Текст книги "Как устроен самолет и как он летает"
Автор книги: А. Жабров
Жанры:
История
,сообщить о нарушении
Текущая страница: 1 (всего у книги 3 страниц)
А. Жабров
КАК УСТРОЕН САМОЛЕТ И КАК ОН ЛЕТАЕТ
ЧТО ТАКОЕ САМОЛЕТ
Всякий знает, что самолет есть летательная машина, с крыльями и мотором, которая может лететь быстрее птицы и перевозить по воздуху тысячи кило груза. Но как устроен самолет? Почему тяжелая, иногда в несколько тонн машина может нестись по воздуху, словно птица? Об этом редко кто знает. Птицы летают благодаря крыльям. Если крылья подрезать, то птица или муха камнем падает на землю Значит, птицы и насекомые тяжелее воздуха и могут в нем летать лишь благодаря силе мускулов, которые приводят в быстрое движение их крылья. Самолет тоже тяжелее воздуха, и поэтому он во многом похож на птицу. Правда, он не машет крыльями, – они неподвижны, но зато у самолета есть крепкие мускулы – это его мотор, который приводит в движение воздушный винт, или, как его называют, пропеллер.
Почему же не сделали самолет подобно птице, – чтобы и машина могла, как птица, махать крыльями?
Такие аппараты пробовали строить но их достигла неудача. Да и нужны ли они? Ведь и на самолете с неподвижными крыльями человек летает уже давно много быстрее птиц. Нужно только нашу воздушную машину еще усовершенствовать и сделать более доступной каждому.
Теперь посмотрим – почему самолет может лететь, как он устроен, какие самолеты бывают и как производится полет на них.
ДЕТСКИЙ ЗМЕЙ, ПЛАНЕР И САМОЛЕТ
Воздушный змей можно запустить только при ветре.
Можно заставить подняться змей и при полном безветрии, но не надолго. Делается это так: змей кладется на землю и мальчуган, распустив метров на 30 нитку, начинает быстро бежать, змей взмывает, он держится в воздухе лишь до тех пор, пока мальчуган бежит, а как только он остановится, так змей тотчас же, беспомощно кувыркаясь, падает на Землю. В чем же тут дело?
Когда мальчуган начинает бежать и тянет за собой змей, то встречный воздух ударяет в его нижнюю поверхность (рис. 1).
Рис. 1. Запуск детского змея. Стрелками обозначено действие встречного воздуха.
Это происходит потому, что благодаря особому прикреплению нитки и хвоста (обычно из мочалы) змей передним краем несколько наклонен вперед. Встречный воздух (который на нашем рисунке изображен стрелками) встречает на своем пути накладную поверхность змея и давит на нее снизу вверх. От этого-то змей и поднимается. Если есть встречный ветер, то змей будет летать, даже если мальчуган остановится.
Теперь ясно, что если змей запускается в безветрие, то как только мальчуган перестанет бежать, то и встречного воздуха (ветра) не будет, и змей упадет. Из этого примера видно, что для полета змея надо, чтобы или дул встречный ветер, или же, в случае безветрия, чтобы сам змей быстро двигался (его тащит за собой бегущий мальчуган).
Значит – это одно и то же. Вот это очень для нас важно.
У самолета крылья тоже слегка приподняты своим передним краем, только очень мало, почти незаметно на глаз. Самолет должен летать всегда и везде, значит его веревкой, как змей, не запустишь. Правда, теперь очень хорошо летают на планерах (планер – безмоторный самолет), о которых верно тоже все слышали. Так вот планер запускают в точности так, как змей планер ставится на горе против ветра, а за длинную веревку, задетую за крючок на носу планера, его тащит быстро против ветра команда человек из шести. Планер взмывает, кольцо веревки соскакивает с крючка и планер летит дальше один (рис. 2).
Рис. 2. Запуск планера. На рисунке ясно виден запускной трос, еще не соскочивший с крючка.
Чтобы запустить самолет и заставить его лететь дальше, надо следовательно заставить его быстро двигаться, тогда встречный воздух будет давить на крылья снизу вверх и самолет поднимется. Как же это сделать?
ЗАЧЕМ САМОЛЕТУ НУЖЕН ВОЗДУШНЫЙ ВИНТ (ПРОПЕЛЛЕР)
Известно, что ветряная мельница будет только тогда работать, когда ее крылья стоят против ветра. Отчего же так? Дело в том, что крылья (лопасти) мельницы изогнуты винтом, и когда на них давит воздух (ветер), то они, насаженные на подвижный мельничный вал, начинают вращаться. В деревне почти на каждых воротах можно увидеть торчащую вверх палку с прибитой на ее верхнем конце двухлопастной ветрянкой. Когда ветер дует на нее, го она так быстро начинает вертеться, что лопастей и не разглядеть – они сливаются в один сплошной, мелькающий круг. Лопасти такой ветрянки тоже скошены винтом.
Крыло ветряной мельницы, как и ветрянка на воротах, и есть воздушный винт. Благодаря особому устройству лопастей он начинает быстро вращаться, если на него дует ветер (давит воздух). А что же произойдет, если мы сами каким-либо образом начнем быстро вращать такой воздушный винт?
Для примера возьмем обыкновенную игрушку называемую «мухой». Она состоит из той же ветрянки (которая крутится на воротах), но насажена на тонкую круглую небольшую палочку, (рис. 3).
Рис. 3. «Муха» – простейший воздушный винт. На рисунке палочка уменьшена. Чтобы «муха» летала, нужно, чтобы палочка была не меньше размаха лопастей.
Если эту палочку взять между ладонями и, сильно крутнув, отпустить, то муха с жужжанием взлетит высоко вверх. Значит воздушный винт при быстром вращении ввинчивается в воздух, все равно как железный винт (шуруп) в дерево. Представим себе теперь такую же ветрянку, но только большого размера, ну хоть метра два-три в размахе. Если такой большой воздушный винт, вращать с большой скоростью, то он с громадной силой стремится ввинтиться в воздух. Нельзя ли его приспособить на самолете? Оказывается – очень хорошо можно приспособить. На самолете (рис. 4), обычно в передней его части, устанавливается мощный бензиновый мотор, а на его вал насаживается воздушный винт, или, как его называют, пропеллер (французское слово).
Рис. 4. Современный самолет. Воздушный винт ясно виден.
Мотор с громадной скоростью вращает воздушный винт, который, стремясь ввинтиться в воздух, тянет за собой всю машину. Так как самолет стоит на колесах, то он начинает все быстрее и быстрее катиться по земле. От этого давление встречного воздуха на нижнюю часть его крыльев все растет и растет, или, как говорят, увеличивается подъемная сила крыльев. Наконец она делается настолько велика, что самолет отрывается от земли, поднимается в воздух и летит.
ОБЩЕЕ УСТРОЙСТВО САМОЛЕТА
Теперь понятно, почему самолет иногда в несколько сот пудов может подняться и нестись в воздухе, как птица. Но как же устроена эта чудная машина? Как ею управлять в воздухе?
Главная часть самолета – корпус, или, как его чаще называют, фюзеляж (рис. 5 и 6).
Рис. 5. Устройство сухопутного самолета. 1 Фюзеляж. 2 Сидение летчика. 3 Мотор. 4 Воздушный винт. 5 Капот. б Козырек. 7 Шасси. 8 Киль. 9 Руль направления. 10 Стабилизатор. 11 Руль глубины. 12 Элероны. 13 Нижнее крыло. 14 Верхнее крыло. 15 Стойки. 16 Тросы. 17 Костыль.
Рис. 6. Самолет без обтяжки.
Под передним концом фюзеляжа находится шасси, – это тележка, на которой стоит вся машина. Задний конец фюзеляжа, или хвост, опирается о землю костылем. В передней части корпуса находится мотор с насаженным на его вал пропеллером. Верхняя часть конца фюзеляжа, которая прикрывает мотор, называется капотом. Сзади мотора обычно находятся баки с бензином и маслом.
Сидения летчика и пассажира (или пассажиров) расположены внутри фюзеляжа. Перед летчиком находятся рычаги для управления самолетом и мотором, а также все необходимые приборы. От ветра летчик и пассажир защищены стеклянными козырьками.
На заднем конце фюзеляжа находятся рули для управления самолетом и органы для сохранения устойчивости в воздухе. Они составляют хвостовое оперение или просто хвост. Рулей два – руль направления и руль глубины, – первый служит для поворачивания самолета вправо и влево (как руль лодки), а второй – для спуска и подъема. Для сохранения устойчивости служат два органа– вертикальный стабилизатор, или иначе – киль, и горизонтальный стабилизатор. Первый служит у самолета для того же, для чего делается и киль у обыкновенной лодки, чтобы самолет мог легко лететь по прямой линии (про лодку рыбаки на Волге говорят: с «килем она „рысить“ не будет»), горизонтальный стабилизатор служит для того, чтобы самолет не «ковылял» то вниз, то вверх, а правильно бы летел под тем углом, под которым его направил летчик. К фюзеляжу прикреплены крылья, или, как теперь часто делают, одно сплошное толстое крыло на обе стороны. Если крылья в два яруса, то они часто скреплены между собой стойками и стальными тросами или лентами. Если крылья в один ярус, то они укрепляются иногда подкосами, которые идут от нижней стороны крыльев к фюзеляжу. На концах крыльев с задней стороны находятся маленькие подвижные крылышки, которые служат для сохранения поперечной устойчивости (чтобы самолет не кренился), они называются элеронами. Таковы главные части самолета. Теперь посмотрим их поближе.
КАК УСТРОЕН ФЮЗЕЛЯЖ (КОРПУС) САМОЛЕТА
Фюзеляж – это, так сказать, туловище самолета, его основа. Фюзеляж делается очень прочным. Рис. 7 изображает его устройство.
Рис. 7. Устройство фюзеляжа (корпуса) самолета.
Мы видим, что он состоит из 4 длинных брусьев, – они называются лонжеронами, лонжероны скреплены между собой стойками и туго натянутыми крест-на-крест стальными стяжками. Лонжероны и стойки делаются или из дерева, или же из стальных труб. В передней части фюзеляжа находится моторная рама, на которой укрепляется мотор.
Моторная рама всегда делается из стальных труб и должна быть очень прочной, так как иначе от вибраций (т. е. от тряски) мотора фюзеляж может легко расшататься.
Остов фюзеляжа сверху обтягивается или полотном, или фанерой. Полотно пропитывается особым составом и покрывается краской и лаком, так что делается непромокаемым и гладким Фанера покрывается краской и лаком. У металлических самолетов фюзеляж покрывается тонкими листами металла дюралюминия.
Фюзеляж делается или четырехугольным, или треугольным, или круглым и т. д. Но всегда форма его такова, что к концам он заостряется и задний конец всегда больше заострен, чем передний. Такая форма, как уже давно доказано, – самая выгодная, и при ней встречный воздух меньше всего мешает продвигаться самолету, или, как говорят, оказывает небольшое сопротивление.
Шасси (рис. 4) нужно самолету для того, чтобы катиться по земле при разбеге и при посадке (пробег). Шасси делается из прочных стальных труб и укрепляется под передней частью фюзеляжа. Колеса с металлическими ободами и спицами имеют резиновые покрышки, и внутри их – резиновые камеры, в которые накачивается воздух. Это делается для того, чтобы уменьшить толчки при разбеге. Но этого оказывается недостаточно. Чтобы еще больше смягчить толчки, ось, на концах которой надеты колеса, прикрепляется к шасси не накрепко, а привязывается толстым резиновым шнуром, в несколько витков, при толчках шнур растягивается и ослабляет толчки. Резиновый шнур называется амортизатором.
Костыль (рис. 5 и 13) под задним концом фюзеляжа делается обычно из дерева и металла. На костыле ползет задний конец фюзеляжа. При подъеме костыль не мешает, так как хвост поднимается, а при посадке костыль тормозит и уменьшает пробег.
КРЫЛЬЯ
От крыльев особенно сильно зависит, как самолет летает, – плохо или хорошо. Крылья должны быть и прочны и легки. Вот почему их трудно устраивать.
У деревянных самолетов остов крыльев состоит обычно из двух продольных брусьев, которые тоже называются лонжеронами (как и у фюзеляжа). Эти лонжероны делаются из двух довольно тонких деревянных реек, скрепленных двумя фанерными стенками. Получается как бы длинный тонкий ящик или коробка, поэтому такие лонжероны и называются коробчатыми.
На лонжероны надеваются многочисленные ребра, которые называются нервюрами. Нервюры представляют собой деревянные ажурные ребра, сделанные из тонких деревянных реей и фанеры. Форма нервюр бывает различная, и в зависимости от этой формы получается тот или иной профиль крыла, т. е. вид в, поперечном разрезе или сбоку.
Передние и задние концы нервюр скрепляются деревянными рейками. Для придания крылу прочности лонжероны скреплены поперечными деревянными рейками и растянуты стальными растяжками. Сверху скелет крыла туго обтягивается тонким полотном, которое пропитывается особым составом, а затем покрывается краской и лаком. От этого крыло становится жестким, блестящим и непромокаемым. Иногда вместо полотна употребляется тонкая фанера, которая тоже покрывается краской и лаком.
У металлических самолетов остов крыла делается из металла и обтягивается чаще всего тонкими гофрированными листами дюралюминия[1]1
Что такое дюралюминий – объяснено дальше.
[Закрыть], реже – тонкой сталью.
Теперь все чаще и чаще строят крылья толстого профиля. У некоторых самолетов толщина крыла больше 1 метра. При такой толщине крыло легче сделать очень прочным (рис. 8).
Рис. 8. Испытание прочности металлического крыла.
Если же крыло получается прочным, то его можно прикрепить к фюзеляжу без всяких стоек и подкосов – такое крыло называется свободнонесущим. Свободнонесущее крыло выгоднее, так как тросы, всякие стойки и подкосы создают лишнее сопротивление воздуха, т. е. уменьшают скорость самолета и его подъемную силу.
МОТОР И ВОЗДУШНЫЙ ВИНТ
Мотор – сердце самолета (рис. 9).
Рис. 9. Установка мотора и воздушного винта на самолете.
От надежности его работы зависит часто не только выполнение полета, но и его безопасность.
Самолетный мотор мало чем отличается по своему устройству от автомобильного мотора, но обыкновенно авиамотор более мощный. Общее устройство мотора видно на рис 10.
Рис. 10. Схема авиамотора. Для наглядности показаны только главные части и один цилиндр разрезан. 1 Картер. 2 Цилиндр. 3 Впускная труба. 4 Путь горючей смеси. 5 Впускной клапан. 6 Выпускная труба. 7 Выпускной клапан. 8 Вода для охлаждения цилиндра. 9 Водяная рубашка. 10 Поршень. 11 Шатун. 12 Коленчатый вал. 13 Колено вала. 14 Пропеллер. 15 Магнето. 16 Якорь магнето. 17 Электрические провода от магнето к свечам. 18 Свеча.
Главная часть мотора – это цилиндр, цилиндров обычно – несколько. Цилиндр делается из стали, внутри его двигается поршень, который своим шатуном соединен с коленчатым валом мотора. Значит, чтобы заставить вращаться вал, надо заставить двигаться шатун и поршень. Как же это делается?
В верхнем конце цилиндра есть два клапана, впускной и выпускной. Тут же есть особое приспособление для зажигания попадающего в цилиндр бензина (его паров); это приспособление называется зажигательной свечой.
Пусть в цилиндр через впускной клапан попадает смесь бензина с воздухом (горючая смесь). Если теперь заставить поршень двигаться, то он сожмет горючую смесь. Когда смесь достаточно сжата, внутри цилиндра на свече проскакивает электрическая искра. От искры горючая смесь воспламеняется и образуется много раскаленных газов, которые так сильно давят на поршень, что он приходит в движение, поршень своим шатуном толкает коленчатый вал, который приходит от этого во вращательное движение. Отработанные газы выпускаются из цилиндра через выпускной клапан а через впускной поступает новая порция горючей смеси. Она снова воспламеняется снова поршень толкает шатун и т. д. Таким образом и происходит работа мотора.
«А как же мотор начинает работать?» – спросит читатель.
Для того чтобы запустить мотор, надо несколько раз, вращая пропеллер, провернуть вал мотора. От этого поршни в цилиндрах задвигаются, в цилиндры засосется горючая смесь (воздух с бензином), электрическая машинка (магнето), которая соединена шестеренкой с валом мотора, начнет работать и на свече одного из цилиндров проскочит электрическая искра. Он зажжет смесь, а дальше мотор уж сам будет продолжать работу. Все дальше выполняется автоматически. Цилиндры нижними концами (открытыми) укреплены в особой большой металлической коробке, которая называется картером; в нем-то и вращается коленчатый вал. Цилиндры во время работы так сильно нагреваются, что их надо обязательно охлаждать. Это делается или с помощью встречного воздуха – тогда наружная поверхность цилиндров делается ребристой, отчего она скорее охлаждается. Чаще же для охлаждения применяется вода, которая из особого резервуара (радиатора) поступает в так называемые рубашки – особые металлические чехлы, которыми покрыты цилиндры. Смазка мотора производится автоматически с помощью масленой помпы, которая приводится в движение от вала мотора.
Для приготовления горючей смеси устроен особый прибор, называемый карбюратором.
Бензин из бака попадает в этот прибор и здесь автоматически смешивается в нужной пропорции с воздухом и уже в газообразном состоянии попадает в рабочую камеру цилиндров.
На передний, выдающийся из картера, конец коленчатого вала насаживается своей втулкой воздушный винт, или пропеллер.
Воздушный винт делается из дерева, а в последнее время – из металла (рис. 11).
Рис. 11. Металлический воздушный винт (пропеллер).
Будущее конечно – за металлическим винтом. У современных самолетов вал мотора (а следовательно и винт) делает около 1500 оборотов в минуту. Число оборотов, а значит и тягу винта и скорость самолета летчик может регулировать. Действуя левой рукой на маленькие рычажки, идущие от мотора, летчик может уменьшать или увеличивать количество горючей смеси, попадающей в цилиндры, и тем ослаблять или усиливать силу взрывов, получающихся от воспламенения смеси в цилиндре.
Ряд приборов позволяет летчику судить о правильности работы мотора или его недостатках.
КАК УСТРОЕНО УПРАВЛЕНИЕ САМОЛЕТА
Конечно самолетом управлять труднее, чем, например, моторной лодкой или автомобилем. Лодку или автомобиль надо поворачивать только влево и вправо, для чего у лодки и имеется один руль, а у автомобиля шофер с помощью штурвала поворачивает колеса в ту или другую сторону. Но ведь самолет надо уметь поворачивать не только в стороны, но и направлять то вниз, то вверх. Мало того, если самолет накренится – его надо суметь выровнить.
Сколько же надо рулевых приспособлений для управления самолетом? Ясно – надо три: руль направления, руль глубины и элероны (см. рис. 5). Как же они устроены и как летчик может ими двигать (рис. 12)?
Рис. 12. Устройство самолета и его органов управления (на рисунке для ясности как бы сорвана обшивка левой и нижней стороны фюзеляжа). 1 Мотор. 2 Моторная рама. 3 Бак для бензина. 4 Бак для масла. 5 Доска с приборами. 6 Козырек. 7 Регулятор газа. 8 Элероны. 9 Ножной рычаг для движения руля направления. 10 Рычаг управления рулем глубины и элеронами (ручка).
Руль направления у самолета устроен в точности так, как руль обыкновенной лодки. От него идут к летчику два тонких троса и прикрепляются к концам поперечного горизонтального рычага, который находится под ногами летчика. Так как этот рычаг может вращаться на болту, то и получается так, что летчик, нажимая ногами, может легко поворачивать руль направления, а значит и поворачивать самолет в ту или другую сторону.
Руль глубины можно наклонять вверх и вниз. От этого руля к летчику тоже идут тонкие тросы и особым образом прикрепляются к вертикальному рычагу, который находится перед летчиком. Этот рычаг устроен на шарнирах и может наклоняться во все стороны. Рычаг этот называется обыкновенно просто ручкой, и мы его так и будем называть. Так вот если летчик наклоняет ручку вперед, или, как говорят, если летчик «дает от себя», то руль глубины наклоняется вниз и самолет наклоняет нос вниз и начинает спускаться. Наоборот, если летчик тянет ручку к себе, как говорят, «берет ручку на себя», то руль глубины и нос самолета поднимаются, и машина начинает забирать высоту.
От элеронов к летчику тоже идут тросы, которые прикрепляются к той же ручке, что находится перед летчиком. Элероны двигаются тогда, когда летчик эту ручку наклоняет вправо или влево. Если летчик наклоняет ручку влево, то и самолет кренится влево, а если – вправо, то и самолет кренится вправо. Обыкновенно летчику приходится одновременно двигать обоими рулями и элеронами. Поэтому всего чаще бывает так, что летчик наклоняет ручку и в сторону и вперед, или в сторону и назад, т. е. делает ручкой косые движения. Ручку летчик обычно держит правой рукой и только в исключительных случаях, когда приходится приложить усилие, он может помочь и левой рукой. Обычно же движения ручкой приходится делать очень малые, и на современных самолетах их делать очень легко (силы надо немного).
Левой рукой летчик управляет рычажками, которые регулируют работу мотора. Левой же рукой обычно летчик включает и выключает (выключателем) электрический ток, который идет от магнето на свечи мотора. Левой же рукой летчик управляет и некоторыми другими приборами и приспособлениями, которые того требуют.
Почему же самолет изменяет свой полет, если летчик подвинет какой-нибудь руль или элероны? А отчего лодка поворачивает вправо, когда вы поворачиваете руль вправо? Оттого что вода начинает давить на его правую сторону, если он повернут вправо, от этого корма лодки поворачивается влево, а нос – вправо. Вот то же самое происходит и с самолетом, только здесь на руль давит не вода, а воздух.
На рис. 13 изображен самолет, у которого летчик левый элерон опустил, а правый поднял.
Рис. 13. Действие элеронов. При поднятом правом элероне и опущенном левом давление встречного воздуха (он показан стрелками) будет значительно больше на левый элерон, чем на правый. Вследствие этого левое крыло поднимется, а правое опустится.
Что произойдет? Встречный воздух, который изображен на рисунке стрелками, будет теперь сильнее давить на левое крыло, а на правое, наоборот, слабее, так как здесь воздух будет проскакивать под поднятый элерон; ясно, что левое крыло поднимется, а правое опустится. Таково действие рулей и элеронов. Делаются они у деревянных самолетов частью из стальных труб, частью из деревянных реек, а скелет обтягивается или полотном, или фанерой (как крылья и фюзеляж). У металлических самолетов остовы рулей и элеронов – из металла и обтянуты тонкими дюралюминиевыми листами.