355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ИЗ) » Текст книги (страница 22)
Большая Советская Энциклопедия (ИЗ)
  • Текст добавлен: 7 октября 2016, 00:03

Текст книги "Большая Советская Энциклопедия (ИЗ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 22 (всего у книги 25 страниц)

Изотопы

Изото'пы (от изо... и греч. tópos – место), разновидности одного химического элемента, занимающие одно место в периодической системе элементов Менделеева, но отличающиеся массами атомов. Химические свойства атомов, т. е. принадлежность атома к тому или иному химическому элементу, зависят от числа электронов и их расположения в электронной оболочке атома (см. Атом ). Место химического элемента в периодической системе элементов определяется его порядковым номером Z , равным числу электронов в оболочке атома или, что то же самое, числу протонов , содержащихся в атомном ядре. Кроме протонов, в ядро атома входят нейтроны , масса каждого из которых приблизительно равна массе протона. Количество нейтронов N в ядре атома с данным Z может быть различным, но в определённых пределах. Например, в ядре атома гелия (Z = 2) может содержаться 1, 2, 4 или 6 нейтронов. Полное число протонов Z и нейтронов N в ядре (называется общим термином нуклоны) определяет массу ядра и по существу массу всего атома. Это число А = Z + N называется массовым числом атома. От соотношения чисел протонов и нейтронов в ядре зависят стабильность или нестабильность ядра, тип распада радиоактивного ядра, спин , магнитный дипольный момент, электрический квадрупольный момент ядра и некоторые другие его свойства (см. Ядро атомное ). Таким образом, атомы с одинаковым Z , но с различным числом нейтронов N обладают идентичными химическими свойствами, но имеют различные массы и различные ядерные свойства. Эти разновидности атомов также называются И. Для обозначения любых разновидностей атомов, независимо от их принадлежности к одному элементу, применяют термин нуклиды.

  Массовое число И. приводится сверху слева от химического символа элемента. Например, И. гелия обозначаются: 3 He, 4 He, 6 He, 8 He. Более развёрнутые обозначения: 12Не3 , 22He4 , 42 Не6 , 62 He8 , где нижний индекс указывает число протонов Z , верхний левый индекс – число нейтронов N, а верхний правый – массовое число. При обозначении И. без применения символа элемента массовое число А даётся после наименования элемента: гелий-3, гелий-4 и т. п.

  Массы атомов М , выраженные в атомных единицах массы , лишь немного отличаются от целых чисел. Поэтому разность М – А всегда правильная дробь, по абсолютной величине меньше 1 /2 , и таким образом массовое число А есть ближайшее к массе атома М целое число. Знание массы атома определяет полную энергию E связи всех нуклонов в ядре. Эта энергия выражается соотношением E = DMc2 , где с – скорость света в вакууме, DМ – разность между суммарной массой всех входящих в ядро нуклонов в свободном состоянии и массой ядра, которая равна массе нейтрального атома без массы всех электронов.

  Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—07 выяснилось, что продукт радиоактивного распада урана – ионий и продукт радиоактивного распада тория – радиоторий имеют те же химические свойства, что и торий, однако отличаются от последнего атомной массой и характеристиками радиоактивного распада. Более того, как было обнаружено позднее, все три элемента имеют одинаковые оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди , стали называть И.

  После того как И. были обнаружены у тяжёлых радиоактивных элементов, начались поиски И. у стабильных элементов. В 1913 английский физик Дж. Томсон обнаружил И. у неона. Разработанный им метод парабол позволял определить отношение массы иона к его заряду по отклонению в параллельно направленных электрическом и магнитном полях тонкого пучка положительных ионов, получаемых в высоковольтном электрическом разряде (см. Масс-спектрометры ). Наряду с атомами 20 Ne Томсон наблюдал небольшую примесь более тяжёлых атомов. Однако убедительных доказательств того, что вторая компонента более тяжёлых атомов является И. неона, получено не было. Лишь с помощью первого масс-спектрографа, построенного в 1919 английским физиком Ф. Астоном , были получены надёжные доказательства существования двух И. 20 Ne и 22 Ne, относительное содержание (распространённость) которых в природе составляет приблизительно 91% и 9% . В дальнейшем был обнаружен изотоп 21 Ne с распространённостью 0,26%, И. хлора, ртути и ряда других элементов. Примерно к 1940 изотопный анализ был осуществлен для всех существующих на Земле элементов. В результате этого были выявлены и идентифицированы практически все стабильные и долгоживущие радиоактивные И. природных элементов.

  В 1934 И. Кюри и Ф. Жолио получили искусственным путём радиоактивные И. азота (13 N), кремния (28 Si) и фосфора (30 P), отсутствующие в природе. Этими экспериментами они продемонстрировали возможность синтеза новых радиоактивных нуклидов. В последующие годы с помощью ядерных реакций под действием нейтронов и ускоренных заряженных частиц было синтезировано большое число радиоактивных И. известных элементов, а также получено около 20 новых элементов. Известно 276 стабильных И., принадлежащих 81 природному элементу, и около 1500 радиоактивных И. 105 природных и синтезированных элементов.

  Анализ соотношений между числами нейтронов и протонов для различных И. одного и того же элемента показывает, что ядра стабильных И. и радиоактивных И., устойчивых по отношению к бета-распаду, содержат на каждый протон не менее одного нейтрона. Исключение из этого правила составляют лишь два нуклида – 1 H и 3 He. По мере перехода ко всё более тяжёлым ядрам отношение числа нейтронов к числу протонов в ядре растет и достигает 1,6 для урана и трансурановых элементов .

  Элементы с нечётным Z имеют не более двух стабильных И. Как правило, число нейтронов N в таких ядрах чётное, и, следовательно, массовое число А нечётное. Большинство элементов с чётным Z имеет несколько стабильных И., из которых не более двух с нечётным А. Наибольшее число И. (10) имеет олово, 9 И. – у ксенона, 8 – у кадмия и теллура. Многие элементы имеют 7 И.

  Такие широкие вариации в числе стабильных И. у различных элементов обусловлены сложной зависимостью энергии связи ядра от числа протонов и нейтронов в ядре. По мере изменения числа нейтронов N в ядре с данным числом протонов Z энергия связи ядра и его устойчивость по отношению к различным типам распада меняются. При добавлении нейтронов ядро становится неустойчивым по отношению к испусканию электрона с превращением одного нейтрона в ядре в протон (см. Ядро атомное ). Поэтому нейтронообогащённые И. всех элементов b -активны (см. Бета-распад ). Наоборот, при обеднении нейтронами ядро получает возможность или захватить электрон из оболочки атома, или испустить позитрон . При этом один протон превращается в нейтрон и оптимальное соотношение между числом протонов и нейтронов в ядре восстанавливается. Нейтронообеднённые И. всех элементов испытывают или электронный захват или позитронный распад. У тяжёлых ядер наблюдаются также альфа-распад и самопроизвольное (спонтанное) деление ядер. Получение нейтроноизбыточных И. элементов возможно несколькими способами. Один из них – реакция захвата нейтронов ядрами стабильных И. Другой – деление тяжёлых ядер под действием нейтронов или заряженных частиц, в результате которого из одного тяжёлого ядра с большим относительным содержанием нейтронов образуются два нейтронообогащённых ядра. Нейтронообогащённые И. лёгких элементов эффективно образуются в реакциях многонуклонного обмена при взаимодействии ускоренных тяжёлых ионов с веществом. Синтез нейтроно-дефицитных И. осуществляется в ядерных реакциях под действием ускоренных заряженных лёгких частиц или тяжёлых ионов.

  Все стабильные И. на Земле возникли в результате ядерных процессов, протекавших в отдалённые времена, и их распространённость зависит от свойств ядер и от первоначальных условий, в которых происходили эти процессы. Изотопный состав природных элементов на Земле, как правило, постоянен. Это объясняется тем, что он не подвергается значительным изменениям в химических и физических процессах, протекающих на Земле. Однако небольшие колебания в относительной распространённости И. всё же наблюдаются для лёгких элементов, у которых различие в массах атомов И. относительно велико. Эти колебания обусловлены изменением изотопного состава элементов (фракционированием И.), происходящим в результате диффузии, изменения агрегатного состояния вещества, при некоторых химических реакциях и других процессах, непрерывно протекающих в атмосфере и земной коре (см. Изотопов разделение , Изотопные методы в геологии, Изотопный обмен ). Изменение изотопного состава элементов, интенсивно мигрирующих в биосфере (Н, С, N, О, S), связано и с деятельностью живых организмов.

  Для нуклидов, образующихся в результате радиоактивного распада, например для И. свинца, различное содержание И. в разных образцах обусловлено разным первоначальным содержанием их родоначальников (U или Th) и разным геологическим возрастом образцов (см. Геохронология , Масс-спектроскопия , Радиоактивность ).

  Единство образования тел Солнечной системы позволяет думать, что изотопный состав элементов земных образцов характерен для всей Солнечной системы в целом (при наличии известных колебаний). Метеоры и глубокие слои земной коры показывают примерно одинаковое отношение 16 O/18 O. Астрофизические исследования обнаруживают отклонения изотопного состава элементов, составляющих звёздное вещество и межзвёздную среду, от земного. Например, для углеродных R -звёзд отношение 12 C/13 C изменяется от 4—5 до земного значения.

  Возможность примешивать к природным химическим элементам их радиоактивные И. позволяет следить за различными химическими и физическими процессами, в которых участвует данный элемент, с помощью детекторов радиоактивных излучений. Этот метод получил широкое применение в биологии, химии, медицине, а также в технике. Иногда примешивают стабильные И., присутствие которых обнаруживают в дальнейшем масс-спектральными методами (см. Изотопные индикаторы ).

  Важной проблемой является выделение отдельных И. из их природной или искусственно полученной смеси или обогащение этой смеси каким-либо И.

  Лит.: Астон Ф. В., Масс-спектры и изотопы, пер. с англ., М., 1948; Кравцов В. А., Массы атомов и энергии связи ядер, М., 1965; Lederer С. М., Hollander J. М., Periman I., Table of isotopes, 6 ed., N. Y. – [a. o.], 1967.

  Н. И. Тарантин.

Изотропия

Изотропи'я, изотропность (от изо... и греч. trópos – поворот, направление), одинаковость физических свойств среды по всем направлениям (в противоположность анизотропии ). Все газы, жидкости и твёрдые тела в аморфном состоянии изотропны по всем физическим свойствам. У кристаллов большинство физических свойств анизотропно. Однако чем выше симметрия кристалла , тем более изотропны его свойства. Так, у высокосимметричных кристаллов (алмаз, германий, каменная соль) упругость, прочность, электрооптические свойства анизотропны, но показатель преломления света, электропроводность, коэффициент теплового расширения и т. д. – изотропны (в менее симметричных кристаллах эти свойства также анизотропны; см. Кристаллофизика ,Кристаллы ).

  Однородные поликристаллы обычно изотропны в отношении всех свойств, если рассматривать их свойства в объёме, значительно большем, чем величина зерна.

  М. П. Шаскольская.

Изотропный излучатель

Изотро'пный излуча'тель, воображаемая антенна , излучающая во все направления электромагнитную энергию одинаковой интенсивности. И. и. обладает круговой диаграммой направленности в любой плоскости (см. Направленности антенны диаграмма ). В антенной технике И. и. принимается в качестве эталона при сравнительной оценке направленных свойств различных антенн, в частности при определении их коэффициента направленного действия (см. Направленного действия коэффициент ). Созданию антенн, близких по своим направленным свойствам к И. и., уделяется большое внимание. В частности, они необходимы для использования на искусственных спутниках Земли, не стабилизированных в пространстве. Такие антенны позволяют обеспечить устойчивую связь со спутником при изменении его положения в пространстве.

Изофазы

Изофа'зы солнечного затмения (от изо... и фаза ), изолинии одинаковых значений наибольшей фазы затмения. И. используются при подготовке наблюдений солнечных затмений .

Изофены

Изофе'ны (от изо... и греч. pháino – являю, показываю), изолинии одновременного наступления какого-либо фенологического явления, например зацветания растений (в этом случае их называют изоантами ). См. также Фенология .

Изоферменты

Изоферме'нты, изоэнзимы, изозимы, разные структурные формы ферментов , обладающие каталитической активностью одного типа; встречаются у организмов одного вида (или в одной ткани). И. катализируют одну и ту же реакцию, но различаются аминокислотным составом, некоторыми физическими, иммунологическими и каталитическими свойствами. И. состоят из нескольких полипептидных цепей (субъединиц), которые, комбинируясь различными способами, образуют четвертичную структуру фермента (см. Белки ). Так, из организма цыплёнка выделены две формы фермента лактатдегидрогеназы , одна из которых характерна для скелетных мышц, другая – для сердечной мышцы. Всего у цыплят, а также в других организмах обнаружено 5 изоформ этого фермента; каждая такая форма (тетрамер) построена из 4 белковых субъединиц двух типов. И. могут быть разделены с помощью электрофореза . У организмов одного вида (или в одной ткани) И. составляют характерный набор – «спектр», который может меняться при патологических изменениях тканей (чем пользуются в диагностике) и в процессе онтогенеза.

  Лит.: Уилкинсон Дж., Изоферменты, пер. с англ., М., 1968.

  Е. В. Петушкова.

Изофот

Изофо'т (от изо... и греч. phós, родительный падеж photós – свет), линия на поверхности, соединяющая точки с равной освещённостью , выраженной в фотах . Термин «И.» принят в Великобритании.

Изохинолин

Изохиноли'н, бесцветные кристаллы со слабым запахом миндаля; tпл 24,5 °С, tkип 243 °С. И. плохо растворим в холодной воде, в органических растворителях – хорошо. Он содержится в небольшом количестве в каменноугольном дёгте, откуда его выделяют вместе с хинолином . И. – более сильное основание, чем хинолин.

Важнейший метод получения И. и его производных – циклодегидратация b-фенилэтиламидов кислот C6 H5 CH2 CH2 NHCOR (реакция Бишлера – Напиральского) с последующим дегидрированием образующихся 3,4-дигидроизохинолинов. Изохинолиновое ядро входит в структуру ряда важных алкалоидов (папаверина , морфина , кодеина , курарина и др.).

Изохора

Изохо'ра (от изо... и греч. chóra – занимаемое место, пространство), линия на диаграмме состояния , изображающая процесс, происходящий в системе при постоянном объёме (изохорный процесс ). Наиболее простым является уравнение И. для идеального газар/Т = const, где р – давление, Т – температура газа.

Изохорный процесс

Изохо'рный проце'сс, процесс, происходящий в физической системе при постоянном объёме. В газах и жидкостях И. п. осуществить легко, для этого достаточно их поместить в герметически запаянный жёсткий сосуд, не меняющий своего объёма. При И. п. механической работы, связанной с изменением объёма тела, не совершается; изменение внутренней энергии тела происходит только за счёт поглощения или выделения тепла. С изменением температуры газа (жидкости) изменяется его давление. В идеальном газе при И. п. давление пропорционально температуре (закон Шарля). В неидеальном газе закон Шарля не соблюдается, так как часть сообщенной газу теплоты идёт на увеличение энергии взаимодействия частиц. Осуществить И. п. в твёрдом теле технически значительно сложнее. Из-за малой сжимаемости практически любой изотермический процесс в твёрдом теле является почти изохорным, вплоть до давлений порядка нескольких десятков килобар (~109н /м2 ).

Изохронность колебаний

Изохро'нность колеба'ний, независимость периода собственных колебаний какой-либо колебательной системы от амплитуды этих колебаний. И. к. – характерное свойство линейных систем, но для достаточно малых амплитуд соблюдается и в нелинейных системах (например, колебания маятника практически можно считать изохронными, пока амплитуда его угловых отклонений достаточно мала).

Изохроны

Изохро'ны (от изо... и греч. chrónos – время), изолинии одновременности того или иного явления. В метеорологии рассматривают И. различных метеорологических элементов, например перехода температур воздуха через 0°С в среднем многолетнем выводе. В астрономии строятся И. солнечных затмений, соответствующие началу или концу частного затмения, наибольшей фазе и др. И. начала и конца частного затмения являются контурами лунной полутени и наглядно показывают её продвижение по земной поверхности.

Изоцианаты

Изоциана'ты, эфиры изоциановой кислоты, R – N = С = О, где R – алифатический, ароматический, алкил-ароматический или гетероциклический радикал. И. – бесцветные или слабоокрашенные жидкости либо кристаллические вещества ( см. таблицу) . В зависимости от числа NCO-групп в молекуле (одна, две, три и более) И. делят на моно-, ди-, три– и т. д. изоцианаты. И. характеризуются высокой реакционной способностью. Они легко взаимодействуют с соединениями, содержащими подвижный атом водорода. Так, моноизоцианаты с аммиаком и аминами образуют производные мочевины (1), со спиртами – замещенные уретаны (2):

RNCO+NH3 ® RNHCONH2                   (1)

RNCO+R¢OH ® RNHCOOR¢                 (2)

И. димеризуются и тримеризуются, давая, например, изоцианураты

  Диизоцианаты с диолами или диаминами образуют соответственно полиуретаны или полимочевины, например

n HOROH + n OCNR¢NCO ® [– OROCONHR¢NHCO—]n

  Основной промышленный способ получения И. – фосгенирование первичных аминов или их хлоргидратов в жидкой или паровой (в случае низкокипящих аминов) фазе:

RNH2 + COCl2 ® RNCO + 2HCl

Свойства и применение некоторых наиболее важных изоцианатов


Изоцианат Температура плавления, °С Температура кипения, °С (давление в мм рт. cт. *) Плотность при 20 °С, г/см3Применение
Этилизоцианат C2 H5 NCO 60(760) 0,90
Гексаметилендиизоцианат OCN(CH2 )6 NCO —67 127(10) 1,046 Производство эластомеров, покрытий, волокон, лакокрасочных материалов
Фенилизоцианат C6 H5 NCO —33 166(760) 1,1
n -Хлорфенплизоцианат 31—32 78(10) Cинтез гербицидов
2,4-Толуилендиизоцианат 22 (температура замерзания) 121(10) 1,2178 Производство пенополкуретанов, эластомеров, лакокрасочных материалов
Дифенилметандинзоцианат-4,4' 40—41 156-158(0,1) 1.19 (при 50° С) То же
Дифенилдиизоцианат-4,4' 103—105 175-176(2,0) » »
Трифенилметантриизоцианат-4,4', 4" 91 240(0,75) Производство клея

 * 1 мм рт.ст = 133,32 н /м2 .

  Жидкофазный процесс осуществляют в инертных растворителях, например в хлорированных углеводородах, простых и сложных эфирах. Из реакционной смеси И. выделяют ректификацией.

  И. широко применяют в промышленности для производства уретановых каучуков , полиуретанов , клеёв (см. Полиуретановые клеи ), лакокрасочных материалов (см. Полиуретановые лаки ) и гербицидов . Получены также И., у которых R – свинец, кремний, бор, фосфор или другие элементы.

  Лит.: Саундерс Дж. Х., Фриш К. К., Химия полиуретанов, пер. с. англ., М., 1968; Современные методы синтеза мономеров для гетероцепных волокнообразующих полимеров. Сб. ст. под ред. Л. И. Кнунянца, М., 1961.

  Я. А. Шмидт.

Изоциклические соединения

Изоцикли'ческие соедине'ния, карбоциклические соединения, класс органических соединений, молекулы которых представляют собой циклы, построенные из атомов углерода. И. с. подразделяются на два основных ряда: алициклические соединения и ароматические соединения .

Изоэлектрическая точка

Изоэлектри'ческая то'чка, точка нулевого заряда, состояние поверхности тела (или частицы дисперсной фазы) в контакте с раствором электролита, характеризующееся равным числом положительных и отрицательных зарядов в адсорбционном слое. Электрокинетический потенциал при этом равен нулю. Коллоидные системы , стабилизованные электролитами, в И. т. неустойчивы, т. е. разрушаются вследствие слипания частиц дисперсной фазы (см. Коагуляция ). И. т. называется также электрически нейтральное состояние амфотерных электролитов (амфолитов), имеющих в своём составе отдельно кислотные и основные группы. И. т. каждого амфолита соответствует определённое значение pH. Молекулы амфолитов, так же как и коллоидные частицы, в И. т. теряют способность направленно перемещаться в электрическом поле. Набухаемость, растворимость, вязкость растворов и многие другие характеристики амфолитов, особенно высокомолекулярных, с приближением к И. т. принимают экстремальные значения.


    Ваша оценка произведения:

Популярные книги за неделю