсов, когда они близко поднесены друг к другу. Если стержни достаточно длинны, то действие других концов стержней ничтожно. Как зависит притяжение или отталкивание от расстояния между полюсами? Ответ, данный экспериментом Кулона, таков: зависимость от расстояния та же, что и в законе тяготения Ньютона, и в законе электростатики Кулона.

Мы опять видим в этой теории отражение общей точки зрения – тенденцию описать все явления посредством сил притяжения и отталкивания, зависящих только от расстояния и действующих между неизменными частицами.

Здесь следовало бы упомянуть один хорошо известный факт, который мы используем в дальнейшем. Земля – это большой магнитный диполь. Нет ни малейшего намёка на объяснение того, почему это так. Северный географический полюс почти совпадает с отрицательным (−) магнитным полюсом, а Южный географический полюс – с положительным (+) магнитным. Названия «положительный» и «отрицательный» – это дело лишь соглашения, но поскольку они так однажды обозначены, это вынуждает нас и в любых других случаях соответственно различать полюсы. Магнитная игла, насаженная на вертикальную ось, подчиняется «приказу» магнитной силы Земли. Она направляет свой (+) полюс к Северному географическому полюсу, т. е. по направлению к (−) магнитному полюсу Земли.

Хотя в области указанных здесь электрических и магнитных явлений мы можем последовательно провести механистическую точку зрения, нет никакого основания гордиться этим или радоваться этому. Некоторые черты этой теории являются, конечно, неудовлетворительными, если не обескураживающими. Мы должны были изобрести новые виды субстанций – две электрические жидкости и элементарные магнитные диполи. Изобилие субстанций начинает становиться чрезмерным.

Силы просты. Они одинаково выражены для тяготения, электричества и магнетизма. Но цена, уплаченная за эту простоту, высока – введение новых невесомых субстанций. Они являются довольно искусственными понятиями и совершенно не связаны с веществом и его массой.

Первая серьёзная трудность

Мы уже готовы к тому, чтобы отметить первую серьёзную трудность в приложении нашей общей философской точки зрения. Позднее будет показано, что эта трудность совместно с другими, ещё более серьёзными, привела к полному крушению уверенности в том, что все явления могут быть объяснены механистически.

Особенно быстрое развитие электричества как ветви науки и техники началось с открытия электрического тока. Здесь мы находим в истории науки один из очень немногих примеров, в которых случай сыграл существенную роль. История конвульсий лягушечьей лапки рассказана во многих вариантах. Не ручаясь за достоверность в отношении деталей, можно, без сомнения, сказать, что случайное открытие Гальвани привело Вольта в конце XVIII столетия к построению прибора, известного под названием вольтовой батареи. Теперь она практически не употребляется, но на неё ещё указывают в школьных демонстрациях и в учебниках как на очень простой пример источника тока.

Принцип её построения прост. Берётся несколько стеклянных стаканов, каждый из которых содержит воду и немного серной кислоты. В каждом стакане погружены в раствор две металлические пластинки: одна медная, а другая цинковая. Медная пластинка одного стакана соединена с цинковой следующего, так что только цинковая пластинка первого стакана и медная последнего остаются несоединенными. Мы можем обнаружить разность электрических потенциалов между медной пластинкой первого стакана и цинковой последнего посредством весьма чувствительного электроскопа, если число «элементов», т. е. число стаканов с пластинками, составляющими батарею, достаточно велико.

Мы ввели батарею, составленную из некоторых элементов, только для того, чтобы получить нечто легко измеряемое уже описанным прибором. Для дальнейших рассуждений с таким же успехом будет служить один элемент. Обнаруживается, что потенциал меди выше, чем потенциал цинка. Слово «выше» употребляется здесь в том же смысле, в каком +2 больше, чем −2. Если один проводник связан со свободной медной пластинкой, а другой – с цинковой, оба станут заряженными: первый – положительно, а второй – отрицательно. На этой стадии рассуждений ничего особенно нового или поразительного не появилось, и мы можем потребовать применить наши предыдущие представления о разности потенциалов. Мы видели, что разность потенциалов между двумя проводниками можно быстро уничтожить посредством соединения проводников проволокой, в которой возникает поток электрической жидкости от одного проводника к другому. Этот процесс был уподоблен выравниванию температур тепловым потоком. Но производит ли поток в вольтовой батарее работу?

По словам Вольта, пластинки ведут себя как проводники, «слабо заряженные, которые действуют непрерывно или так, что их заряд после каждого разряда вновь восстанавливается; которые, одним словом, поставляют неограниченный заряд или производят непрерывное действие, или импульс электрической жидкости».

Результат этого эксперимента удивителен потому, что разность потенциалов между медной и цинковой пластинками не уменьшается, как в случае двух заряженных проводников, связанных проволокой. Разность эта остаётся неизменной, и, согласно жидкостной теории, должен возникать постоянный поток электрической жидкости от высшего потенциального уровня (медная пластинка) к низшему (цинковая пластинка). Пытаясь спасти жидкостную теорию, мы можем предположить, что действует некоторая постоянная сила, которая возрождает разность потенциалов и вызывает поток электрической жидкости. Но явление в целом удивительно, если рассматривать его с энергетической точки зрения. В проволоке, по которой течёт ток, порождается заметное количество теплоты, достаточное даже для того, чтобы расплавить проволоку, если она тонка. Следовательно, в проволоке создаётся тепловая энергия. Но вся вольтова батарея образует изолированную систему, так как она не получает энергии извне. Если мы хотим спасти закон сохранения энергии, мы должны найти место, где происходят превращения, за счёт которых создаётся теплота. Нетрудно установить, что в батарее происходят сложные химические процессы, в которых активное участие принимают как сам раствор, так и погружённые в него медь и цинк. С энергетической точки зрения здесь имеется цепь превращений: химическая энергия → энергия текущей электрической жидкости (тока) → теплота. Вольтова батарея не сохраняется вечно; химические изменения, связанные с потоком электричества, после некоторого времени делают батарею неработоспособной.

Эксперимент, который по-настоящему обнаружил большие трудности в применении механистических идей, должен для впервые слушающего о нём звучать странно. Он осуществлён Эрстедом около 120 лет назад. Последний пишет:

«Этими экспериментами, кажется, показано, что магнитная стрелка сдвигалась из своего положения с помощью гальванического прибора, и именно тогда, когда гальваническая цепь была замкнута, а не разомкнута, как напрасно считали несколько лет назад очень известные физики».

Предположим, что мы имеем вольтову батарею и кусок металлической проволоки. Если проволока соединена с медной пластинкой, но не связана с цинковой, то существует разность потенциалов, но ток течь не может. Предположим, что проволока изогнута в форме кольца, в центре которого расположена магнитная стрелка, причём как проволочное кольцо, так и стрелка лежат в одной и той же плоскости. Пока проволока не прикасается к цинковой пластинке, ничего не происходит. Никаких действующих сил нет, наличие разности потенциалов не оказывает влияния на положение стрелки. Кажется трудным понять, почему «очень известные физики», как выразился Эрстед, ожидали такого влияния.

Соединим теперь проволоку с цинковой пластинкой. Немедленно произойдут странные вещи. Магнитная стрелка выходит из своего первоначального положения. Один из её полюсов направлен к читателю, если страница этой книги представляет плоскость кольца (рис. 35). Опыт доказывает, что на магнитный полюс действует сила, перпендикулярная к плоскости кольца. Перед лицом экспериментальных фактов мы едва ли можем избежать такого вывода о направлении действующей силы.

Рис. 35

Этот эксперимент интересен в первую очередь тем, что он показывает связь между двумя на первый взгляд совершенно различными явлениями – магнетизмом и электрическим током. Имеется и другой, даже более важный момент. Сила взаимодействия между магнитным полюсом и малыми отрезками проволоки, по которой течёт ток, не должна лежать вдоль линий, связывающих проволоку и стрелку или частицы текущей электрической жидкости и элементарные магнитные диполи. Сила перпендикулярна к этим линиям! Впервые появляется сила, совершенно отличная от тех сил, к которым, соответственно нашей механистической точке зрения, мы стремились свести все действия внешнего мира. Мы помним, что силы тяготения, электростатики, магнетизма, подчиняющиеся законам Ньютона и Кулона, действуют вдоль линии, соединяющей оба притягивающихся или отталкивающихся тела.

Эта трудность была ещё более подчёркнута экспериментом, который с большим искусством осуществлён Роуландом почти 60 лет назад. Оставляя в стороне технические детали, мы могли бы описать этот эксперимент следующим образом. Вообразим себе маленький заряженный шар (рис. 36). Представим себе далее, что этот шар очень быстро движется по окружности, в центре которой находится магнитная стрелка. Принципиально этот эксперимент таков же, что и эксперимент Эрстеда; единственное отличие состоит в том, что вместо обычного тока мы имеем механически совершающееся движение электрического заряда. Роуланд нашёл, что результат в самом деле подобен тому, который наблюдался, когда по витку проволоки протекал ток. Магнит отклоняется силой, перпендикулярной к рисунку.

Рис. 36

Пусть теперь заряд движется быстрее. В результате сила, действующая на магнитный полюс, возрастает; отклонение магнита от его начального положения становится более заметным. Это наблюдение представляет новое большое усложнение. Не только направление силы не совпадает с линией, связывающей заряд и магнит, но и её абсолютная величина зависит от скорости заряда. Вся механистическая точка зрения базировалась на уверенности в том, что все явления могут быть объяснены в рамках сил, зависящих только от расстояния, а не от скорости. Результат эксперимента Роуланда, конечно, подрывает эту уверенность. Всё же мы можем попробовать остаться консервативными и искать решения в рамках старых идей.

Трудности этого рода, внезапные и неожиданные препятствия в триумфальном развитии теории, часто вырастают в науке.

Иногда простое обобщение старых идей оказывается, по крайней мере временно, хорошим выходом. Например, в данном случае казалось бы достаточным расширить предыдущую точку зрения и ввести более общее понятие сил, действующих между элементарными частицами. Однако очень часто оказывается невозможным подправить старую теорию, и трудности приводят к её упадку и к развитию новой. В данном случае сыграло роль не только поведение ничтожной магнитной иглы, которая разрушила на первый взгляд хорошо обоснованные и преуспевающие механистические теории. Следующий удар, ещё более энергичный, был нанесён уже с другой стороны. Но это другая история, и мы расскажем её позднее.


    Ваша оценка произведения:

Популярные книги за неделю