Текст книги "Большая Советская Энциклопедия (УС)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 3 (всего у книги 16 страниц)
Усима
У'сима , Нюланд (фин. Uusimaa, швед. Nyland), ляни (губерния) на Ю. Финляндии, у Финского залива. Площадь 10,4 тыс. км2. Свыше 1 млн. жителей (1973), в том числе городских 82%. Административный центр – г. Хельсинки. У. даёт 23% валовой промышленной продукции страны, в промышленности и строительстве занято 35% экономически активного населения, в сельском и лесном хозяйстве 5%, в обслуживании 59% (1973). Машиностроение, особенно судостроение; электротехническая, нефтеперерабатывающая, текстильная, пищевая, полиграфическая промышленность. Пригородное сельское хозяйство.
Усинск
У'синск, посёлок городского типа, центр Усинского района Коми АССР. Расположен на правом берегу р. Уса, недалеко от впадения её в Печору, в 150 км к С. от ж.-д. станции Печора (на линии Котлас – Воркута). 17 тыс. жителей (1975). Центр нефтяного района.
Усинская котловина
У'синская котловина, межгорное понижение в Зап. Саяне, по среднему течению р. Ус (правый приток Енисея), на Ю. Красноярского края РСФСР. Длина 70 км, ширина 10–18 км, высота 650–800 м. Рельеф равнинный, по окраинам холмистый. Климат резко континентальный; средняя температура января –28,6 °С (часты инверсии), июля 16,7 °С. Осадков около 350 мм в год. Вегетационный период 116 сут. Большая часть У. к. распахана (главным образом посевы зерновых); имеются участки злаковых и злаково-разнотравных степей на чернозёмных почвах. По окраинам – лиственнично-берёзовые лесостепи на серых лесных почвах и сосновые массивы на песках. Сев.-вост. часть У. к. пересекается Усинским трактом .
Усинский тракт
У'синский тракт, магистральная автомобильная дорога Абакан – Кызыл, 436 км (маршрут № 35), пересекающая Зап. Саяны и соединяющая столицу Тувимской АССР г. Кызыл с центром Хакас. АО г. Абакан и ж.-д. сетью Сибири; имеет подъезды к Минусинску и Шушенскому. Построен в 1911–17 как гужевой тракт, с 1932 – автомобильная дорога. Название получил от р. Ус – притока Енисея, в долине которой проходят 85 км дороги. По У. т. поступают почти все грузы для Тув. АССР и вывозятся из Тувы минеральное сырьё, мясо, шерсть, зерно, пушнина. По У. т. осуществляется основная часть пассажирских перевозок. После постройки автодороги Красноярск – Дивногорск – Абакан (1960–66) связан с сетью автомобильных дорог Юж. Сибири.
Ускоки
Уско'ки (серб.-хорв. uskok, буквально – беглец, перебежчик), военные поселенцы в Хорватии 16–17 вв. (главным образом беженцы из находившихся под властью Османской империи югославянских земель). Основной источник существования У. – собственное хозяйство. Во время военных действий получали от бана (правителя) за несение военной службы денежное вознаграждение и имели право на 2 /3 военной добычи.
Ускользания скорость
Ускольза'ния ско'рость в астрономии, см. Убегания скорость .
Ускорение
Ускоре'ние, векторная величина, характеризующая быстроту изменения скорости точки по её численному значению и по направлению. При прямолинейном движении точки, когда её скорость u возрастает (или убывает) равномерно, численно У. , где – приращение скорости за промежуток времени . В общем случае вектор У. равен первой производной от вектора скорости u по времени: ; он направлен в сторону вогнутости траектории точки и лежит в соприкасающейся плоскости.
Проекции У. на прямоугольные декартовы оси координат Oxyz равны первым производным от проекций скорости или вторым производным от координат точки по времени: , , . При этом модуль У. . Проекции У. На касательную и главную нормаль к траектории называют соответственно касательным (тангенциальным) wt и нормальным (центростремительным) wn У.; они определяются равенствами: , , где u – численная величина скорости, r – радиус кривизны траектории в соответствующей её точке.
При этом Касательное У. характеризует изменение скорости точки по её численной величине, а нормальное У. – по направлению.
У. свободной материальной точки связано с её массой m и действующей силой F равенством m w = F (второй закон Ньютона). Размерность У. LT-2.
Об У. точек вращающегося тела см. Вращательное движение , Угловое ускорение .
Лит. см. при ст. Кинематика .
С. М. Тарг.
Физиологическое действие ускорения. По характеру воздействия на организм различают линейное ударное У. (время действия £ 1 сек , 10 g/сек ), линейное длительно действующее У. (время действия ³ 1 сек , 10 g/сек ), а также угловое У. В авиационной и космической медицине для обозначения «возросшего веса тела» (вследствие У.) используется термин «перегрузка».
Наибольшим линейным ударным У. (ЛУУ) человек подвергается при падениях, авариях на транспорте, при аварийной посадке самолёта или космического корабля, при катапультировании и т.д. Основной неблагоприятный патофизиологический эффект ЛУУ сводится к нарушению целостности органов и тканей (позвоночник, череп, внутренние органы). Переносимость ЛУУ, направленных перпендикулярно к продольной оси тела, примерно в два раза выше, чем направленных вдоль позвоночника (30–40 g и 15–20 g соответственно). В процессе эволюции у человека сформировались некоторые специфические механизмы защиты от ЛУУ (амортизационные свойства костно-опорного аппарата, система подвески внутренних органов и т.п.).
Выраженность неблагоприятного эффекта линейного длительно действующего У. (ЛДУ) зависит от величины У. и его направления относительно тела человека. Чем более вектор ЛДУ приближается к продольной оси тела и направлению основных магистральных кровеносных сосудов, тем выраженное нарушения кровообращения, связанные с перераспределением крови под влиянием возросшего гидростатического давления. Наихудшим образом переносятся У., приводящие к повышению кровенаполнения сосудов головы. Легче всего человек переносит этот вид У., когда его вектор составляет с продольной осью тела угол в 75–80° (см. рис. ). Это условие реализуется на космических кораблях типа «Союз» и «Аполлон». Наибольшим ЛДУ в современных условиях человек может подвергаться при манёвренном полёте на скоростном самолёте или при полёте космического корабля по баллистической траектории. С ЛДУ в процессе эволюции человек практически не встречался. Переносимость этого воздействия определяется общими, неспецифическими механизмами приспособления к неблагоприятным факторам внешней среды. При вращательных движениях возникают угловые У., которые оказывают специфическое влияние на вестибулярный аппарат , а при определённых величинах могут вызвать явления, характерные для ЛУУ и ЛДУ.
Для повышения переносимости У. применяют различные технические средства, обеспечивающие сохранение оптимальной позы и положения человека относительно вектора У., снижение величины У. и скорости его нарастания, уменьшение эффекта перераспределения крови в организме (амортизационные, индивидуально моделированные кресла, привязные ремни, защитные шлемы, противоперегрузочные костюмы).
Лит.: БарерА. С., Проблемы ускорений в космической физиологии, «Космическая биология и медицина», 1967, в. 1; Сергеев А. А., физиологические механизмы действия ускорений, Л., 1967; Краткий справочник по космической биологии и медицине, 2 изд., М., 1972; Основы космической биологии и медицины. Совместное советско-американское издание, т. 2, кн. 1, М., 1975.
А. С. Барер.
Время переносимости человеком длительно действующих ускорений в зависимости от их величины и направления. Р – доверительный интервал для вероятности 0,95.
Ускорение свободного падения
Ускоре'ние свобо'дного паде'ния , ускорение силы тяжести, ускорение, сообщаемое свободной материальной точке силой тяжести . Такое ускорение имел бы центр тяжести любого тела при падении тела на Землю с небольшой высоты в безвоздушном пространстве. Как и сила тяжести, У. с. п. зависит от широты места j и высоты его над уровнем моря Н. Приблизительно У. с. п. д = 978,049 (1 + 0,005288 sin2 j – 0,000006 sin2 2 j – 0,0003086 Н. На широте Москвы на уровне моря g = 981,56 см/сек.
Ускорение силы тяжести
Ускоре'ние си'лы тя'жести , то же, что ускорение свободного падения .
Ускорения заряженных частиц коллективные методы.
Ускоре'ния заря'женных части'ц коллекти'вные ме'тоды. Ускорение заряженных частиц в современных ускорителях происходит благодаря взаимодействию заряда частицы с внешним электромагнитным полем (см. Ускорители заряженных частиц ). Эффективность ускорения, т. е. средняя энергия, сообщаемая частице электрическим полем на единице длины ускоряющего устройства, определяется напряжённостью электрического и магнитного полей и ограничена техническими возможностями устройств, создающих эти поля. Для разных типов ускорителей эффективность ускорения колеблется от 1 до 50 Мэв на 1 м длины системы. В 1960-х гг. возникло новое направление в физике ускорителей – т. н. когерентные методы ускорения, которые в принципе позволяли обойти трудности «классических» ускорителей. Основателем этого направления был В. И. Векслер . Главная задача когерентных методов ускорения – получение больших эффективностей ускорения. Их характерная особенность состоит в том, что электромагнитное поле, ускоряющее частицы, не является внешним, а возникает в результате взаимодействия группы ускоряемых частиц с др. группой зарядов, плазмой или электромагнитным излучением при условии его когерентного (синхронного) воздействия на всю ускоряемую группу частиц. Такой синхронизм обычно возникает автоматически. Величина ускоряющего поля зависит от числа участвующих в таком взаимодействии частиц и может достигать больших значений – 100 Мв/м и более. Однако реализации этих методов мешают возникающие плазменные и гидродинамические неустойчивости и поэтому в настоящее время когерентное ускорение не имеет практического значения для ускорения частиц. Если ускоряемые частицы не участвуют в создании ускоряющих полей, но последние создаются не с помощью электродов, как в «классических» ускорителях, а с помощью потоков, сгустков или колец заряженных частиц, то говорят о коллективных методах ускорения. К 1976 существует около 20 различных схем коллективного ускорения частиц. Во всех таких ускорителях, в отличие от плазменных ускорителей , в создании ускоряющего поля участвуют релятивистские электроны.
Ниже рассмотрены некоторые, наиболее характерные из коллективных методов ускорения.
1. Ускорение ионов электронными пучками
При прохождении электронного пучка высокой плотности через газ образуются ионы газа и ускоряются до энергий, существенно превышающих энергию электронов пучка. Окончательно механизм ускорения ионов не выяснен. Упрощённая схема этого процесса может быть построена следующим образом. Электронный пучок высокой плотности, попадая в металлическую трубку с газом, создаёт настолько сильное поле, что тормозится в этом поле и теряет свою скорость уже на очень малых расстояниях. В этой области за счёт уменьшения скорости плотность электронов максимальна. Затем начинается распад пучка под действием сил пространственного заряда. Энергия электронного пучка тратится не только на создание такого поля, но и на ионизацию газа, имеющегося в трубке. Через характерное время ионизации, которое зависит от плотностей пучка и газа, по всему пути пучка до места его практической остановки образуется достаточное количество положительно заряженных ионов, чтобы нейтрализовать пространственный заряд электронного пучка и локализовать поле внутри самого пучка. Тормозящее действие поля на приходящие после характерного времени ионизации электроны ослабляется, потери энергии прекращаются, и пучок электронов проходит дальше вдоль трубки. После этого весь процесс повторяется, и так продолжается до тех пор, пока пучок не пройдёт всю трубку. Т. о., место наибольшей плотности электронов движется вдоль трубки со скоростью, пропорциональной времени ионизации. Положительно заряженные ионы, попавшие в начальный момент в уплотнённую часть электронного пучка, удерживаются отрицательно заряженными электронами и движутся вместе с таким скачком плотности вдоль трубки с той же скоростью, а следовательно (из-за их большой массы), обладают много большей энергией, чем электроны. Эффективность ускорения в этом методе достигает 100 Мэв/м. Пока реализованы длины ускорения только в несколько см, и предстоит ещё большая работа по проверке правильности изложенной выше схемы ускорения.
2. Плазменный метод ускорения
Плазма является средой, в которой между отдеьными группами зарядов существуют поля до 1 000–10 000 Мв/м. Создание в плазме регулярных волн, т. е. волн, обладающих определённой фазой, и использование их для ускорения заряженных частиц – суть плазменного метода ускорения, предложенного сов. физиком Я. Б. Файнбергом. Для решения этой задачи применяют мощные электронные пучки. При их прохождении сквозь плазму создаются условия, при которых 20–30% энергии пучка расходуется на создание плазменной волны. Чтобы обеспечить регулярность этой волны, используется предварительная небольшая модуляция электронного пучка внешним электромагнитным полем. Изменяя частоту и фазу модуляции, а также плотность плазмы, можно управлять возникающей волной и сделать её пригодной для ускорения частиц.
3. Ускорение ионов электронными кольцами
При этом способе ускорения создаётся устойчивый электронный сгусток, в который вводятся положительно заряженные ионы. Электрическое поле электронного сгустка прочно удерживает ионы. При ускорении сгустка внешним полем ионы также ускоряются вместе со сгустком. Конечная энергия ионов во столько раз больше энергии электронов того же сгустка, во сколько раз масса иона больше массы электрона; если ускоряются протоны, то это отношение равно 1836. Данный метод имеет наибольшее практическое значение. Рассмотрим конкретную схему создания устойчивого сгустка электронов.
Физические основы создания устойчивого сгустка. Чтобы добиться устойчивости сгустка электронов, необходимо скомпенсировать силы кулоновского отталкивания электронов в сгустке. Это можно сделать добавлением в сгусток необходимого числа положительно заряженных ионов. Однако число ионов должно быть небольшим, чтобы масса сгустка существенно не менялась (т.к. ускорение зависит от отношения заряда к массе). Такие противоречивые требования выполняются лишь для движущихся электронов. Действительно, на электроны сгустка действуют кулоновские силы расталкивания, что приводит к разлёту сгустка. Но если сгусток движется, то, кроме кулоновских сил, появляются магнитные силы, связанные с движением зарядов и направленные противоположно силам расталкивания. Чем выше скорость движения электронов, тем больше магнитные силы. Для электронов с энергией движения, например, в 10 Мэв результирующая сила расталкивания уменьшается в 400 раз по сравнению с силой для покоящихся электронов. В этом случае достаточно в электронный сгусток ввести малое число ионов (1 /400 от числа электронов), чтобы полностью скомпенсировать кулоновское отталкивание. Для последующего ускорения такого образования во внешнем поле сгусток формируется в виде кольца движущихся электронов. Внутри сечения такого кольца (тора) расположены практически покоящиеся ионы. Кольцо используется для ускорения ионов. Сила, действующая на каждый ион кольца при движении его во внешнем поле, прямо пропорциональна числу электронов в кольце и обратно пропорциональна сечению кольца. Эти параметры и определяют эффективность ускорения в данном методе.
Схема ускорителя с электронными кольцами. Сгусток электронов формируется следующим образом. Пучок электронов от линейного ускорителя вводится (инжектируется) в магнитное поле, такое же, как у ускорителя со слабой фокусировкой, и образует кольцо большого диаметра. Начальный размер кольца выбирается из условия удержания в поле нужного числа электронов. Затем магнитное поле нарастает и в соответствии с ростом поля все размеры кольца уменьшаются. Этот процесс продолжается вплоть до получения кольцевого сгустка требуемых параметров. В конечном состоянии сжатия при помощи газового клапана в область кольца впрыскивается необходимое количество газа. Электроны ионизуют газ, и образующиеся ионы захватываются электронным сгустком. Число захваченных ионов регулируется изменением давления впускаемой порции нейтрального газа. После этого меняется конфигурация магнитного поля, удерживающего электроны, и кольцо вместе с ионами начинает двигаться с ускорением вдоль своей оси в направлении спада магнитного поля (за счёт трансформации энергии вращения электронов в энергию поступательного движения кольца). Дальнейшее ускорение кольца производится внешним электрическим полем (см. рис. ); при этом необходима ускоряющая система со значительным энергетическим запасом, например система высокочастотных резонаторов.
Эксперименты, проведённые на макетах таких ускорителей в Объединённом институте ядерных исследований (СССР, г. Дубна), позволили получить эффективность ускорения в десятки Мэв/м. Во многих странах ведутся работы по изучению возможностей получения в коллективных методах ускорения эффективностей в сотни Мэв/м.
Лит.: Veksler V. I., Coherent principle of acceleration of charged particles, «Proceedings CERN symposium on high energy acceierators and pion physics», v. I, Gen., 1956, p. 80–83; Плютто А. А. и др., Ускорение ионов в электронном пучке, «Атомная энергия», 1969, т. 27, в. 5, с. 418; Файнберг Я. Б., Ускорение частиц в плазме, «Атомная энергия», 1959, т. 6, в. 4, с. 431–46; Veksler V. I. et al., Linear collective acceleration of ions, «Proceedings of the sixth International conference on high energy accelerators», Gamb., 1967, p. 289.
В. П. Саранцев.
Движение кольцевого сгустка из электронов и положительно заряженных ионов во внешнем поле Евнешн в коллективном ускорителе. Ионы под действием поля Евнешн сдвигаются к краю кольца, противоположному направлению Евнешн , но внутреннее поле электронов удерживает их в кольце, и они ускоряются вместе с электронами.
Ускоренная киносъёмка
Уско'ренная киносъёмка,киносъёмка с частотой, повышенной относительно обычной частоты кинопроекции (в профессиональном кинематографе 24 кадр/сек ); к категории ускоренной относят съёмку с частотой до 64 кадр/сек. При демонстрации фильма, снятого методом У. к., возникает эффект замедления движения, что даёт зрителю возможность лучше различать фазы наблюдаемых на экране явлений и процессов. К У. к. прибегают также при съёмке с рук, из движущегося автомобиля, с лодки или катера и т.п.; в этом случае изображение на экране становится более устойчивым (не «прыгает»). У. к. производят, как правило, с использованием обычной профессиональной или любительской киносъёмочной аппаратуры с расширенным диапазоном частот съёмки.
Лит.: Голдовский Е. М., Введение в кинотехнику, М., 1974.
Ускорители заряженных частиц
Ускори'тели заря'женных части'ц – устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами). Но возможно ускорение с помощью полей, создаваемых др. заряженными частицами; такой метод ускорения называется коллективным (см. Ускорения заряженных частиц коллективные методы ). У. з. ч. следует отличать от плазменных ускорителей , в которых происходит ускорение в среднем электрически нейтральных потоков заряженных частиц (плазмы ).
У. з. ч. – один из основных инструментов современной физики. Ускорители являются источниками как пучков первичных ускоренных заряженных частиц, так и пучков вторичных частиц (мезонов, нейтронов, фотонов и др.), получаемых при взаимодействии первичных ускоренных частиц с веществом. Пучки частиц больших энергий используются для изучения природы и свойств элементарных частиц , в ядерной физике, в физике твёрдого тела. Всё большее применение они находят и при исследованиях в др. областях: в химии, биофизике, геофизике. Расширяется значение У. з. ч. различных диапазонов энергий в металлургии – для выявления дефектов деталей и конструкций (дефектоскопия), в деревообделочной промышленности – для быстрой высококачественной обработки изделий, в пищевой промышленности – для стерилизации продуктов, в медицине – для лучевой терапии , для «бескровной хирургии» и в ряде др. отраслей.
1. История развития ускорителей Толчком к развитию У. з. ч. послужили исследования строения атомного ядра, требовавшие потоков заряженных частиц высокой энергии. Применявшиеся вначале естественные источники заряженных частиц – радиоактивные элементы – были ограничены как по интенсивности, так и по энергии испускаемых частиц. С момента осуществления первого искусственного превращения ядер (1919, Э. Резерфорд ) с помощью потока a-частиц от радиоактивного источника начались поиски способов получения пучков ускоренных частиц.
В начальный период (1919—32) развитие ускорителей шло по пути получения высоких напряжений и их использования для непосредственного ускорения заряженных частиц. В 1931 амер. физиком Р. Ван-де-Граафом был построен электростатический генератор, а в 1932 англ. физики Дж. Кокрофт и Э. Уолтон из лаборатории Резерфорда разработали каскадный генератор . Эти установки позволили получить потоки ускоренных частиц с энергией порядка миллиона электрон-вольт (Мэв ). В 1932 впервые была осуществлена ядерная реакция, возбуждаемая искусственно ускоренными частицами, – расщепление ядра лития протонами.
Период 1931—44 – время зарождения и расцвета резонансного метода ускорения, при котором ускоряемые частицы многократно проходят ускоряющий промежуток, набирая большую энергию даже при умеренном ускоряющем напряжении. Основанные на этом методе циклические ускорители – циклотроны (Э. О. Лоуренс ) – вскоре обогнали в своём развитии электростатические ускорители. К концу периода на циклотронах была достигнута энергия протонов порядка 10—20 Мэв. Резонансное ускорение возможно и в линейных ускорителях Однако линейные резонансные ускорители не получили в те годы распространения из-за недостаточного развития радиотехники. В 1940 амер. физик Д. У. Керст реализовал циклический индукционный ускоритель электронов (бетатрон), идея которого ранее уже выдвигалась (амер. физик Дж. Слепян, 1922; швейц. физик Р. Видероэ, 1928).
Разработка ускорителей современного типа началась с 1944, когда сов. физик В. И. Векслер и независимо от него (несколько позже) амер. физик Э. М. Макмиллан открыли механизм автофазировки , действующий в резонансных ускорителях и позволяющий существенно повысить энергию ускоренных частиц. На основе этого принципа были предложены новые типы резонансных ускорителей – синхротрон, фазотрон, синхрофазотрон, микротрон. В это же время развитие радиотехники сделало возможным создание эффективных резонансных линейных ускорителей электронов и тяжёлых заряженных частиц.
В начале 50-х гг. был предложен принцип знакопеременной фокусировки частиц (амер. учёные Н. Кристофилос, 1950; Э. Курант, М. Ливингстон, Х. Снайдер, 1952), существенно повысивший технический предел достижимых энергий в циклических и линейных У. з. ч. В 1956 Векслер опубликовал работу, в которой была выдвинута идея когерентного, или коллективного, метода ускорения частиц.
Последующие два десятилетия можно назвать годами реализации этих идей и технического усовершенствования У. з. ч. Для ускорения электронов более перспективными оказались линейные резонансные ускорители. Крупнейший из них, на 22 Гэв, был запущен в 1966 амер. физиком В. Панофским (США, Станфорд). Для протонов наибольшие энергии достигнуты в синхрофазотронах. В 1957 в СССР (Дубна) был запущен самый крупный для того времени синхрофазотрон – на энергию 10 Гэв. Через несколько лет в Швейцарии и США вступили в строй синхрофазотроны с сильной фокусировкой на 25—30 Гэв, а в 1967 в СССР под Серпуховом – синхрофазотрон на 76 Гэв, который в течение многих лет был крупнейшим в мире. В 1972 в США был создан синхрофазотрон на 200—400 Гэв. В СССР и США разрабатываются проекты ускорителей на 1 000—5 000 Гэв.
Современное развитие ускорителей идёт как по пути увеличения энергии ускоренных частиц, так и по пути наращивания интенсивности (силы тока) и длительности импульса ускоренного пучка, улучшения качества пучка (уменьшения разброса по энергии, поперечным координатам и скоростям). Параллельно с разработкой новых методов ускорения совершенствуются традиционные методы: исследуются возможности применения сверхпроводящих материалов (и соответствующей им техники низких температур) в магнитах и ускоряющих системах, позволяющих резко сократить размеры магнитных систем и энергетические расходы; расширяется область применения методов автоматического управления в ускорителях; ускорители дополняются накопительными кольцами, позволяющими исследовать элементарные взаимодействия во встречных пучках (см. Ускорители на встречных пучках ). При этом особое внимание уделяется уменьшению стоимости установок.
II. Классификация ускорителей
У. з. ч. можно классифицировать по разным признакам. По типу ускоряемых частиц различают электронные ускорители, протонные ускорители и ускорители ионов.
По характеру траекторий частиц различают линейные ускорители (точнее, прямолинейные ускорители), в которых траектории частиц близки к прямой линии, и циклические ускорители, в которых траектории частиц близки к окружности (или спирали).
По характеру ускоряющего поля У. з. ч. делят на резонансные ускорители, в которых ускорение производится переменным высокочастотным (ВЧ) электромагнитным полем и для успешного ускорения частицы должны двигаться в резонанс с изменением поля, и нерезонансные ускорители, в которых направление поля за время ускорения не изменяется. Последние в свою очередь делятся на индукционные ускорители, в которых электрическое ускоряющее поле создаётся за счёт изменения магнитного поля (эдс индукции), и высоковольтные ускорители, в которых ускоряющее поле обусловлено непосредственно приложенной разностью потенциалов.
По механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях (фокусировку), различают ускорители с однородной фокусировкой, в которых фокусирующая сила постоянна вдоль траектории (по крайней мере, по знаку), и ускорители со знакопеременной фокусировкой, в которых фокусирующая сила меняет знак вдоль траектории, т. е. чередуются участки фокусировки и дефокусировки. В применении к некоторым типам циклических ускорителей (синхротрон и синхрофазотрон) вместо терминов «однородная» и «знакопеременная» фокусировка пользуются терминами «слабая» и «сильная» («жёсткая») фокусировка.
Резонансные циклические ускорители могут быть классифицированы далее по характеру управляющего – «ведущего» – магнитного поля и ускоряющего электрического поля: ускорители с постоянным и с переменным во времени магнитным полем и соответственно ускорители с постоянной и с переменной частотой ускоряющего поля. Приведённая классификация (табл. 1) не охватывает ускорителей со встречными пучками и ускорителей, использующих коллективные методы ускорения. Первый тип является своеобразной разновидностью перечисленных в табл. 1 ускорителей: пучки частиц от ускорителей того или иного типа направляют навстречу друг другу. Второй тип отличается от всей совокупности описанных ускорителей по источнику ускоряющего поля.
Табл. 1. – Классификация ускорителей заряженных частиц
Тип траектории | Характер ускоряющего поля | Магнитное поле | Частота ускоряющего поля | Фокусировка | Название | Ускоряемые частицы |
Окружность или спираль | Циклические ускорители | |||||
Нерезонансный, индукционный | Переменное | – | Однородная | Бетатрон | Электроны | |
Резонансный | Постоянное | Постоянная | « | Циклотрон Микротрон | Протоны (или ионы) Электроны | |
« | « | Знакопеременная | Изохронный циклотрон Секторный микротрон | Протоны Электроны | ||
« | Переменная | Однородная Знакопеременная | Фазотрон Секторный фазотрон | Протоны | ||
Переменное | Постоянная | Однородная Знакопеременная | Синхротрон слабофокусирующий Синхротрон сильнофокусирующий | Электроны | ||
« | Переменная | Однородная Знакопеременная | Синхрофазотрон слабофокусирующий Синхрофазотрон сильнофокусирующий | Протоны | ||
Прямая | Линейные ускорители | |||||
Hepeзонансный, электростатический | – | – | – | Электростатический ускоритель, каскадный ускоритель | Протоны, электрон ны | |
Нерезонансный, индукционный | – | – | – | Линейный индукционный ускоритель | Электроны | |
Резонансный | – | Постоянная | – | Линейный резонансный ускоритель | Протоны, электро-i ны |
III. Принцип действия резонансных ускорителей
В резонансном ускорителе непрерывное ускорение происходит благодаря тому, что в ускоряющие электроды частица всё время попадает в ускоряющую фазу поля (т. е. когда электрическое поле направлено в сторону движения частиц). Идеальная, т. н. равновесная, частица всё время попадает в одну и ту же фазу – равновесную фазу.
В циклическом ускорителе период обращения Т частицы по орбите связан со средним радиусом
(1)
(u – скорость частицы). Средний радиус орбиты равен
(2)
где Е = mc2 – полная релятивистская энергия частицы массы m, равная сумме энергии покоя частицы E = mс2 и её кинетической энергии W (m – масса покоя частицы, с – скорость света), е – заряд частицы, <В > – среднее значение индукции магнитного поля; поэтому период обращения связан с энергией частицы соотношением:
(3)
Для равновесной частицы период обращения равен или кратен периоду Ту ускоряющего поля. Фиксированным значениям периода обращения и индукции магнитного поля соответствуют вполне определённые равновесная энергия частицы и равновесный радиус её орбиты. Равновесная частица набирает за оборот энергию eV cos j , где j – равновесная фаза, т. е. фаза поля, действующего на равновесную частицу, отсчитываемая от максимума поля, a V – амплитуда напряжения на зазоре ускоряющих электродов. Для набора конечной кинетической энергии Wмакс частица должна совершить N = Wмакс /eV cosj оборотов. В циклических ускорителях длина пути, проходимого частицей, достигает десятков и сотен тысяч км. При столь большой длине пути для успешной работы ускорителя необходимо обеспечить устойчивость равновесного движения: небольшие отклонения частицы по фазе, по энергии, по радиусу и по вертикали, а также небольшие начальные скорости в направлениях, перпендикулярных орбите, не должны приводить к сильному отклонению частицы от равновесной орбиты – частица должна совершать колебательное движение около равновесной частицы. Обеспечение устойчивости движения частицы в направлениях, перпендикулярных орбите (по радиусу и по вертикали), называется фокусировкой, а в направлении орбиты – фазировкой.