355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЙ) » Текст книги (страница 4)
Большая Советская Энциклопедия (ЭЙ)
  • Текст добавлен: 15 октября 2016, 00:05

Текст книги "Большая Советская Энциклопедия (ЭЙ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 4 (всего у книги 6 страниц)

Эйнманн Эдуард

Э'йнманн Эдуард [р. 10(23).1.1913, дер. Кулламаа, ныне Раплаского района Эстонской ССР], советский график и живописец, народный художник Эст. ССР (1963), член-корреспондент АХ СССР (1958). Член КПСС с 1948. Учился в Таллине в Государственном высшем художественном училище – училище прикладного искусства им. Я. Коорта (1938—41). В 1944—51 преподавал в Тартуском художественном институте (в 1948—51 директор). Основатель Союза художников Эстонской ССР (1943), председатель правления (1950—57). Для Э. – мастера портретных рисунков и гравюры, характерны стремление объективно и всесторонне передать физический и духовный склад человека, тщательная светотеневая моделировка («В. Лойк», уголь, 1955, «Лейли из Вигала», сангина, 1958, «С. Корн», сухая игла, 1960). Награжден орденом Ленина, 3 другими орденами, а также медалями.

  Лит.: Bernštein В., Е. Einmann, Tallinn, 1956.

Э. Эйнманн. Портрет Р. Уутмаа. Уголь. 1965.

Эйнтховен Виллем

Э'йнтховен (Einthoven) Виллем (21.5.1860, Самаранг, о. Ява, – 29. 9.1927, Лейден, Нидерланды), нидерландский физиолог. Окончил университет в Утрехте (1885). С 1885 профессор физиологии Лейденского университета. Основные труды по электрофизиологии. Математический анализ электрокардиограмм позволил Э. внести существенные уточнения в расшифровку электрических реакций сердца. В 1903 созданием струнного гальванометра Э. положил начало клинической электрокардиографии. Э. принадлежат идея трёх отведений токов сердца, схема треугольника (треугольник Э.), иллюстрирующая изменение высоты зубцов электрокардиограммы и их взаимодействие в зависимости от способа отведения, физиологическое объяснение каждого зубца и интервала электрокардиограммы. Предложил (1913) векторкардиографию . Один из первых исследователей в области нейроэлектрофизиологии. Выявил импульсную активность в т. н. депрессорном нерве, зарегистрировал импульсную активность в нервных путях симпатической системы. Нобелевская премия (1924).

  Соч.: Neues Galvanometer, «Annalen der Physik», 1903, Bd 12; Über die Deutung des Elektrokardiogramms, «Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere», 1913, Bd l49; Das Saitengalvanometer und die Messung der Aktionsströme des Herzens, в кн.: Les prix Nobel en 1924—1925, Stockh., 1926.

  Лит.: Самойлов А. Ф., Воспоминания о профессоре Вильгельме Эйнтховене, в его кн.: Избр. статьи и речи, М.– Л., 1946; Wenckebach (Wien), W. Einthoven, «Deutsche medizinische Wochenschrift», 1927, Jg 53, № 51, S. 2176.

  Л. В. Соколова.

«Эйнхейт»

«Э'йнхейт» («Einheit»), журнал, издаваемый ЦК Социалистической единой партии Германии; см. «Айнхайт» .

Эйнштейн Альберт

Эйнште'йн (Einstein) Альберт (14.3.1879, Ульм, Германия, – 18.4.1955, Принстон, США), физик, создатель относительности теории и один из создателей квантовой теории и статистической физики. С 14 лет вместе с семьей жил в Швейцарии. По окончании Цюрихского политехникума (1900) работал учителем сначала в Винтертуре, затем в Шафхаузене. В 1902 получил место эксперта в федеральном патентном бюро в Берне, где работал до 1909. В эти годы Э. были созданы специальная теория относительности, выполнены исследования по статистической физике, броуновскому движению, теории излучения и др. Работы Э. получили известность, и в 1909 он был избран профессором Цюрихского университета, затем Немецкого университета в Праге (1911—12). В 1912 возвратился в Цюрих, где занял кафедру в Цюрихском политехникуме. В 1913 был избран членом Прусской и Баварской АН и в 1914 переехал в Берлин, где был директором физического института и проф. Берлинского университета. В берлинский период Э. завершил создание общей теории относительности, развил далее квантовую теорию излучения. За открытие законов фотоэффекта и работы в области теоретической физики Э. была присуждена Нобелевская премия (1921). В 1933 он был вынужден покинуть Германию, впоследствии в знак протеста против фашизма отказался от германского подданства, вышел из состава академии и переехал в Принстон (США), где стал членом Института высших исследований. В этот период Э. пытался разработать единую теорию поля и занимался вопросами космологии.

  Работы по теории относительности. Главное научное достижение Э. – теория относительности, которая по существу является общей теорией пространства, времени и тяготения. Господствовавшие до Э. представления о пространстве и времени были сформулированы И. Ньютоном в конце 17 в. и не вступали в явное противоречие с фактами, пока развитие физики не привело к появлению электродинамики и вообще к изучению движений со скоростями, близкими к скорости света. Уравнения электродинамики (Максвелла уравнения ) оказались несовместимыми с уравнениями классической механики Ньютона. Противоречия особенно обострились после осуществления Майкельсона опыта , результаты которого не могли быть объяснены в рамках классической физики.

  Специальная, или частная, теория относительности, предметом которой является описание физических явлений (и в том числе распространения света) в инерциальных системах отсчёта, была опубликована Э. в 1905 в почти завершенном виде. Одно из её основных положений – полная равноправность всех инерциальных систем отсчёта – делает бессодержательными понятия абсолютного пространства и абсолютного времени ньютоновской физики. Физический смысл сохраняют лишь те выводы, которые не зависят от скорости движения инерциальной системы отсчёта. На основе этих представлений Э. вывел новые законы движения, сводящиеся в случае малых скоростей к законам Ньютона, а также дал теорию оптических явлений в движущихся телах. Обращаясь к гипотезе эфира, он приходит к выводу, что описание электромагнитного поля не требует вообще какой-либо среды и что теория оказывается непротиворечивой, если помимо принципа относительности ввести и постулат о независимости скорости света от системы отсчёта. Глубокий анализ понятия одновременности и процессов измерения интервалов времени и длины (частично проведённый также А. Пуанкаре ) показал физическую необходимость сформулированного постулата. В том же (1905) году Э. опубликовал статью, где показал, что масса тела m пропорциональна его энергии Е , и в следующем году вывел знаменитое соотношение Е = mc2 (с – скорость света в вакууме). Большое значение для завершения построения специальной теории относительности имела работа Г. Минковского о четырёхмерном пространстве—времени. Специальная теория относительности стала необходимым орудием физических исследований (например, в ядерной физике и физике элементарных частиц), её выводы получили полное экспериментальное подтверждение.

  Специальная теория относительности оставляла в стороне явление тяготения. Вопрос о природе гравитации, а также об уравнениях гравитационного поля и законах его распространения не был в ней даже поставлен. Э. обратил внимание на фундаментальное значение пропорциональности гравитационной и инертной масс (принцип эквивалентности). Пытаясь согласовать этот принцип с инвариантностью четырёхмерного интервала , Э. пришёл к идее зависимости геометрии пространства – времени от материи и после долгих поисков вывел в 1915—16 уравнение гравитационного поля (уравнение Эйнштейна, см. Тяготение ). Эта работа заложила основы общей теории относительности.

  Э. сделал попытку применить своё уравнение к изучению глобальных свойств Вселенной. В работе 1917 он показал, что из принципа её однородности можно получить связь между плотностью материи и радиусом кривизны пространства – времени. Ограничиваясь, однако, статической моделью Вселенной, он был вынужден ввести в уравнение отрицательное давление (космологическую постоянную), чтобы уравновесить силы притяжения. Верный подход к проблеме был найден А. А. Фридманом , который пришёл к идее расширяющейся Вселенной. Эти работы положили начало релятивистской космологии.

  В 1916 Э. предсказал существование гравитационных волн, решив задачу о распространении гравитационного возмущения. Тем самым было завершено построение основ общей теории относительности.

  Общая теория относительности объяснила (1915) аномальное поведение орбиты планеты Меркурий, которое оставалось непонятным в рамках ньютоновской механики, предсказала отклонение луча света в поле тяготения Солнца (обнаружено в 1919—22) и смещение спектральных линий атомов, находящихся в поле тяготения (обнаружено в 1925). Экспериментальное подтверждение существования этих явлений стало блестящим подтверждением общей теории относительности.

  Развитие общей теории относительности в трудах Э. и его сотрудников связано с попыткой построения единой теории поля, в которой электромагнитное поле должно быть органически соединено с метрикой пространства – времени, как и поле тяготения. Эти попытки не привели к успеху, однако интерес к указанной проблеме возрос в связи с построением релятивистской квантовой теории поля .

  Работы по квантовой теории. Э. принадлежит важная роль в разработке основ квантовой теории. Он ввёл представление о дискретной структуре поля излучения и на этой основе вывел законы фотоэффекта, а также объяснил люминесцентные и фотохимические закономерности. Идеи Э. о квантовой структуре света (опубликована в 1905) находились в кажущемся противоречии с волновой природой света, которое нашло разрешение только после создания квантовой механики .

  Успешно развивая квантовую теорию, Э. в 1916 приходит к разделению процессов излучения на самопроизвольные (спонтанные) и вынужденные (индуцированные) и вводит Эйнштейна коэффициенты А и В , определяющие вероятности указанных процессов. Следствием рассуждений Э. оказался статистический вывод Планка закона излучения из условия равновесия между излучателями и излучением. Эта работа Э. лежит в основе современной квантовой электроники .

  Применяя такое же статистическое рассмотрение уже не к излучению света, а к колебаниям кристаллической решётки, Э. создаёт теорию теплоёмкости твёрдых тел (1907, 1911). В 1909 он выводит формулу для флуктуации энергии в поле излучения. Эта работа явилась подтверждением его квантовой теория излучения и сыграла важную роль в становлении теории флуктуаций.

  Первая работа Э. в области статистической физики появилась в 1902. В ней Э., не зная о трудах Дж. У. Гиббса, развивает свой вариант статистической физики, определяя вероятность состояния как среднее по времени. Такой взгляд на исходные положения статистической физики приводит Э. к разработке теории броуновского движения (опубл. в 1905), которая легла в основу теории флуктуаций.

  В 1924, познакомившись со статьей Ш. Бозе по статистике световых квантов и оценив её значение, Э. опубликовал статью Бозе со своими примечаниями, в которых указал на непосредственное обобщение теории Бозе на идеальный газ. Вслед за этим появилась работа Э. по квантовой теории идеального газа; так возникла Бозе – Эйнштейна статистика .

  Разрабатывая теорию подвижности молекул (1905) и исследуя реальность токов Ампера, порождающих магнитные моменты, Э. пришёл к предсказанию и экспериментальному обнаружению совместно с нидерландским физиком В. де Хаазом эффекта изменения механического момента тела при его намагничивании (Эйнштейна —де Хааза эффект ).

  Научные труды Э. сыграли большую роль в развитии современной физики. Специальная теория относительности и квантовая теория излучения явились основой квантовой электродинамики, квантовой теории поля, атомной и ядерной физики, физики элементарных частиц, квантовой электроники, релятивистской космологии и др. разделов физики и астрофизики.

  Идеи Э. имеют огромное методологическое значение. Они изменили господствовавшие в физике со времён Ньютона механистические взгляды на пространство и время и привели к новой, материалистической картине мира, основанной на глубокой, органические связи этих понятий с материей и её движением, одним из проявлений этой связи оказалось тяготение. Идеи Э. стали основной составной частью современной теории динамической, непрерывно расширяющейся Вселенной, позволяющей объяснить необычайно широкий круг наблюдаемых явлений.

  Открытия Э. были признаны учёными всего мира и создали ему международный авторитет. Э. очень волновали общественно-политическое события 20—40-х гг., он решительно выступал против фашизма, войны, применения ядерного оружия. Он принял участие в антивоенной борьбе в начале 30-х гг. В 1940 Э. подписал письмо к президенту США, в котором указал на опасность появления ядерного оружия в фашистской Германии, что стимулировало организацию ядерных исследований в США.

  Э. был членом многих научных обществ и академий мира, в том числе почётным членом АН СССР (1926).

  Соч.: Собр. научных трудов, т. 1—4, М., 1965—67 (лит.).

  Лит.: Эйнштейн и современная физика. Сб. памяти А. Эйнштейна, М., 1956; Зелиг К., Альберт Эйнштейн, пер. с нем., М., 1964; Кузнецов Б. Г., Эйнштейн. 3 изд., М., 1967.

  Я. А. Смородинский.

А. Эйнштейн.

Эйнштейн Альфред

Эйнште'йн (Einstein) Альфред (30.12.1880, Мюнхен, – 13.2.1952, Эль-Серрито, Калифорния), немецкий музыковед. Выступал как музыкальный критик в Мюнхене и Берлине, в 1918—33 издавал журнал «Цайтшрифт фюр музиквиссеншафт» («Zeitschrift für Musikwissenschaft»). После фашистского переворота жил в Великобритании и Италии, с 1939 в США. Важную часть наследия Э. составляют библиографические и лексикографические труды. Был ред. и автором ряда статей в 9-м, 10-м и 11-м изд. «Музыкального словаря» Х. Римана (1919, 1922, 1929), перевёл и переработал «Словарь современной музыки и музыкантов» А. Игфилд-Халла (под названием «Новый музыкальный словарь», 1926) и др. Особую ценность представляют исследования «Итальянский мадригал» (т. 1—3, 1949), «Великое в музыке» (1941), «Музыка романтической эпохи» (1947), монографии о творчестве композиторов, в том числе исследования о Г. Шюце (1928), К. В. Глюке (1936), В. А. Моцарте (1945), Ф. Шуберте (1951).

Эйнштейн (физич.)

Эйнште'йн, единица энергии электромагнитного излучения оптического диапазона; применяется в фотохимии, равна NAhn , где NA– Авогадро число и hn — энергия фотона . Названа в честь Альберта Эйнштейна , обозначается Е . При поглощении энергии излучения в 1 Э. должно происходить, согласно Эйнштейна закону , фотохимическое превращение 1 моля вещества. Из определения Э. следует, что размер единицы обусловлен частотой (n ) излучения (h — Планка постоянная ).

Эйнштейна закон

Эйнште'йна зако'н, квантово-оптический закон фотохимической эквивалентности, основной закон фотохимии, устанавливающий, что каждый поглощённый фотон вызывает одну элементарную реакцию. Эта реакция может состоять в химическом превращении молекул вещества либо в их физическом возбуждении и излучении поглощённой энергии (или в превращении этой энергии в тепловую). Число N прореагировавших молекул связано с энергией Е , поглощённой системой, соотношением:

,

где n – частота излучения, с – скорость света, l длина световой волны, h – постоянная Планка. Критерием применимости Э. з. обычно служит величина g (т. н. квантовый выход фотохимической реакции), равная отношению числа прореагировавших молекул данного вещества к числу поглощённых квантов света. Согласно Э. з., g должна быть равна 1. Наблюдаемые во многих реакциях отклонения от Э. з. обычно объясняются вторичными процессами (подробнее см. Фотохимия ). Э. з. открыт в 1912 Альбертом Эйнштейном .

  Лит. см. при ст. Фотохимия .

Эйнштейна закон тяготения

Эйнште'йна зако'н тяготе'ния, см. Тяготение .

Эйнштейна коэффициенты

Эйнште'йна коэффицие'нты характеризуют вероятности излучательных квантовых переходов . Были введены Альбертом Эйнштейном в 1916 при построении теории испускания и поглощения излучения атомами и молекулами на основе представления о фотонах; при этом им впервые была высказана идея существования вынужденного излучения . Вероятности спонтанного испускания, поглощения и вынужденного испускания характеризуются соответственно коэффициентами Aki , Bik и Bki (индексы указывают на направление перехода между верхним Ek и нижним Ei уровнями энергии). Соотношения между Э. к. были впервые получены Эйнштейном при выводе Планка закона излучения путём рассмотрения термодинамического равновесия вещества и излучения (см. Тепловое излучение ).

  Лит.: Эйнштейн А., Испускание и поглощение излучения по квантовой теории, в его кн.: Собр. научных трудов, т. 3, М., 1966, с. 386; К квантовой теории излучения, там же, с. 393.

  М. А. Ельяшевич.

Эйнштейна-де Хааза эффект

Эйнште'йна – де Ха'аза эффе'кт, состоит в том, что тело (ферромагнетик) при намагничивании вдоль некоторой оси приобретает относительно неё вращательный импульс, пропорциональный приобретённой намагниченности. Эффект экспериментально открыт и теоретически объяснён в 1915 Альбертом Эйнштейном и нидерландским физиком В. де Хаазом. Схема одной из экспериментальных установок для наблюдения Э.—де X. э. приведена на рисунке: намагничивание образца цилиндрической формы, подвешенного на упругой нити, вызывает поворот образца на небольшой угол. Этот поворот измеряется по угловому отклонению зеркальца, жестко связанного с образцом. Теоретически эффект объясняется тем, что магнитные моменты атомов образца, ориентируясь по направлению внешнего магнитного поля, вызывают изменение атомных механических моментов (магнитный момент атома М пропорционален результирующему моменту количества движения l, т. е. М = gl где g – магнитомеханическое отношение ). На основании закона сохранения момента количества движения общий момент количества движения тела должен оставаться неизменным, поэтому тело при намагничивании приобретает обратный (очень малый по величине) вращательный импульс относительно оси намагничивания. Исследование Э.—де X. э., как и др. магнитомеханических явлений , позволяет получить сведения о природе носителей магнетизма в веществе и строении атомов вещества. В современной физике для тех же целей используют др. эффекты (см. Магнитный резонанс ).

  Лит.: Вонсовский С. В., Магнетизм, М., 1971.

Схема установки для измерения эффекта Эйнштейна – де Хааза: А – образец; В – упругая нить подвеса; С – зеркальце; a – угол поворота образца, фиксируемый по изменению положения отражённого луча света; D – источник света; Е – шкала; W – намагничивающий соленоид, по которому проходит ток i.

Эйнштейний

Эйнште'йний (лат. Einsteinium, в честь Альберта Эйнштейна ), Es, искусственно полученный радиоактивный химический элемент сем. актиноидов ; ат. н. 99; стабильных изотопов не имеет (известны изотопы Es с массовыми числами от 243 до 256). Из трансурановых элементов он был открыт седьмым; идентифицирован А. Гиорсо и др. в декабре 1952. Э. содержался в пыли, собранной после термоядерного взрыва; работа проводилась с участием сотрудников Радиационной лаборатории Калифорнийского университета, Аргоннской национальной лаборатории и Лос-Аламосской научной лаборатории (США). Обнаруженный изотоп 253 Es с периодом полураспада T1/2 = 20,5 сут образовался при b -распаде 253 U и дочерних изотопов (253 U образовался в результате преимущественно последовательного захвата 15 нейтронов ядрами 238 U).

  Изучение Э. может производиться с использованием макроколичеств изотопов 253 Es (Ti1/2 = 20,5 сут ), 254 Es (T1 /2 =276 сут ) и 255 Es (T1/2 = 38,3 сут ), получение которых путём облучения образцов более лёгких элементов весьма ограниченно, поскольку требует многих последовательных реакций захвата нейтронов и, соответственно, длительного времени пребывания образцов в ядерных реакторах с большой плотностью нейтронного потока. В большинстве исследований пользовались наиболее доступным короткоживущим изотопом 253 Es, однако использование 254 Es будет возрастать по мере того, как он будет становиться всё более доступным. Во всяком случае изучение этого элемента сопряжено с большими трудностями, вызываемыми его высокой удельной радиоактивностью и малыми количествами получаемых изотопов. Э. в виде металла, характеризующегося относительно высокой летучестью, может быть получен путём восстановления EsF3 литием; кристаллы имеют гранецентрированную кубическую структуру; температура плавления 860 ± 30 °С. В обычном водном растворе Э. существует в наиболее устойчивой форме в виде Es3 + (даёт зелёную окраску), но в сильно восстановительных условиях может быть получен и в виде Es2 +. Восстановительный потенциал Es3 +/Es2 +, по оценке, равен – 1,24 ± 0,2 в относительно нормального водородного потенциала. Синтезированы и изучены многие твёрдые соединения Э., такие, как Es2 O3 , EsCl3 , EsOCl, EsBr2 , EsBr3 , EsI2 и EsI3 . Электронная структура атомов Es в газообразном состоянии 5f11 7s2 (после структуры радона).

  Лит.: Сиборг Г., Искусственные трансурановые элементы, пер. с англ., М., 1965.

  Г. Т. Сиборг (США).


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache