355 500 произведений, 25 200 авторов.

Электронная библиотека книг » А. Целлариус » Я познаю мир. Живой мир » Текст книги (страница 10)
Я познаю мир. Живой мир
  • Текст добавлен: 29 сентября 2016, 03:26

Текст книги "Я познаю мир. Живой мир"


Автор книги: А. Целлариус


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 10 (всего у книги 13 страниц)

В таком способе транспортировки воды есть один, очень большой, плюс. Если корневое давление (равно как и циркуляция раствора при помощи мышечных сокращений) требует от организма затрат энергии, причем затрат весьма существенных, то при системе транспирационного транспорта растение не тратит ничего – используется непосредственно энергия солнца. Но каждое достоинство имеет свое продолжение в виде недостатков. Недостаток данной системы столь же велик, как и её достоинство – растение вынуждено расходовать огромное количество воды. Кроме того, насос этот плохо работает, когда холодно и вода плохо испаряется. С этим обстоятельством связана «арктическая засуха». Растения северных мест, как правило, страдают от недостатка воды, хотя в почве её полно, и часто имеют облик, схожий с растениями пустынь – мелколистность, плотные покровы, густое опушение стеблей и листьев.

Транспортировка органических веществ по флоэме также основана на законах осмоса, но требует очень активного участия клеток и расхода энергии. Суть дела довольно проста. Сахара, которые синтезируют хлоропласты в клетках мезофилла, путем активного переноса через мембраны загружаются в клетки флоэмы. На всякий случай напоминаем, что клетки флоэмы, в отличие от клеток ксилемы, – живые. Загружаются клетки флоэмы через клетки–спутники (вспомните раздел «Вид растения изнутри»), которые и несут основные энергетические расходы по загрузке. В месте потребления, например в зоне роста корня или побега, клетки флоэмы так же активно разгружаются. В месте загрузки концентрация клеточного содержимого увеличивается, клетка начинает активно «сосать» воду из проходящего рядом сосуда ксилемы, вода «распирает» клетку, возникает повышенное давление. В месте разгрузки – все наоборот. В результате разницы давлений и происходит ток раствора по трубке флоэмы от одного органа к другому. Кстати, по флоэме транспортируются не только сахара, но и другие продукты синтеза, в частности аминокислоты, хотя и в меньшем объеме.

Сосудистые и не очень

Около четырехсот сорока миллионов лет назад, в начале силурийского периода, поверхность материков была пустыней, грунт в которой местами покрывала тонкая пленка цианобактерий и одноклеточных водорослей. Но низменные берега водоемов, вероятно, уже зарастали ковром из созданий, более всего напоминавших ветвящиеся зеленые макароны, со светлыми вздутиями на кончиках приподнятых ветвей. Вероятней всего, именно так выглядели первые зеленые растения или, скорее, существа, стоящие на пол пути от водорослей к растениям. Эти «макароны» дали начало двум ветвям растительного царства – моховидным растениям (они же бриофиты) и растениям сосудистым. Не исключено, правда, что бриофиты и сосудистые произошли от разных групп зеленых водорослей, но большинство ботаников склоняется к мысли, что у них был один предок.

image l:href="#image128.png"

Первые сухопутные растения

Одно из различий между моховидными и сосудистыми отражено в их названии – у моховидных иначе устроены проводящие ткани. Впрочем, не так уж велико различие. Проводящая жилка несет центральный пучок мертвых клеток (гидроидов), который окружен клетками с дегенерировавшим ядром и живым протопластом (лептоиды). И те и другие вытянуты и соединяются скошенными концами в цепочки, первые проводят воду, вторые – органические вещества. И по структуре, и по взаимному расположению проводящие клетки бриофитов очень напоминают ксилему и флоэму сосудистых, особенно хвощей и папоротников. Конечно, строение проводящего пучка моховидных намного проще, но ботаники считают, что проводящие клетки мхов и сосудистых растений происходят от одних и тех же групп клеток их общего предка. Просто моховидные почему–то не стали совершенствовать проводящие ткани и удовлетворились их примитивным состоянием.

image l:href="#image129.png"

Печёночник маршанция многообразная Антоцеротповыи мох

image l:href="#image130.png"

Листостебельные мхи

В отделе моховидных три класса: печеночники, антоцеротовые мхи и листостебельные мхи. Многие ботаники считают эти группы не классами, а отделами, независимо произошедшими от разных предков. Все моховидные – некрупные растения, хотя ветвящиеся гаметофиты некоторых мхов могут достигать полуметра в длину. И всем моховидным, даже тем, что растут в пустыне, для оплодотворения нужна вода, хотя бы в виде росы.

Размножение мхов

Спора мха, попав в подходящие условия, начинает делиться и возникает организм, удивительно похожий на нитчатую водоросль, – протонема. На нитях протонемы через некоторое время появляется «шишка» из группы клеток. Это своего рода почка, из которой разовьется то самое растение, которое мы привыкли называть мхом. И спора, и протонема, и мох обладают одинарным набором хромосом – гаплоидны. На верхушках побега мха образуются половые органы – архегонии (женские) и антеридии (мужские). Это крошечные «кувшинчики», которые можно разглядеть только при помощи приличного увеличительного стекла. В архегонии формируется одна крупная яйцеклетка, в антеридии – множество мелких клеток со жгутиками – спермии. Эти половые клетки и есть те самые гаметы, от которых произошло название поколения – гаметофит.

Далее требуется дождь или роса, которые создадут пленку воды, чтобы спермии могли доплыть до архегониев и слиться с яйцеклеткой, образовав диплоидную зиготу. У некоторых бриофитов спермии выбираются из антеридиев самостоятельно и наудачу отправляются в плавание. У некоторых они выдавливаются наружу и ждут попадания дождевой капли, чтобы разлететься с брызгами в разные стороны. Добраться до архегония удается единицам из тысяч. Зигота делится, и в кувшинчике архегония формируется зародыш спорофита – следующего, диплоидного, поколения. Зародыш получает питание от гаметофита через клетки архегония. На начальном этапе архегоний вдобавок защищает юного потомка от враждебного окружающего мира. Спорофит растет, высовывается из архегония, вытягивается на длинной ножке, но остается прикрепленным к гаметофиту особой структурой – стопой, через которую гаметофит продолжает его питать. На верхушке спорофита формируется особая структура, спорангий, в котором в результате мейоза образуются гаплоидные одноклеточные споры. Споры разносятся ветром или водой, а у многих моховидных спорангии устроены таким образом, что, созревая, лопаются, с силой разбрасывая споры в разные стороны. Споры, рассыпавшись по окрестностям, в свою очередь начинают делиться, давая каждая начало новому гаметофиту.

image l:href="#image131.png"

Жизненный цикл мха: 1гаметофит; 2спорангий; 3 – спора; 4 – спорофит

Таков жизненный цикл моховидных. Здесь кроется второе, пожалуй, самое важное различие между моховидными и сосудистыми. «Главное» поколение моховидных, как вы видите, – гаметофит. Это довольно крупное, долгоживущее растение, способное самостоятельно питаться и противостоять всем жизненным невзгодам. Спорофит же значительно меньше, кормит его гаметофит, и жизнь его сравнительно коротка. У сосудистых все наоборот. Гаметофит мал и недолговечен, у продвинутых форм сосудистых он полностью зависит от спорофита, а спорофит – это то самое, что мы привыкли называть деревом, кустом или травой.

Ставка на спорофит дала впоследствии сосудистым растениям серьезный выигрыш – диплоидные организмы способны «накопить» в геноме больше разнообразных свойств и, соответственно, при изменении условий они быстрее и легче приспосабливаются. В результате сосудистые дали в несколько раз больше видов, чем бриофиты, и плотно заселили всю сушу. Впрочем, бриофиты не жалуются. На Земле сейчас известно свыше двадцати тысяч видов мохообразных, которые заселяют планету от Антарктиды до тропиков и от болот до песчаных пустынь. Они способны расти практически повсюду: от жирной почвы лугов до бесплодной поверхности скал.

Самые древние

Зеленые «макароны», упомянутые в главе «Сосудистые и не очень», принадлежат к весьма интересной группе растений, процветавшей в силуре и начале девона. Ботаники–анатомы делят эти древнейшие растения на несколько отделов и считают всю эту компанию сосудистыми растениями. Палеоботаники обычно относят их к одному отделу с замысловатым названием проптеридофиты и предполагают, что это и есть та предковая группа, которая дала начало сосудистым и моховидным.

Среди них есть растения разного уровня совершенства с разными деталями анатомического строения, но для впервые возникшей группы, которая начала осваивать новое, никем не занятое пространство, такое разнообразие естественно – разные члены группы осваивают места с разными условиями и эволюционируют с разной скоростью. Наиболее древние и примитивные из проптеридофитов – риниевые. Это и есть те «зеленые макароны» с простыми одиночными спорангиями на концах осей. Ни стебля, ни корня, ни листьев ещё нет, рост исключительно верхушечный (никакого камбия нет и в помине), а проводящий пучок очень напоминает проводящие ткани моховидных. В отложениях верхнего силура и нижнего девона сохранились как спорофиты риниевых, так и очень похожие на них гаметофиты. Принадлежат ли ископаемые спорофиты и гаметофиты к разным поколениям одного вида, или существовали одновременно родственные виды, из которых у одних преобладал гаметофит, а у других спорофит – неизвестно. Но это и не особенно важно. Важно то, что в пределах одной группы были и растения с крупным долгоживущим гаметофитом, и с аналогичным спорофитом. И вероятно, именно отсюда началась эволюция двух ветвей, в одной из которых получил преимущество гаметофит, в другой – спорофит.

image l:href="#image132.png"

Риния

Мы уже говорили, что моховидные очень долго были редкими и малочисленными растениями. Ископаемых находок моховидных девонского времени крайне мало, и они представлены мелкими фрагментами не очень хорошей сохранности. Более или менее прочной связи моховидных с риниевыми доказать пока не удается, просто это наиболее логичный вариант. Что же касается сосудистых, то их связь с риниевыми вызывает гораздо меньше сомнений. Две группы риниевых ещё в силуре начали, каждая по–своему, развивать приспособления к жизни на суше. Одна из них дала зостерофиллов, другая – тримерофитов. К тримерофитам относятся знаменитые псилофиты, самые многочисленные растения девонских болот.

Вообще же, откровенно говоря, с точки зрения неспециалистов все три группы – риниевые, зостерофиллы и тримерофиты – мало отличались друг от друга. Никто из них не имел ещё разделения на корень и стебель, все были низкорослыми, но у зостерофиллов и тримерофитов строение проводящих тканей несколько более продвинуто, строение спорангиев более сложно, спорангии собраны в «соцветия», у некоторых на «стебле» были чешуевидные выросты. Зостерофиллы – предки плаунов, существующих на Земле и поныне.

image l:href="#image133.png"

Зостерофиллофиты

image l:href="#image134.png"

Тримерофит.

Сами же зостерофиллы вымерли ещё в девонском периоде. От тримерофитов произошли, вероятно, папоротники, хвощи и семенные растения. Два вида тримерофитов ухитрились дожить до наших дней.

Это псилот – довольно обычный сорняк оранжерей, и тмезиптерис, растущий на стволах древовидных папоротников. Оба – жители тропиков и субтропиков.

image l:href="#image135.png"

Псилот: Аобщий вид; Вчасть стебля со спорангиями

Плауны, хвощи и папоротники

Все три отдела, перечисленные в названии главы, относятся к споровым растениям. Плауны, или, правильней, плауновидные, – в наше время мелкие, невзрачные травы, живущие в основном во влажных местах. Хотя обыкновенный плаун – баранец – весьма обычное у нас лесное растение, но многие даже не знают его в лицо, считая каким–то мхом. Однако так было не всегда. В конце девонского периода и до конца каменноугольного, более ста миллионов лет, плауновидные были ведущей группой растений. Среди них были деревья, лепидодендроны, высотой до сорока метров, и именно они были главной лесной породой тех времен. Были среди древних плауновидных и травы, и кустарники.

image l:href="#image136.png"

Плауны: 1булавовидный; 2баранец; 3 – сплющенный

С хвощами знакомы все. Это тоже группа, слава которой в прошлом. Сейчас все хвощи – невысокие травы. Но в карбоне двадцатиметровые каламиты, очень похожие на современный хвощ, только гигантского размера, росли нижним ярусом в лепидодендровых лесах. Папоротники, появившиеся, вероятно, почти одновременно с хвощами и плаунами, достигли расцвета несколько позже и продолжают вполне успешно существовать до сих пор. Сейчас на Земле растет около полутора десятков тысяч видов разных папоротников (плауновидных – около тысячи, а хвощей всего два десятка). Во времена динозавров среди папоротников было множество как травянистых, так и древесных растений. Ныне древовидных папоротников осталось всего несколько видов, но в горных лесах Новой Гвинеи, Новой Зеландии и Антильских островов они весьма обычны и местами занимают ведущее место в древостое. Жизненный цикл всех споровых растений относится к одному типу. На спорофите формируются своего рода бугорки (спорангии), внутренние клетки которых делятся путем мейоза, превращаясь в гаплоидные споры. Спора падает на землю, клетки её начинают делиться, оболочка разрывается, на свет появляется маленькая многоклеточная пластинка размером с булавочную головку – гаметофит. Проводящих тканей у него нет, впрочем, как и любых других.

image l:href="#image137.png"

Хвощ полевой: 1 – вегетативный побег;2 – генеративный побег;3клубеньки

image l:href="#image138.png"

Папоротник щитовник мужской: 1 – пёрышко вайи; 2сорус (собрание спорангиев); 3спорангий

Воду и минеральные вещества гаметофит сосет с помощью длинных тонких выростов поверхностных клеток, сродни корневым волоскам, которые называются ризоидами. В состав гаметофита может входить симбиотический микоризный гриб, обеспечивающий минеральное питание (глава «Невидимая сила). Основная масса клеток гаметофита имеет тип паренхимы, содержит хлорофилл и занимается фотосинтезом. На этом крошечном гаметофите, как и на крупном гаметофите мхов, формируются архегонии и антеридии; спермии находят архегоний, сливаются с яйцеклеткой, и возникшая диплоидная зигота начинает делиться, превращаясь в зародыш спорофита. Как и спермиям мхов, спермиям споровых, чтобы добраться до архегония, нужна вода. Передвигаться посуху они не умеют. Поначалу зародыш питается за счет гаметофита, но как только он отрастит корешок и первые, ещё крошечные листочки, гаметофит, выполнив свое дело, отмирает. Так обстоит дело почти у всех папоротников, у всех хвощей и у части плауновидных. Однако у двух групп плауновидных (селягинеллы и полушники) и у небольшой группы водных папоротников процесс идет несколько сложнее. У них формируются два типа спор – мегаспоры, дающие начало женским гаметофитам, на которых формируются архегонии, и микроспоры, из которых формируются гаметофиты исключительно с антеридиями.

image l:href="#image139.png"

Обобщённый жизненный цикл споровых растений:Ахвоща; Б – папоротника; Вплауна; 1споры;2гаметофит (заросток); 3молодой спорофит

Как появилось семя

Как и почему возникла разноспоровость – тайна, покрытая глубочайшим мраком. Мало того что спермию необходим слой воды, чтобы добраться до архегония, так ему ещё приходится искать другой, неизвестно где находящийся женский гаметофит. Правда, архегонии выделяют особые вещества, и спермии ориентируются «по запаху». Но задачу это упрощает ненамного. Можно предположить, что в случае разноспоровости чаще будет происходит перекрестное оплодотворение, то есть зигота будет потомством двух разных особей. Перекрестное оплодотворение – штука, несомненно, выгодная: она способствует распространению полезных свойств и увеличивает изменчивость. Следовательно, гораздо шире возможность приспосабливаться к враждебному и непостоянному миру. Но двуполость гаметофита перекрестному оплодотворению никак не препятствует. Во всяком случае, не заметно, чтобы равноспоровые папоротники чувствовали себя хуже селягинелл или своих разноспоровых собратьев. Однако чем–то разноспоровость очень удобна, или была удобна в древности. Среди споровых растений каменноугольного периода разноспоровсть была распространена очень широко.

image l:href="#image140.png"

Развитие гаметофита селягинеллы1микроспора; 2 – мегаспора; 3 – мужской гаметофит; 4женский гаметофит; 5ризоиды; 6сперматозоиды;7 – зародыш спорофита; 8 – прорастающий спорофит

Разноспоровыми были и девонские растения из отдела прогимноспермов – это название можно перевести как «предшественники голосеменных». Прогимноспермы – продвинутые потомки тримерофитов – отличались от своих предков хорошо выраженным вторичным ростом: это были весьма внушительные деревья с толщиной ствола около метра и высотой до трех десятков метров. Боковые побеги несли листья мегафилльного типа, как у папоротников (у всех плауновидных и хвощей тип листа – микрофилл). Во многих местах прогимноспермы не уступали по обилию плауновидным. Но самое интересное это не вторичный рост и не сложное строение листа. Многие прогимноспермы не выбрасывали созревшую мегаспору на произвол судьбы, а оставляли «при себе». В общем, резонно. Проблемы у спермиев при этом не увеличиваются, а мегаспору спорофит может, хотя бы отчасти, уберечь от всяческих случайностей. В частности, прикрыв её специальными выростами. Надо сказать, что к середине девонского периода, когда прогимноспермы начали экспериментировать с мегаспорой, суша уже была заселена разнообразными членистоногими, в частности примитивными бескрылыми насекомыми и клещами. Во второй половине девона насекомые начали осваивать полет. Значительная часть древних насекомых и клещей питалась как раз спорами, и эксперименты прогимноспермов были весьма своевременны.

Мегаспора некоторых прогимноспермов оставалась в спорангии, и стенка спорангия образовала защитную оболочку. Эта оболочка имеется и у современных семенных растений и носит название нуцеллуса. Мало того. На ножке, на которой сидел спорангий, начали формироваться длинные узкие чешуйки, прикрывающие спорангий, – купулы. Эти лопасти затем начинали срастаться, одевая спорангий одним или несколькими слоями ткани, а на кончике оставалось отверстие – микропиле.

Эта оболочка получила название интегумента, и у современных растений она образует семенную кожуру. Все вместе, мегаспора со своей оболочкой, спорангий и сросшиеся купулы, называется семязачатком. Семязачаток – это ещё не семя. Семенем он становится тогда, когда внутри оболочки мегаспоры разовьется женский гаметофит, когда яйцеклетка будет оплодотворена и когда сформируется зародыш. Зародыш у всех семенных растений на более или менсс долгое время впадает «в спячку», и этим периодом покоя развитие семенных растений отличается от развития споровых. Так вот, вся эта сложная структура с покоящимся зародышем и называется семенем.

Настоящие семена были, вероятно, уже у некоторых прогимноспермов. Поначалу, вероятно, семязачатки опадали, оплодотворение происходило уже на земле (или в воде), и только там семязачаток превращался в семя. Но довольно быстро прогимноспермы «догадались», что семязачатку, остающемуся на ветке, гораздо легче «поймать» разносимые ветром микроспоры, чем лежащему на земле. От этих семенных прогимноспермов и произошли голосеменные растения. Первая их группа – семенные папоротники. Семенные папоротники (с настоящими папоротниками они не имеют ничего общего) были многочисленны во второй половине каменноугольного периода и, просуществовав сто пятьдесят миллионов лет, вымерли к концу юрского периода, во времена расцвета динозавров. А современные группы голосеменных, появившиеся в конце девона, процветают и в наши дни. К голосеменным относятся хорошо знакомые всем хвойные, саговники (не путать с саговыми пальмами), гинкго – красивое крупное дерево, единственный доживший до наших дней представитель некогда многочисленного племени, и гнетовые, среди которых эфедра, с которой некоторые из вас могут быть хорошо знакомы. Эти кустарнички с побегами, напоминающими хвощ, растут, в частности, в степях и полупустынях на юге России и в горах Кавказа.

image l:href="#image141.png"

Семенной папоротник:Аобщий вид; Б – семя на нижней стороне листа

image l:href="#image142.png"

Гинкго двулопастный

Сложная процедура

Образование семени – непростая штука, и занимает довольно много времени. Наверное, стоит й двух словах рассказать, как происходит размножение, скажем, у всем известной сосны. Орган размножения сосны – стробил, он же шишка, – представляет собой укороченный побег. На мужской шишке, напоминающей по виду, скорее, сережку ивы, побег усажен видоизмененными листочками – микроспорофиллами. Каждый из них несет на основании два микроспорангия, в которых образуется множество микроспор. Расположение спорангия на видоизмененном листе – память о происхождении от прогимноспермов. И сами прогимноспермы, и их потомки (папоротники, семенные папоротники, семенные растения) несут спорангии на обычных или измененных листьях. Тогда как у плаунов и хвощей собрание спорангиев образуется прямо на побеге. Прикрывающие спорангии чешуйки (спорофиллы), когда они есть, ничего общего с листом не имеют. Но вернемся к сосне.

Женская шишка устроена иначе. Ось стробила здесь несет не листья, а видоизмененные расширенные боковые побеги – это и есть те деревянистые чешуи, которые первыми бросаются в глаза. На основании побега–чешуи сидят сверху два семязачатка. Мясистая оболочка мегаспорангия – нуцеллус, – содержит единственную крупную диплоидную клетку, которая называется материнской.

image l:href="#image143.png"

Женская шишка хвойного: 1стержень; 2чешуйки с семязачатками; 3 – созревшие семена

Микроспоры высыпаются весной, число их огромно, во время цветения хвойных поверхность лесных луж и озер бывает покрыта сплошным слоем пыльцы. Оболочка каждой микроспоры образует два воздушных мешка. Благодаря этим пузырям спора буквально плавает в воздухе и переносится ветром на дальние расстояния. Женские шишки в это время раздвигают чешуи, и в микропиле выделяется капля клейкой жидкости, к которой и прилипает занесенная ветром микроспора. Жидкость испаряется, микроспора автоматически втягивается в микропиле и попадает на нуцеллус. Чешуи щишки смыкаются, и все остальное происходит за закрытыми дверями. Микроспора содержит мужской гаметофит, состоящий всего из четырех клеток – одной генеративной, одной клетки, из которой развивается пыльцевая трубка, и ещё двух клеток (их называют проталлиальными), которые неизвестно для чего нужны. Попав на нуцеллус, спора прорастает – клетка пыльцевой трубки начинает вытягиваться, медленно пробираясь сквозь нуцеллус к материнской клеткой. Пока она это делает, проталлиальные клетки рассасываются, а генеративная клетка делится, образуя в итоге два спермия. Спермии оказываются внутри клетки пыльцевой трубки, так что, строго говоря, это не столько трубка, сколько «стержень», внутри которого находятся спермии. Вся эта процедура занимает около года.

image l:href="#image144.png"

Пыльцевоезерно

image l:href="#image145.png"

Образование пыльцевой трубки у сосны: 1проталлиалъная клетка; 2генеративная клетка; 3 – ядро клетки пыльцевой трубки

Женская составляющая сосны тоже не особенно торопится. Только через несколько месяцев после того, как пыльцевая трубка начнет пробираться через нуцеллус, материнская клетка делится путем мейоза, давая начало четырем мегаспорам. Три из них «рассасываются» без следа, а одна начинает делиться, образуя женский гаметофит. Приблизительно через год после мейоза женский гаметофит формирует архегонии с яйцеклетками, и вскоре пыльцевая трубка наконец добирается до женского гаметофита. Она впрыскивает в яйцеклетку часть своей протоплазмы и обоих спермиев. Один счастливчик сливается с ядром яйцеклетки, другой гибнет. Оплодотворение происходит приблизительно через полтора года после того, как микроспора прилипла к капельке, выделенной на микропиле. Ещё около полугода уходит на формирование зародыша. «Готовый» зародыш являет собой ось, один конец которой – это эмбриональный корешок с верхушечной меристемой и корневым чехликом, другой – эмбриональный побег (гипокотиль), тоже с верхушечной меристемой и эмбриональными листочками – семядолями. У сосны семядолей восемь, и в первый этап жизни проростка они будут функционировать как листья. Зародыш окружен тканью гаметофита, который содержит запас питательных веществ. Всё это окружено йнтегументом, который к концу формирования зародыша превращается в жесткую семенную кожуру. Ткань нуцеллуса почти целиком расходуется на формирование зародыша. Так что семя – это содружество трех поколений: диплоидный родительский спорофит образует защитную кожуру, следующее поколение – гаплоидный женский гаметофит – содержит запасы пищи для третьего поколения, которое представлено диплоидным зародышем новорожденного спорофита.

image l:href="#image146.png"

Оплодотворение у сосны: 1покров семязачатка; 2мегагаметофит; 3архегонии; 4яйцеклетка; 5пыльцевая трубка; 6спермий;7микропиле

Следующий шаг

Голосеменные растения появились около трехсот пятидесяти миллионов лет назад, в конце девонского периода. И только через двести с хвостиком миллионов лет, в начале мелового периода, растения сделали следующий рывок вперед – появились покрытосеменные. Этот эволюционный прорыв тесно связан с эволюцией насекомых. Насекомые с удовольствием посещали органы размножения растений уже в карбоне. Они высасывали семязачатки, ели споры и, попутно, переносили микроспоры с одного растения на другое просто потому, что некоторое количество микроспор неизбежно прилипало к их телу. Большинство растений боролось с этими нахлебниками изо всех сил, главным образом отращивая различные защитные приспособления. Однако некоторые группы голосеменных сумели оценить ту пользу, которую приносили насекомые, перенося микроспоры с одного стробила на другой и от одного растения к другому. Поскольку насекомое вынуждено, хочет оно того или нет, питаться и тем самым перебираться с одного стробила на другой, оно переносит микроспоры гораздо надежней, чем вода или ветер. Некоторые голосеменные «приручили» насекомых, постаравшись максимально использовать преимущества такого способа переноса микроспор и свести к минимуму вред.

Из голосеменных дальше всего по пути использования насекомых продвинулись беннетиты, которые, вероятно, и были предками первых покрытосеменных. Приручение насекомых ставило перед беннетитами две основные задачи – во–первых, нужно было максимально защитить от посетителей драгоценные семязачатки и микроспоры (пыльцу). Одновременно нужно было как–то привлечь насекомых, заставить их посещать стробилы не от случая к случаю, а регулярно. Одно противоречит другому и проблема кажется неразрешимой. Однако беннетиты вывернулись. Стробил большинства беннетитовых нес одновременно и мега–, и микроспорангии, то есть был двуполым. Ось стробила (стебель) на верхушке была расширена и имела форму конуса (цветоложе). Поверхность конуса была плотно усажена семязачатками, которые беннетиты надежно прикрыли специально отрастающими листоподобными чешуйками. Ниже шло широкое кольцо тонких длинных перистых листочков, микроспорофиллов, несущих микроспорангии. И – главная фишка беннетитов – на поверхности цветоложа между основаниями микроспорофиллов располагались особые органы, до которых ни одно другое растение «не додумалось» – нектарники. Все остальное не было новостью в мире растений, но нектарники, выделяющие питательную сахаристую жидкость, одним ударом решили несколько проблем. Они отвлекли насекомых от семязачатков и пыльцы и заставили их специально разыскивать стробилы с таким замечательным источником пищи. Вдобавок чешуйки, микроспорофиллы и само цветоложе почти наверняка были ярко окрашены, чтобы издали привлекать опылителей и вдобавок, очень может быть, испускали привлекательный запах, как это проделывают цветы многих современных покрытосеменных. Отсюда до покрытосеменных оставался один шаг, хотя шаг этот было сделать очень непросто, на это беннетитам, появившимся в триасе, понадобилось более ста миллионов лет.

Первой группой насекомых, прирученных растениями и превращенных в профессиональных опылителей, были некоторые жуки. Жук – создание солидное и прикрывать семязачатки требовалось не только для того, чтобы их не съели, но и для того, чтобы неповоротливый переносчик пыльцы не повредил нежный орган, просто топчась по нему в поисках нектарников.

Верх совершенства

В основе жизненной стратегии покрытосеменных лежит три принципа: максимальная защита семян, максимальное обеспечение новорожденных запасами пищи, максимальное использование животных для размножения и расселения. Все это обеспечивается уникальным органом размножения покрытосеменных – цветком, и потому этот отдел растительного царства называют ещё цветковыми растениями.

image l:href="#image147.png"

Строение шишки и цветка: 1семязачатки; 2чешуи шишки; 3завязь; 4пестик;.5чашечка; 6цветоложе; 7венчик; 8пыльца;9 – рыльце

Цветок – это укороченный побег. Верхняя часть побега расширена и называется цветоложем. На самой верхушке побега сидят семязачатки, один или несколько, одетые поверх интегумента толстым слоем ткани и полностью изолированные от внешнего мира. Сделано это было просто – листик, на котором располагались мегаспорангии, свернулся в трубочку, так что семязачатки оказались внутри, а затем края листика срослись. Этот мясистый листик называется плодолистиком, а то, что получается в результате его сворачивания и срастания, – пестиком. Нижняя часть пестика называется завязью, верхняя – рыльцем. Все вместе, с семяпочками, – гинецеем. Гинецей может состоять из нескольких свернутых плодолистиков, которые срастаются полностью или частично, сохраняя в последнем случае несколько рылец. Вокруг гинецея сидят в один или несколько рядов тычинки – бывшие микроспорофиллы с микроспорангиями. В основании тычинок расположены нектарники. Следующий круг – лепестки, сохранившие, в общем, облик нормального листа. Обычно лепестки ярко окрашены. Следующий круг – почти обычные листья, чашелистики, иногда зеленые, но у некоторых растений ярко окрашенные, как и лепестки. Это принципиальная схема, которая может изменяться, давая огромное количество вариантов строения цветка.

Как и у голосеменных, в нуцеллусе (мегаспорангии) из материнской клетки путем мейотического деления образуется четыре гаплоидные мегаспоры, три из которых рассасываются. В оставшейся трижды происходит митоз, но делятся только ядра, так что возникает клетка с восемью гаплоидными ядрами. Так, кстати, начинается формирование женского гаметофита и у многих голосеменных. Затем из этой клетки образуется семь. Три из них находятся около микропиле, одна клетка из этих трех и является собственно яйцеклеткой, а две другие носят название синергид. Три клетки расположены у «заднего» конца гаметофита. И одна крупная клетка, с двумя гаплоидными ядрами, расположена в центре. Это семиклеточное «существо» и есть женский гаметофит покрытосеменных.


    Ваша оценка произведения:

Популярные книги за неделю